
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,885,761 |
تعداد دریافت فایل اصل مقاله | 107,254,987 |
مدلسازی عددی غوطهوری جریان غلیظ در مخزن سد دز | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 6، شهریور 1404، صفحه 1459-1477 اصل مقاله (3.89 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.392751.669914 | ||
نویسندگان | ||
نیلوفر کیان ارثی1؛ مهدی قمشی2؛ محمدرضا زایری* 2 | ||
1گروه سازههای آبی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران. | ||
2گروه سازه های آبی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
چکیده | ||
در طول سیلاب، یک رودخانه به طور طبیعی مقادیر قابلتوجهی رسوب را از حوضه آبریز بالادست حمل میکند. به دلیل کاهش سرعت جریان در مناطق آرام و عمیق، مانند مخزن سد، رسوبات درشتتر که همراه جریان آب منتقل میشوند، در ناحیه به نام غوطهوری جریان غلیظ تهنشین میگردند. سد دز جهت تأمین آب شرب، آبیاری و کنترل سیلاب در شمال استان خوزستان اهمیت زیادی دارد. مطالعه بر روی ناحیه غوطهوری میتواند اطلاعات ارزشمندی در جهت کمک به عملیات تخلیه جریان غلیظ حاوی رسوبات از دریچههای تحتانی و تونلهای انحراف رسوب فراهم کند. شبیهسازی و حرکت جریانهای غلیظ گلآلود در مخزن سد دز با استفاده از کد دینامیک سیالات محاسباتی FLOW-3D مورد بررسی قرار گرفته است. برای بررسی در ابعاد میدانی، از مدل آشفتگی κ-ε (RNG) استفاده شده است. نتایج مدل عددی نشان میدهد برای سیلابهای بزرگتر از 300 مترمکعب بر ثانیه با تراز سطح آب بالای 320 متر از سطح دریا محدوده تشکیل عمق غوطهوری حدفاصل 20 تا 27 کیلومتری از دیواره سد خواهد بود. مقایسه برآورد عمق غوطهوری جریان غلیظ ارائه شده با روابط تجربی پیشین به طور صریح ارتباط مستقیم با دبی سیلاب و ارتباط معکوس با غلظت رسوبات ورودی به مخزن سد دز را نشان میدهد. نتایج این اعتبارسنجی نشان داد که عمقهای غوطهوری شبیهسازی شده بهخوبی با مقادیر پیشبینیشده از روابط تجربی مطابقت دارند، بهطوری که ضریب تبیین (R2) جامع برابر با 938/0 بهدستآمده است. | ||
کلیدواژهها | ||
نیمرخ سرعت؛ جریان گل آلود؛ تصاویر ماهوارهای | ||
عنوان مقاله [English] | ||
Numerical modeling of plunging Turbidity current in the Dez Dam reservoir | ||
نویسندگان [English] | ||
Niloufar kianersi1؛ mehdi ghomeshi2؛ MohammadReza Zayeri2 | ||
1Department of Hydraulic Structures, Faculty of Water Engineering and Environmental Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
2Department of Hydraulic Structures, Faculty of Water Engineering and Environmental Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
چکیده [English] | ||
During flood events, a river naturally transports significant amounts of sediment from its upstream watershed. Due to the reduction in flow velocity in calm and deep areas such as dam reservoirs, coarser sediments carried by the flow tend to settle in a zone known as the plunge area of the turbidity current. The Dez Dam, located in the northern part of Khuzestan Province, plays a crucial role in providing drinking water, irrigation, and flood control. Investigating the turbidity plunge zone can yield valuable insights to support the management of sediment-laden flow discharge through bottom outlets and sediment bypass tunnels. In this study, the movement and behavior of muddy turbidity currents within the Dez Dam reservoir were simulated using the FLOW-3D computational fluid dynamics (CFD) code. The RNG k-ε turbulence model was employed to simulate field-scale conditions. Numerical modeling results indicate that for flood discharges exceeding 300 m3/s and reservoir water levels above 320 meters above sea level, the turbidity current plunging depth is formed at a distance ranging from 20 to 27 kilometers upstream of the dam structure. A comparison between the estimated plunging depths of the turbidity currents and previously developed empirical formulas reveals a direct relationship with flood discharge and an inverse relationship with the sediment concentration entering the reservoir. The model validation results demonstrated a strong agreement between the simulated plunging depths and those predicted by empirical relationships, with a determination coefficient (R²) of 0.938, confirming the model's high accuracy. | ||
