
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,878,821 |
تعداد دریافت فایل اصل مقاله | 107,237,589 |
بررسی تأثیر مواد هیومیکی استخراجی از لئوناردیت بر سینتیک واجذب و شکلهای شیمیایی نیکل در یک خاک آهکی آلوده به نیکل | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 6، شهریور 1404، صفحه 1555-1569 اصل مقاله (1.61 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.393048.669918 | ||
نویسندگان | ||
ایمان سیف الهی* 1؛ علی خانمیرزایی2؛ وحیدرضا صفاری3؛ پیمان فروزش4؛ محبوب صفاری5 | ||
1گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ازاد اسلامی واحد کرج، کرج، ایران | ||
2گروه خاکشناسی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ازاد اسلامی واحد کرج، کرج، ایران. | ||
3پژوهشکده فناوری تولیدات گیاهی، دانشگاه شهید باهنر کرمان، ایران | ||
4گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه ازاد اسلامی واحد کرج، کرج، ایران | ||
5گروه محیط زیست، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران | ||
چکیده | ||
مطالعه حاضر به بررسی تأثیر اجزای مختلف مواد هیومیکی، شامل هیومیک اسید، فولویک اسید و ترکیب آنها، بر رفتار نیکل در یک خاک آهکی میپردازد. در این پژوهش، مواد هیومیکی از لئوناردیت استان کرمان استخراج و بهصورت جداگانه به خاک آلوده به نیکل (با غلظت 120 میلیگرم بر کیلوگرم) افزوده شد. پس از گذشت سه ماه نگهداری در شرایط رطوبتی، سینتیک واجذب نیکل با استفاده از عصارهگیر EDTA و اشکال شیمیایی نیکل با روش عصارهگیری دنبالهای مورد ارزیابی قرار گرفت. نتایج نشان داد که کاربرد هیومیک اسید منجر به افزایش ۵۲ درصدی واجذب نیکل شد. در مقایسه، کاربرد ترکیب هیومیک اسید–فولویک اسید و فولویک اسید بهتنهایی به ترتیب موجب کاهش ۱۳ و ۳۵ درصدی واجذب نیکل نسبت به نمونه شاهد گردید. مدل دو مرحلهای مرتبه اول بهخوبی بر دادههای سینتیک واجذب نیکل برازش یافت، که بیانگر توانایی آن در توصیف فرآیند واجذب نیکل در خاکهای تیمار شده بود. علاوه بر این، بررسی تأثیر مواد هیومیکی بر اشکال شیمیایی نیکل نشان داد که کاربرد هیومیک اسید و ترکیب هیومیک اسید–فولویک اسید، بهطور معنیداری (در سطح یک درصد)، موجب افزایش اشکال تبادلی و کربناتی نیکل گردید. در حالی که استفاده از فولویک اسید به کاهش معنیدار این اشکال متحرک در مقایسه با نمونه شاهد منجر شد. بهطور کلی، یافتهها حاکی از پتانسیل بالای مواد هیومیکی در تغییر قابلیت دسترسی نیکل در خاکهای آهکی و تأثیر متغیر نوع ماده هیومیکی بر رفتار این عنصر سنگین در محیط خاک است؛ مسالهای که میتواند در توسعه روشهای پایدار مدیریت آلودگی فلزات سنگین، از جمله تثبیت شیمیایی یا فرآیند گیاهپالایی، مورد بهرهبرداری قرار گیرد. | ||
کلیدواژهها | ||
اسیدهای هیومیک و فولویک؛ تثبیت شیمیایی؛ عصارهگیری دنبالهای؛ سینتیک رهاسازی فلزات؛ فلزات سنگین | ||
عنوان مقاله [English] | ||
Investigation of the effects of leonardite-derived humic substances on nickel desorption kinetics and chemical forms in a calcareous nickel-contaminated soil | ||
نویسندگان [English] | ||
Iman Seifollahi1؛ Ali Khanmirzaei2؛ Vahid Reza Saffari3؛ Peyman Foroozesh4؛ Mahboub Saffari5 | ||
1Department of Horticultural Sciences, College of Agriculture and Natural Resources, Karaj Branch, Islamic Azad University, Karaj, Iran | ||
2Department of Soil Science, Karaj branch, Islamic Azad University, Karaj, Iran | ||
3Research and Technology Institute of Plant Production, Shahid Bahonar University, Kerman, Iran | ||
4Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, Karaj Branch, Islamic Azad University, Karaj, Iran | ||
5Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran | ||
چکیده [English] | ||
