
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,878,821 |
تعداد دریافت فایل اصل مقاله | 107,237,589 |
اثر خاکورزی حفاظتی بر فعالیتهای زیستی و آنزیمی خاک و خصوصیات فیزیولوژیکی ذرت (Zea mays L.) در شرایط تنش خشکی | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 6، شهریور 1404، صفحه 1571-1592 اصل مقاله (2.04 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.394078.669931 | ||
نویسندگان | ||
نظام کارزانی1؛ احسان اله زید علی1؛ یاسر علیزاده* 1؛ حمزه علی علیزاده2؛ اخلاص امینی3 | ||
1گروه زراعت، دانشکده کشاورزی، دانشگاه ایلام. ایران | ||
2گروه آب، دانشکده کشاورزی، دانشگاه ایلام. ایران | ||
3سازمان جهاد کشاورزی ایلام. ایران | ||
چکیده | ||
بهمنظور بررسی اثر خاکورزی حفاظتی بر فعالیتهای زیستی و آنزیمی خاک و خصوصیات فیزیولوژیکی ذرت در شرایط تنش خشکی آزمایشی بهصورت کرتهای خرد شده بر پایه طرح بلوکهای کامل تصادفی با سه تکرار در سال 1402 در مزرعه تحقیقاتی دانشگاه ایلام انجام شد. کرتهای اصلی شامل: سه سطح خاکورزی (بیخاکورزی، کمخاکورزی و خاکورزی مرسوم) و کرتهای فرعی شامل: پنج رژیم آبیاری 100، 75 و 50 درصد ظرفیت زراعی خاک بصورت معمولی و 75 و 50 درصد ظرفیت زراعی خاک بصورت PRD متغیر بود. نتایج نشان داد که میزان رطوبت نسبی در سطح آبیاری 100 درصد ظرفیت زراعی، بالاترین میزان (62/85 درصد)، و بیشترین میزان تجمع پرولین در سطح آبیاری 50 درصد (06/2 میکرومول بر گرم وزن تر برگ)، و بیشترین میزان پرولین در روش کمخاکورزی (83/1 میکرومول بر گرم وزن تر برگ) حاصل شد. همچنین بیشترین میزان فعالیت کاتالاز در بیخاکورزی و آبیاری PRD 50 درصد (93/1 تغییرات جذب در دقیقه در میلی گرم پروتئین)، بیشترین میزان فعالیت مالون دی آلدئید و آسکوربات پراکسیداز در آبیاری 50 درصد (به ترتیب 61/1 نانو مول بر گرم برگ تر و 13/1 تغییرات جذب در دقیقه در میلی گرم پروتئین) و بیشترین میزان فسفاتاز قلیایی در بیخاکورزی و آبیاری 100 و PRD 75 درصد ظرفیت زراعی مزرعه (به ترتیب 11/ 430 و 74/417 میکروگرم پارانیتروفنیل فسفات در گرم خاک) بیشترین میزان این آنزیم فسفاتاز اسیدی، اورهآز و تنفس میکروبی در بیخاکورزی و آبیاری 100 درصد (به ترتیب 4/391 میکروگرم پارانیتروفنیل فسفات در گرم خاک و 89/7 میکروگرم نیتروژن بر گرم خاک در دو ساعت و 11/2میلی گرم کربن در روز) بود. به طور کلی، یافتهها نشان دادندکه ترکیب سیستمهای بیخاکورزی با تکنیک آبیاری PRD میتواند راهکاری مؤثر برای مدیریت تنش خشکی باشد. این روشها پاسخهای دفاعی گیاه را تقویت کرده و شرایط زیستی مطلوبتری برای خاک فراهم میکند. | ||
کلیدواژهها | ||
آبیاری ناحیهای ریشه؛ آنزیمهای خاک؛ پاسخهای بیوشیمیایی گیاهان؛ ذرت؛ سیستمهای زراعی حفاظتی | ||
عنوان مقاله [English] | ||
The effect of conservation tillage on soil biological and enzymatic activities and physiological characteristics of corn (Zea mays L.) under drought stress conditions | ||
نویسندگان [English] | ||
Nezam Karzani1؛ Ehsan allah Zaid Ali1؛ yaser alizadeh1؛ Hamzeh Ali Alizadeh2؛ Ekhlas Amini3 | ||
1Department of Agriculture, Faculty of Agriculture, University of Ilam, Iran | ||
2Department of Water, Faculty of Agriculture, University of Ilam. Iran | ||
3Ilam Agricultural Jihad Organization. Iran | ||
چکیده [English] | ||