کلیدواژهها [English] | ||
velocity profile, turbidity current, satellite imagery | ||
مراجع | ||
Arita, M., & Nakai, M. (2008). Plunging conditions of two-dimensional negative buoyant surface jets released on a sloping bottom. Journal of Hydraulic Research, 46(3), 301–306. https://doi.org/10.3826/jhr.2008.2714 Arjmandi, Ghomeshi, M., Ahadiayn, javad, & Goleij, hasan. (2012). PREDICTION OF PLUNGE POINT IN THE DENSITY CURRENT USING RNG TURBULENCE MODELING. 22(1), 171–185. Brasington, J., & Richards, K. (2000). Turbidity and suspended sediment dynamics in small catchments in the Nepal Middle Hills. Hydrological Processes, 14(14), 2559–2574. https://doi.org/10.1002/1099-1085(20001015)14:14<2559::AID-HYP114>3.0.CO;2-E Chamoun, S., De Cesare, G., & Schleiss, A. (2016). Managing reservoir sedimentation by venting turbidity currents: A review. International Journal of Sediment Research. https://doi.org/10.1016/j.ijsrc.2016.06.001 Elahi, R., Ghomeshi, M., & Zayeri, M. (2024). Experimental Study of Water Entrainment in Plunging Phenomena in Channel’s Bend. Irrigation Sciences and Engineering, 47(1), 119–130. https://doi.org/10.22055/jise.2017.21656.1581 Ellison, T. H., & Turner, J. S. (1959). Turbulent entrainment in stratified flows. Journal of Fluid Mechanics, 6(3), 423–448. https://doi.org/10.1017/S0022112059000738 Fan, J.-H. (1960). Experimental studies on density currents. Water and Energy International, 17(4), 706–729. Farrell, G. J., & Stefan, H. G. (1986). Buoyancy induced plunging flow into reservoirs and costal regions. https://conservancy.umn.edu/items/6c58e0c0-3288-45ce-8c50-914df41b8990 Goodarzi, D., Sookhak Lari, K., Khavasi, E., & Abolfathi, S. (2020). Large eddy simulation of turbidity currents in a narrow channel with different obstacle configurations. Scientific Reports, 10(1), 12814. https://doi.org/10.1038/s41598-020-68830-5 Hebbert, B., Patterson, J., Loh, I., & Imberger, J. (1979). Collie River Underflow into the Wellington Reservoir. Journal of the Hydraulics Division, 105(5), 533–545. https://doi.org/10.1061/JYCEAJ.0005206 Howlett, D. M., Ge, Z., Nemec, W., Gawthorpe, R. L., Rotevatn, A., & Jackson, C. A. ‐L. (2019). Response of unconfined turbidity current to deep‐water fold and thrust belt topography: Orthogonal incidence on solitary and segmented folds. Sedimentology, 66(6), 2425–2454. https://doi.org/10.1111/sed.12602 Imtiyaz, N., Lee, F.-Z., Lin, G.-F., & Lai, J.-S. (2024). Modeling and Analysis of Turbidity Currents in a Reservoir with the Dredged Guiding Channel. KSCE Journal of Civil Engineering, 28(8), 3257–3269. Scopus. https://doi.org/10.1007/s12205-024-1054-z Karamichemeh D, M, G., H, G., & A, S. (2014). EXPERIMENTAL STUDY ON THE CHARACTERISTICS OF PLUNGE REGION OF SALINE DENSITY CURRENT. 36(4), 0–0. Kostaschuk, R., Nasr-Azadani, M., Meiburg, E., Wei, T., Chen, Z., Negretti, M.-E., Best, J., Peakall, J., & Parsons, D. (2018). On the Causes of Pulsing in Continuous Turbidity Currents. Journal of Geophysical Research: Earth Surface, 123(11), 2827–2843. https://doi.org/10.1029/2018JF004719 Lee, F.-Z., Lai, J.-S., Kantoush, S. A., & Sumi, T. (2024). Analysis of turbidity current plunging and floating woody debris in a reservoir during flood events. Journal of Hydrology: Regional Studies, 56, 102027. https://doi.org/10.1016/j.ejrh.2024.102027 lee hong. (1997). Experimental Study of Reservoir Turbidity Current | Journal of Hydraulic Engineering | Vol 123, No 6. https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9429%281997%29123%3A6%28520%29 Lee, H.-Y., & Yu, W.-S. (1997). Experimental Study of Reservoir Turbidity Current. Journal of Hydraulic Engineering, 123(6), 520–528. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:6(520) Mehranfar, N., Kolahdoozan, M., & Faghihirad, S. (2023). Development of multiphase solver for the modeling of turbidity currents (the case study of Dez Dam). International Journal of Multiphase Flow, 168, 104586. Meskar Hoda & Fazloula Ramin. (2013). INVESTIGATION OF SEDIMENTATION PATTERN IN THE SHAHID RAJAEE RESERVOIR USING GSTAR3.0 NUMERICAL MODEL. 4(7), 16–29. Minella, J. P. G., Merten, G. H., Reichert, J. M., & Clarke, R. T. (2008). Estimating suspended sediment concentrations from turbidity measurements and the calibration problem. Hydrological Processes, 22(12), 1819–1830. https://doi.org/10.1002/hyp.6763