The present study investigates the effects of different humic substances—including humic acid, fulvic acid, and their combination—on the behavior of nickel (Ni) in a calcareous soil. In this research, humic substances were extracted from leonardite obtained from Kerman Province and separately applied to soil contaminated with Ni (at a concentration of 120 mg/kg). After a three-month incubation period under moist conditions, Ni desorption kinetics were assessed using EDTA extraction, and the chemical forms of Ni were evaluated through a sequential extraction method. The results showed that the application of humic acid led to a 52% increase in Ni desorption. In comparison, the application of the humic acid–fulvic acid combination and fulvic acid alone resulted in 13% and 35% decreases in Ni desorption, respectively, compared to the control. The two first-order kinetic model fit the Ni desorption data well, indicating its capability to describe the desorption process in the treated soils. Furthermore, the impact of humic substances on the chemical forms of Ni revealed that humic acid and the humic acid–fulvic acid combination significantly (at the 1% level) increased the exchangeable and carbonate-bound fractions of Ni. In contrast, fulvic acid significantly reduced these mobile forms compared to the control. Overall, the findings demonstrate the high potential of humic substances in altering the bioavailability of Ni in calcareous soils and highlight the influence of humic substance type on the behavior of this heavy metal in the soil environment. These results suggest the applicability of humic substances in developing sustainable strategies for managing heavy metal pollution, such as chemical immobilization or phytoremediation processes. | ||
کلیدواژهها [English] | ||
Humic and fulvic acids, Chemical stabilization, Sequential extraction, Metal release kinetics, Heavy metals | ||
مراجع | ||
Ali, S., Sami, U., Hasnain, U., Arsalan, S., Sohaib, N., Zarmina, A., ... & Rimsha, Z. (2022). Effects of Heavy Metals on Soil Properties and Their Biological Remediation. Indian J. Pure Appl. Biosci, 10, 40-46. Aranganathan, L., Rajasree, S. R., Suman, T. Y., Remya, R. R., Gayathri, S., Jayaseelan, C., ... & Gobalakrishnan, M. (2019). Comparison of molecular characteristics of Type A humic acids derived from fish waste and sugarcane bagasse co-compost influenced by various alkaline extraction protocols. Microchemical Journal, 149, 104038. Bahemmat, M., Farahbakhsh, M., & Kianirad, M. (2016). Humic substances-enhanced electroremediation of heavy metals contaminated soil. Journal of hazardous materials, 312, 307-318. Bolan, N., Srivastava, P., Rao, C. S., Satyanaraya, P. V., Anderson, G. C., Bolan, S., ... & Kirkham, M. B. (2023). Distribution, characteristics and management of calcareous soils. Advances in agronomy, 182, 81-130. Boostani, H. R., Hardie, A. G., & Najafi-Ghiri, M. (2020). Chemical fractions and bioavailability of nickel in a Ni-treated calcareous soil amended with plant residue biochars. Archives of Agronomy and Soil Science, 66(6), 730-742. Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465. Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-Total Pp. 595-623. Methods of Soil Analysis, American Society of Agronomy, Madison, Wisconsin, USA. Brunori, C., Cremisini, C., D’annibale, L., Massanisso, P., & Pinto, V. (2005). A kinetic study of trace element leachability from abandoned-mine-polluted soil treated with SS-MSW compost and red mud. Comparison with results from sequential extraction. Analytical and Bioanalytical Chemistry, 381(7), 1347-1354. Dang, Y. P., Dalal, R. C., Edwards, D. G., & Tiller, K. G. (1994). Kinetics of zinc desorption from Vertisols. Soil Science Society of America Journal, 58(5), 1392-1399. Dotaniya, M. L., & Meena, V. D. (2015). Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85, 1-12. El-Naggar, A., Ahmed, N., Mosa, A., Niazi, N. K., Yousaf, B., Sharma, A., ... & Chang, S. X. (2021). Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. Journal of hazardous materials, 419, 126421. Farraji, H., Robinson, B., Mohajeri, P., & Abedi, T. (2020). Phytoremediation: Green technology for improving aquatic and terrestrial environments. Nippon. J. Environ. Sci, 1, 1-30. Garcia-Mina, J. M. (2006). Stability, solubility and maximum metal binding capacity in metal–humic complexes involving humic substances extracted from peat and organic compost. Organic Geochemistry, 37(12), 1960-1972. Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human health and environmental toxicology. International journal of environmental research and public health, 17(3), 679. Gondar, D., López, R., Fiol, S., Antelo, J. M., & Arce, F. (2006). Cadmium, lead, and copper binding to humic acid and fulvic acid extracted from an ombrotrophic peat bog. Geoderma, 135, 196-203. Kabata-Pendias, A. (2000). Trace elements in soils and plants. CRC press. Kaur, R., Sharma, S., & Kaur, H. (2019). Heavy metals toxicity and the environment. Journal of Pharmacognosy and Phytochemistry, 1, 247-249. Khosravi, S., Nezami, S., & Fatemi, A. (2023). Comparison of structural diversity of humic acid types extracted from conventional organic sources in agriculture. Iranian Journal of Soil and Water Research, 54(1), 123-134. Krachler, R., Krachler, R. F., Wallner, G., Hann, S., Laux, M., Recalde, M. F. C., ... & Keppler, B. K. (2015). River-derived humic substances as iron chelators in seawater. Marine chemistry, 174, 85-93. Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428. Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. Methods of soil analysis. Part, 3, 437-474. Moradkhani, P., Oustan, S., Reyhanitabar, A., & Alidokht, L. (2021). Efficiency of humic acid from various organic sources for reducing hexavalent chromium in aqueous solutions. Pollution, 7(2), 321-331. Murphy, J. A. M. E. S., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 27, 31-36. Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods, 5, 961-1010. Pishchik, V., Mirskaya, G., Chizhevskaya, E., Chebotar, V., & Chakrabarty, D. (2021). Nickel stress-tolerance in plant-bacterial associations. PeerJ, 9, e12230. Pratt, P. F. (1965). Potassium. Edit Black, CA Method of Soil Analysis Part-2. Amer. Soc. of Agron. Inc. Pub. Madison, Wisconsin, USA. Pratush, A., Kumar, A., & Hu, Z. (2018). Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. International Microbiology, 21, 97-106. Rong, Q., Zhong, K., Huang, H., Li, C., Zhang, C., & Nong, X. (2020). Humic acid reduces the available cadmium, copper, lead, and zinc in soil and their uptake by tobacco. Applied Sciences, 10(3), 1077. Saffari, M., & Moazallahi, M. (2023). Nickel behavior as affected by various physical-chemical modified biochars of cypress cones in a calcareous nickel-spiked soil. Archives of Agronomy and Soil Science, 69(6), 981-998. Saffari, M., Karimian, N., Ronaghi, A., Yasrebi, J., & Ghasemi-Fasaei, R. (2015). Stabilization of nickel in a contaminated calcareous soil amended with low-cost amendments. Journal of soil science and plant nutrition, 15(4), 896-913. Saffari, V. R., & Saffari, M. (2020). Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Calendula officinalis L. in a cadmium-spiked calcareous soil. International journal of phytoremediation, 22(11), 1204-1214. Saffari, V. R., & Saffari, M. (2021). Improving Phytoremediation Efficiency of Copper-spiked Calcareous Soils by Humic Acid Applications. Pollution, 7(4), 871-884. Senesi, N., & Loffredo, E. (2005). Metal ion complexation by soil humic substances. Chemical processes in soils, 8, 563-617. Singh, J. P., Karwasra, S. P. S., & Singh, M. (1988). Distribution and forms of copper, iron, manganese, and zinc in calcareous soils of India. Soil Science, 146(5), 359-366. Song, C., Sun, S., Wang, J., Gao, Y., Yu, G., Li, Y., ... & Zhou, L. (2023). Applying fulvic acid for sediment metals remediation: Mechanism, factors, and prospect. Frontiers in Microbiology, 13, 1084097. Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (Eds.). (2020). Methods of soil analysis, part 3: Chemical methods (Vol. 14). John Wiley & Sons. Sposito, G., Lund, L. J., & Chang, A. C. (1982). Trace metal chemistry in arid‐zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal, 46(2), 260-264. Sreekanth, T. V. M., Nagajyothi, P. C., Lee, K. D., & Prasad, T. N. V. K. V. (2013). Occurrence, physiological responses and toxicity of nickel in plants. International Journal of Environmental Science and Technology, 10, 1129-1140. Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of soil analysis: Part 3 Chemical methods, 5, 1201-1229. Swift, R. S. (1996). Organic matter characterization. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America, American Society of Agronomy, Madison, pp 1018–1020. Tan, K. H. (2003). Humic matter in soil and the environment: principles and controversies. CRC press. Vargas, C., Pérez-Esteban, J., Escolástico, C., Masaguer, A., & Moliner, A. (2016). Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Environmental Science and Pollution Research, 23, 13521-13530. Wang, M., Song, G., Zheng, Z., Song, Z., Mi, X., Hua, J., & Wang, Z. (2024). Effect of humic substances on the fraction of heavy metal and microbial response. Scientific Reports, 14(1), 11206. Wang, P., Ding, Y., Liang, Y., Liu, M., Lin, X., Ye, Q., & Shi, Z. (2021). Linking molecular composition to proton and copper binding ability of fulvic acid: a theoretical modeling approach based on FT-ICR-MS analysis. Geochimica et Cosmochimica Acta, 312, 279-298. Xiong, J., Koopal, L. K., Tan, W., Fang, L., Wang, M., Zhao, W., ... & Weng, L. (2013). Lead binding to soil fulvic and humic acids: NICA-Donnan modeling and XAFS spectroscopy. Environmental science & technology, 47(20), 11634-11642. Yildirim, E., Ekinci, M., Turan, M., Ağar, G., Dursun, A., Kul, R., ... & Argin, S. (2021). Humic+ Fulvic acid mitigated Cd adverse effects on plant growth, physiology and biochemical properties of garden cress. Scientific reports, 11(1), 8040. Yu, G. F., Jiang, X., He, W. X., & He, Z. G. (2002). Effect of humic acids on species and activity of cadmium and lead in red soil. Acta Scientiae Circumstantiae, 22(4), 508-513. Yusuf, M., Fariduddin, Q., Hayat, S., & Ahmad, A. (2011). Nickel: an overview of uptake, essentiality and toxicity in plants. Bulletin of environmental contamination and toxicology, 86, 1-17. Zhang, Y., Liu, G., Gao, S., Zhang, Z., & Huang, L. (2023). Effect of humic acid on phytoremediation of heavy metal contaminated sediment. Journal of Hazardous Materials Advances, 9, 100235. Zhong, X., Zhou, S., Huang, M., & Zhao, Q. (2009). Distribution characteristics of heavy metal forms in soil and their influencing factors. Ecol. Environ. Sci., 18, 1266-1273. | ||
آمار تعداد مشاهده مقاله: 36 تعداد دریافت فایل اصل مقاله: 26 |