To investigate the effect of conservation tillage on soil biological and enzymatic activities and physiological characteristics of maize under drought stress conditions, an experiment was conducted based on a split-plot design in a randomized complete block design with three replications and 15 treatments in 2023 at the Ilam University Research Farm. The main therapies included three tillage levels (no-tillage, minimum tillage, and conventional tillage), and the sub-treatments included five irrigation regimes (100, 75, and 50 percent of field capacity with full irrigation and 75 and 50 percent with PRD local root drought method). The results showed that the highest relative leaf water content (85.62%) was observed in the 100 percent field capacity irrigation treatment. The highest proline accumulation (2.06 μmol/g leaf fresh weight) was observed in the 50 percent irrigation level. Catalase activity reached its maximum value (1.93 absorption change/min/mg protein) in the no-tillage treatment with 50 percent PRD irrigation. Malondialdehyde and ascorbate peroxidase also showed the highest levels at the 50% irrigation. In the section on soil enzymatic activities, alkaline phosphatase was recorded at 430.11 and 417.74 μg/g soil in the tillage treatments with 100 and 75% PRD irrigation, respectively. Acid phosphatase, urease, and microbial respiration also had the highest levels in the tillage treatment with full irrigation. The findings indicate that the combination of tillage system with the PRD technique can be used as an effective solution for drought stress management. These methods enhance plant defense responses and provide more favorable biological conditions for soil. | ||
کلیدواژهها [English] | ||
Root zone irrigation, soil enzymes, plant biochemical responses, corn, conservation tillage systems | ||
مراجع | ||
Aebi H. (1984). Catalase in vitro. Methods in enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3 Afshari, M., Ramezanpour, M., Ziaeian, A. H., Mousavifazl, H. and Zabihi, H. R. (2018). Studying the effect of chemical fertilizer and organic matter application on the activity of acid and alkaline phosphatase enzymes in some soils of the country. Soil Biology, 5(2), 175-183. (In Persian). doi: 10.22092/sbj.2018.115699 Al-aghabary, K., Zhujun, Z and Qinhua, S. (2004) Influence of Silicon Supply on Chlorophyll Content, Chlorophyll Fluorescence, and Antioxidative Enzyme Activities in Tomato Plants under Salt Stress. Journal of Plant Nutrition, 27, 2101-2115. http://dx.doi.org/10.1081/PLN-200034641 Al-Mokadem, A. Z., Sheta, M. H., Mancy, A. G., Hussein, H. A., Kenawy, S. K. M., Sofy, A. R., Abu-Shahba, M. S., Mahdy, H. M., Sofy, M. R., Al Bakry, A. F., & Agha, M. S. (2023). Synergistic Effects of Kaolin and Silicon Nanoparticles for Ameliorating Deficit Irrigation Stress in Maize Plants by Upregulating Antioxidant Defense Systems. Plants (Basel, Switzerland), 12(11), 2221. https://doi.org/10.3390/plants12112221 Amini, S., Ghobadi, C. and Yamchi, A. (2015). Proline accumulation and osmotic stress: an overview of P5CS gene in plants. Journal of Plant Molecular Breeding, 3(2): 44-55. doi: 10.22058/jpmb.2015.17022 Anderson, J. P. E. (1982). Soil respiration. In: Page A.L. and Mille R.H. (Ed.), Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, pp. 831-871. Anjum, S. A., Tanveer, M., Ashraf, U., Hussain, S., Shahzad, B., Khan, I., & Wang, L. (2016). Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environmental Science and Pollution Research, 23, 17132-17141. https://doi.org/10.1007/s11356-016-6894-8 Anjum, S. A., Tanveer, M., Hussain, S., Bao, M., Wang, L., Khan, I., Ullah, E., Tung, S. A., Samad, R. A., & Shahzad, B. (2015). Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environmental science and pollution research international, 22(21), 17022–17030. https://doi.org/10.1007/s11356-015-4882-z Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006 Atlasroody, A., Kazemeini, S. A., Bahrani, M. J., & Sepehri, M. (2023). Interaction Effect of Chemical and Bio-Fertilizers and Deficit Irrigation on Yield and Yield Components of Sweet Corn (Zea mays L. Var saccharata) and Some Soil Biological Activity Indices. Journal Of Agroecology, 15(4), 723-738. (In Persian). doi: 10.22067/agry.2022.73850.1082 Azizpour, S., Shahnazari, A., Ziatabar Ahmadi, M., and Karandish, F. (2017). Evaluation of simultaneous effect of partial root zone drying and vermicompost on some physiological characteristics of maize (Zea mays L.) SC704. Journal of Water and Soil Conservation, 24(5), 195-209. (In Persian). doi: 10.22069/jwsc.2017.12981.2761 Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205-207. Bazrgar, G., Nabavi Kalat, S. M., Khavari Khorasani, S., Ghasemi, M. and kelidari, A., (2022). Effect of Deficit Irrigation Stress and Plant Density on Antioxidant Enzymes Activity, Compatible Osmolytes, Relative Water Content and Yield of Baby Corn (Pashan Cultivar). Iranian Journal of Irrigation & Drainage, 15(6), 1370-1381. (In Persian). doi: 20.1001.1.20087942.1400.15.6.12.2 Bazrgar, G., Nabavi Kalat, S. M., Khavari Khorasani, S., Ghasemi, M., & Kelidari, A. (2023). Effect of deficit irrigation on physiological, biochemical, and yield characteristics in three baby corn cultivars (Zea mays L.). Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e15477 Bhardwaj, J., & Yadav, S. K. (2012). Comparative study on biochemical parameters and antioxidant enzymes in a drought-tolerant and a sensitive variety of horsegram (Macrotyloma uniflorum) under drought stress. American Journal of Plant Physiology, 7(1), 17-29. DOI: 10.3923/ajpp.2012.17.29 Bhattacharjee, Soumen. (2002). Salt stress induced cytosolute accumulation, antioxidant response and membrane deterioration in three rice cultivars during germination.. Seed Science and Technology. 30. 279-287. Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of botany, 91 Spec No(2), 179–194. https://doi.org/10.1093/aob/mcf118 Bougari, E. , Asoodar, M. A. , Marzban, A. and Kazemi, N. (2020). Investigating Water Use Efficiency, Energy Productivity, Economic and Yield under Different Wheat-Maize Cropping System in the North of Khuzestan Province. JOURNAL OF Agricultural Science And Sustainable Production, 30(4), 295-310. (In Persian). doi: 10.22034/saps.2020.12318 Bunemann, E.K., Bongiorno G., Bai Z., Creamer, R.E., Deyn, de G., Goede, de R., Fleskens, L., Geissen, V., Kuyper, T.W., Madera, P., Pulleman, M., Sukkel, W., Groenigen, van J.W. and Brussaard, L. (2018). Soil quality-A critical review. Soil Biology and Biochemistry 120:105-125. https://doi.org/10.1016/j.soilbio.2018.01.030. Castrillo, M., & Trujillo, I. (1994). Ribulose-1, 5-bisphosphate carboxylase activity and chlorophyll and protein contents in two cultivars of French bean plants under water stress and rewatering. Photosynthtica Journal. 