Peng-An, C. (2022). Integration of multiple outlets’ operation and sediment management options in the reservoir for increasing efficiency of turbidity current venting and clear water storage [PhD Thesis, 京都大学]. https://ci.nii.ac.jp/naid/500001899348/ Rakesh, M., Rakesh, P. K., Kumar, B., Chowdhury, S., & Patidar, A. K. (2022). Numerical simulation of gravity driven turbidity currents using Computational fluid dynamics. Materials Today: Proceedings, 50, 1883–1891. https://doi.org/10.1016/j.matpr.2021.09.238 Sangdo An, & Julien, P. Y. (2014). Three-Dimensional Modeling of Turbid Density Currents in Imha Reservoir, South Korea. Journal of Hydraulic Engineering, 140(5), 05014004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000851 Savage, S. B., & Brimberg, J. (1975). Analysis Of Plunging Phenomena In Water Reservoirs. Journal of Hydraulic Research, 13(2), 187–205. https://doi.org/10.1080/00221687509499713 Schuch, F. N., Silvestrini, J. H., Meiburg, E., & Laizet, S. (2023). The Plunging of Hyperpycnal Plumes on Tilted Bed by Three-Dimensional Large-Eddy Simulations. In H. F. Meier, A. A. M. De Oliveira Junior, & J. Utzig (Eds.), Advances in Turbulence (pp. 41–55). Springer International Publishing. https://doi.org/10.1007/978-3-031-25990-6_4 Singh, B., & Shah, C. R. (1971). Plunging phenomenon of density currents in reservoirs. La Houille Blanche, 1, 59–64. Sun, Y., Li, J., Cao, Z., Borthwick, A. G. L., & Józsa, J. (2023). Effect of tributary inflow on reservoir turbidity current. Environmental Fluid Mechanics, 23(2), 259–290. https://doi.org/10.1007/s10652-022-09856-3 Tang, X.-Q., Koh, C. G., & Luo, M. (2023). Numerical simulation of turbidity currents using consistent particle method. Advances in Water Resources, 180, 104536. https://doi.org/10.1016/j.advwatres.2023.104536 Wang, S., Qian, X., Han, B., Luo, L., Ye, R., & Xiong, W. (2013). Effects of different operational modes on the flood‐induced turbidity current of a canyon‐shaped reservoir: Case study on Liuxihe Reservoir, South China. Hydrological Processes, 27(26), 4004–4016. https://doi.org/10.1002/hyp.9534 Wang, Z., Xia, J., Zhou, M., Cheng, Y., & Li, T. (2023). A semi-analytical model for predicting outflow concentration of vented turbidity currents with application in the Xiaolangdi reservoir. Journal of Hydrology, 625, 130009. https://doi.org/10.1016/j.jhydrol.2023.130009 Xia, J., Zhang, J., Deng, S., Wang, Z., & Li, T. (2017). Improved criterion for plunge of reservoir turbidity currents. Proceedings of the Institution of Civil Engineers - Water Management, 170. https://doi.org/10.1680/jwama.15.00046 Zavala, C., Arcuri, M., & Valiente, L. (2012). The importance of plant remains as diagnostic criteria for the recognition of ancient hyperpycnites. Revue de Paleobiologie, 11, 457–469. Zayeri, M., & Ghomeshi, M. (2024). Analysis of two-phase flow hydraulics using acoustic doppler velocimetry. Iranian Water Researches Journal, 18(2). https://doi.org/10.22034/iwrj.2024.14686.2584 Zayeri, M. R., & Ghomeshi, M. (2019). Numerical Modeling of Turbid Density Current in Dez Reservoir. Journal of Civil and Environmental Engineering, 49.1(94), 77–88. https://doi.org/10.22034/ceej.2019.8958 Zayrie, M., & Ghomeshi, M. (2014). Hydrodynamic Analysis of Turbidity Currents Measured in Dez Dam Reservoir. Water and Soil Science, 24(2), 135–145. https://water-soil.tabrizu.ac.ir/article_1672_en.html | ||
آمار تعداد مشاهده مقاله: 47 تعداد دریافت فایل اصل مقاله: 43 |