30: 175-181. Christmann, A., Weiler, E. W., Steudle, E., & Grill, E. (2007). A hydraulic signal in root-to-shoot signalling of water shortage. The Plant Journal, 52(1), 167-174. https://doi.org/10.1111/j.1365-313X.2007.03219.x Dariush Karimi, N. , Mojaddam, M. , Lack, S. , Payandeh, K. and Shokuhfar, A. (2021). The effect of superabsorbent and iron and zinc foliar application on antioxidant enzyme activity and yield of maize (S.C. 704) (Zea mays L.) under irrigation regimes. Environmental Stresses in Crop Sciences, 14(2), 387-402. (In Persian). doi: 10.22077/escs.2020.2589.1736 Dodorico P, Chiarelli D D, Rosa L, Bini A, Rulli M C. 2020. The global value of water in agriculture. Proceedings of the National Academy of Sciences of the United States of America, 117, 21985-21993. Elstner, E. F. I. O. B. (1991). Mechanisms of oxygen activation in different compartments of plant cells. Active Oxygen/Oxidative Stress and Plant Metabolism, 6, 13-26. Gao, S., Wang, Y., Yu, S., Huang, Y., Liu, H., Chen, W., & He, X. (2020). Effects of drought stress on growth, physiology, and secondary metabolites of two Adonis species in Northeast China. Scientia Horticulturae, 259, 108795. https://doi.org/10.1016/j.scienta.2019.108795 Geerts, S and Raes, D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management. 96.9: 1275-1284 Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry: PPB, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016 Guarnizo AL, Navarro-Ródenas A, Calvo-Polanco M, Marqués-Gálvez JE, Morte A (2023). A mycorrhizal helper bacterium alleviates drought stress in mycorrhizal Helianthemum almeriense plants by regulating water relations and plant hormones. Environmental and Experimental Botany, 207, 105228. https://doi.org/10.1016/j.envexpbot.2023.105228 Heidari, N., Pouryousef, M., And Tavakoli, A., (2015). Effects Of Drought Stress On Photosynthesis, Its Parameters, And Relative Water Content Of Anise (Pimpinella Anisum L.). Journal Of Plant Research (Iranian Journal Of Biology), 27(5), 829-839. (In Persian). Doi: 27507 Hosseini, M. S. , Haghnia, G. h. , Lakzian, A. and Emami, H. (2012). Short-term Effects of Barley Residue Management on Urease and Alkaline Phosphatase Activities. Water and Soil, 26(3). (In Persian). doi: 10.22067/jsw.v0i0.14877 Hosseini, S. S. , Rejali, F. and Keshavarz, P. (2024). Effect of Some Biofertilizers on the Physiological Characteristics of Wheat Flag Leaves and Rhizosphere Enzyme Activities at Different Irrigation Levels. Journal of Soil Biology, 12(1), 65-88. (In Persian). doi: 10.22092/sbj.2024.365435.263 Hu, W., Loka, D. A., Yang, Y., Wu, Z., Wang, J., Liu, L., Wang, S., & Zhou, Z. (2024). Partial root-zone drying irrigation improves intrinsic water-use efficiency and maintains high photosynthesis by uncoupling stomatal and mesophyll conductance in cotton leaves. Plant, cell & environment, 47(8), 3147–3165. https://doi.org/10.1111/pce.14932 Iqbal, R., Raza, M. A. S., Rashid, M. A., Toleikiene, M., Ayaz, M., Mustafa, F., Ahmed, M.Z., Hyder, S., Ur Rahman, M.H., Ahmad, S., Aslam.,M.U., & Haider, I. (2021). Partial Root Zone Drying Irrigation Improves Water Use Efficiency but Compromise the Yield and Quality of Cotton Crop. Communications in Soil Science and Plant Analysis, 52(13), 1558–1573. https://doi.org/10.1080/00103624.2021.1892720 Jaleel, C. A., Gopi, R., Sankar, B., Manivannan, P., Kishorekumar, A., Sridharan, R., & Panneerselvam, R. (2007). Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South African Journal of Botany, 73(2), 190-195. https://doi.org/10.1016/j.sajb.2006.11.001
Javaheri, T. , Lakzian, A. , Khorasani, R. and Taheri, P. (2014). Investigation of the activity of acid and alkaline phosphatase enzymes of various isolates of soil fungi in the presence of organic phosphorus compounds (phytic acid and sodium glycerophosphate). Journal of Sol Biology, 2(1), 1-11. (In Persian). doi: 10.22092/sbj.2014.100086 Jin K., Sleutel S., Buchan D., De Neve S., Cai D.X., Gabriels D., and Jin J.Y. (2009). Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Soil and Tillage Research, 104: 115-120. https://doi.org/10.1016/j.still.2009.02.004 Kabiri, V., Raiesi, F., & Ghazavi, M. A. (2016). Tillage effects on soil microbial biomass, SOM mineralization, and enzyme activity in a semi-arid Calcixerepts. Agriculture, Ecosystems & Environment, 232, 73-84. https://doi.org/10.1016/j.agee.2016.07.022 Kafi, M., Borzoi, A., Salehi, M., Kamandi, A., Masoumi, A. and Nabati, J. (2018). Physiology of environmental stresses in plants. Volume 14, Jihad Daneshgahi Publications (Ferdowsi University of Mashhad), Mashhad. (In Persian). Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and fertility of Soils, 6, 68-72. https://doi.org/10.1007/BF00257924 Khosrowshahi, Z. T., Ghassemi-Golezani, K., Salehi-Lisar, S. Y., and Motafakkerazad, R. (2020) Changes in antioxidants and leaf pigments of safflower (Carthamus tinctorius L.) affected by exogenous spermine under water deficit. Biologia Futura 71: 313 -321. https://doi.org/10.1007/s42977-020-00039-z La, V. H., Lee, B. R., Tabibul Islam, M. D., Park, S. H., Jung, H., Bae, D.W and Kim, T. H. (2019). Characterization of salicylic acid-mediated modulation of the drought stress responses: Reactive oxygen species, proline, and redox state in Brassica napus. Environmental and Experimental Botany. 157: 1-10. https://doi.org/10.1016/j.envexpbot.2018.09.013 Li, C.H., Ma, B.L. and Zhang, T.Q. (2002). Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize (Zea mays L.) planted in large pots under field exposure. Canadian Journal of Soil Science 82(2): 147-154. https://doi.org/10.4141/S01-026 Li, Y., Chang, S.X., Tiand, L. and Zhang, Q. (2018). Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biology and Biochemistry. 121. 50-58. DOI:10.1016/j.soilbio.2018.02.024. Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxidants & redox signaling, 19(9), 998-1011. https://doi.org/10.1089/ars.2012.5074 Liang, Y., Si, J., Nikolic, M., Peng, Y., Chen, W., & Jiang, Y. (2005). Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biology and biochemistry, 37(6), 1185-1195. https://doi.org/10.1016/j.soilbio.2004.11.017 Luo, Y. and Zhou, X. (2006). Soil respiration and the Environment. Academic press, 328 pp. DOI:10.1016/j.agrformet.2007.01.008 Martınez J.P., Silva H., Ledent J.F., and Pinto M. (2007). Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European Journal of Agronomy, 26: 30- 38. https://doi.org/10.1016/j.eja.2006.08.003 Martín-Lammerding, D., Navas, M., del Mar Albarrán, M., Tenorio, J. L., & Walter, I. (2015). LONG term management systems under semiarid conditions: Influence on labile organic matter, β-glucosidase activity and microbial efficiency. Applied Soil Ecology, 96, 296-305. https://doi.org/10.1016/j.apsoil.2015.08.021 Mathew, R., Feng, Y., Githinji, L., Ankumah, R., and Balkcom, K. (2012). Impact of no-tillage and conventional tillage systems on soil microbial communities. J. Appl. Environ. Soil Science. https://doi.org/10.1155/2012/548620 Mirzavand, J. and Asadi-Rahmani, H. (2020). Effect of Different Tillage Practices on Phosphatase and Urease Activities in a Calcareous Soil. Journal of Sol Biology, 8(1), 15-24. (In Persian). doi: 10.22092/sbj.2020.121869 Mohammadi, K., Heidari, G. R., Javaheri, M. and Aghaalikhani, M. (2012). The effect of different tillage and fertilization systems on microbial biomass and soil enzymatic activity in sunflower cultivation. Water and Soil (Agricultural Sciences and Industries), 26(1), 104-113. (In Persian). doi: 10.22067/jsw.v0i0.13634 Mofizur Rahman, I., and Hasegawa, H. (2012). Water stress (1st ed.). Intech Publisher. Ohlinger, R., (1996). Acid and alkaline phosphomonoesterase activity with the substrate p-nitrophenyl phosphate. In: Schinner, F., Kandeler, E., Ohlinger, R., Margesin, R. (Eds) Methods in soil biology, Springer-Verlag Berlin, 210-214. Omidi, H., Tahmasebi, Z., Torabi, H., & Miransari, M. (2008). Soil Enzymatic Activities And Available P And Zn As Affected By Tillage Practices, Canola (Brassica Napus L.) Cultivars And Planting Dates. European Journal Of Soil Biology, 44, 443-450. Doi: 10.1016/J.Ejsobi.2008.05.002 Papaei, A., Rafiei, M., Khorgami A., and Taleshi K., (2024). The effect of tillage and salicylic acid on some biochemical characteristics of two forage vetch cultivars under rainfed conditions, Journal of Plant Process and Function, Volume 31, Issue 95, Pages: 161-177. (In Persian). https://doi.org/10.22034/13.59.161 parsa, M., Kamaei, R., and yousefi, B. (2022). Effect of chemical and biological fertilizers on the physiological characteristics and activity of some antioxidant enzymes of peppermint (Mentha piperita) under drought stress conditions. Journal of Plant Research (Iranian Journal of Biology), 35(4), 657-673. (In Persian).Doi: 20.1001.1.23832592.1401.35.4.12.2 Ranieri, A., Castagna, J., Pacini, B., Baldan, A. & Mensuali Sodi, Soldatini, G. F., (2003). Early production and scavenging of hydrogen peroxide in the apoplast of sunflower plants exposed to ozone. Journal of Experimental Botany, 54, 2529-2540. https://doi.org/10.1093/jxb/erg270 Rezae, N. , Alizadeh, H. A. , Alizade, Y. and Zeidali, E. (2023). Effects of deficit irrigation (RDI) and partial root-zone drying (PRD) on water productivity and photosynthetic characteristics of mungbean (Vigna radiate L.). Iranian Journal of Irrigation & Drainage, 17(4), 611-624. (In Persian). Doi: 20.1001.1.20087942.1402.17.4.2.2 Sadeghi, S., Kiani, F., Asadi, M.E., Kamkar, B., & Ebrahimi, S. (2019). Effect Of Different Tillage Systems On The Biological And Enzymatic Activity Of Soil. Electronic Journal Of Soil Management And Sustainable Production, 9(2 ), 151-164. (In Persian). Sid. https://sid.ir/paper/209772/en Sadeghipour, O. (2018). Investigation the role of nitric oxide on drought tolerance of mung bean (Vigna radiata L.). Journal of Plant Environmental Physiology. Issue 51, Volume 13, pp. 17-29. (In Persian). doi: 20.1001.1.76712423.1397.13.51.2.9 Sanchez, F. J., Manzanares, M., de Andres, E. F., Tenorio, J. L., & Ayerbe, L. (1998). Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field crops research, 59(3), 225-235. https://doi.org/10.1016/S0378-4290(98)00125-7 Sanchez-Rodríguez, E., Rubio-Wilhelmi, M., Cervilla, L. M., Blasco, B., Rios, J. J., Rosales, M. A., Romero L. & Ruiz, J. M. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant science, 178(1), 30-40. https://doi.org/10.1016/j.plantsci.2009.10.001 Sharma P, Singh G, and Singh RP. (2014). Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum aestivum L.) cultivation. Brazilian Journal of Microbiologe. 42: 531-542. Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V., (2017). Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes. mBio8:10.1128/mbio.00764-17. https://doi.org/10.1128/mbio.00764-17 Savic.S , Stikic.R , Vucelic Radovic.B , Bogicevic.B , Jovanovic.Z and Sukalovic.V H-T. (2008). Comparative effects of regulated deficit irrigation(RDI) and partial root-zone drying(PRD) on growth and cell wall peroxidase activity in tomato fruits, Scientia Horticulturae 117,15-20. Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants (Basel, Switzerland), 10(2), 259. https://doi.org/10.3390/plants10020259 Siadat, S. A., Karmollachaab, A., Monjezi, H., Fathi, G., & Hamdi, H. (2015). Effect of Filter Cake on Morphophysiological and Yield of Sweet Corn Under Late Season Drought Stress Condition [Research]. Journal of Crop Production and Processing, 5(15), 93-103. (In Persian). https://doi.org/10.18869/acadpub.jcpp.5.15.93 Staszel, K., Lasota, J., Błońska, E., (2022). Effect of drought on root exudates from Quercus petraea and enzymatic activity of soil. Scientific Reports 12, 7635. doi:10.1038/s41598022 11754 z Stewart, R. R., & Bewley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant physiology, 65(2), 245–248. https://doi.org/10.1104/pp.65.2.245 Tardieu, F., Parent, B., Caldeira, C.F. and Welcker, C. (2014) Genetic and physiological controls of growth under water deficit. Plant Physiol. 164,1628–1635. https://doi.org/10.1104/pp.113.233353 Tawfik, K. M. (2008). Effect of water stress in addition to potassium application on mungbean. Australian Journal Basic Apply Science.2: 42-52. Topcu, S., Kirda, C., Dasgan, Y., Kaman, H., Cetin, M., Yazici, A., and Bacon, M.A. (2007). Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. Europ. J. Agron. 26: 64-70. DOI:10.1016/j.eja.2006.08.004 Turner, B.L., Driessen, J.P., Haygarth, P.M., Mckelvie, I.D., (2003). Potential contribution of lysed bacterial cells to pho sphorus solubilisation in two rewetted Australian pasture soils. Soil Biology and Biochemistry 35, 187 189. Upadhyaya, H., & Panda, S. K. (2004). Responses of Camellia sinensis to drought and rehydration. Biologia plantarum, 48, 597-600. https://doi.org/10.1023/B:BIOP.0000047158.53482.37 Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35(4), 753-759. https://doi.org/10.1007/s00726-008-0061-6 Waldrop, M.P., Zak, D.R., Sinsabaugh, R.L., Gallo, M. and Lauber, C. 2004. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecological Applications 14: 1172–1177. https://doi.org/10.1890/03-5120 Wang, H., Yang, Z., Yu, Y., Chen, S., He, Z., Wang, Y., Jiang, L., Wang, G., Yang, C., Liu, B., Zhang, Z., (2017). Drought enhances nitrogen uptake and assimilation in maize roots. Agronomy Journal. 109, 39-46. Wang, J., Kang, S., Li, F., Zhang, F., Li, Z., Zhang, J., (2008). Effects of partial root-zone irrigation on soil microorganism and maize growth. Plant Soil. 302, 45-52. Zandalinas, S. I., Balfagón, D., Arbona, V., & Gómez-Cadenas, A. (2017). Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus. Frontiers in plant science, 8, 953. https://doi.org/10.3389/fpls.2017.00953 Zheng, W., Zhao, Z., Gong, Q., Zhai, B. and Li, Z. (2018). Responses of fungal–bacterial community and network to organic inputs vary among different spatial habitats in soil. Soil Biology and Biochemistry 125:54-63. Doi: 10.1016/j.soilbio.2018.06.029 | ||
آمار تعداد مشاهده مقاله: 40 تعداد دریافت فایل اصل مقاله: 24 |