
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,878,820 |
تعداد دریافت فایل اصل مقاله | 107,237,588 |
نقش باکتریهای مقاوم به کادمیوم و اصلاحکنندهها در بهبود کیفیت محصول برنج | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 6، شهریور 1404، صفحه 1685-1714 اصل مقاله (1.94 M) | ||
نوع مقاله: مروری | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.389250.669871 | ||
نویسندگان | ||
شایان شریعتی* 1؛ ناصر مهردادی2؛ حسینعلی علیخانی3؛ کمیل زینالی3 | ||
1گروه مهندسی محیط زیست، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران. | ||
2گروه مهندسی محیط زیست، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران | ||
3گروه علوم و مهندسی خاک، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
چکیده | ||
حصول امنیت غذایی برای بقاء حیات انسانی بسیار مهم است. برنج (Oryza Satvia L.)، یک محصول غذایی مهم جهانی بوده و غذای عمده و اصلی بیش از نصف جمعیت جهان محسوب میشود. بر اساس آمار سازمان جهانی خواربار و کشاورزی فائو، سرانه مصرف برنج در ایران 60 درصد بیشتر از میانگین جهانی است؛ بنابراین، رفع کردن موانعی که باعث ایجاد خطر برای این محصول استراتژیک میشوند، حائز اهمیت است. در این راستا پژوهشهای متعدد نشان داده یکی از آلایندههای رایج و مهم برنج، کادمیوم میباشد که برای گیاهان، حیوانات و انسان سمی است. کادمیوم در هیچ یک از فرایندهای زیستی نقش ندارد و به دلیل حلالیت بالا در آب، تجمع سریع در چرخه غذایی، اثرات سمی شدید بر روی موجودات زنده و طبیعت جهشزا، یکی از مهمترین آلایندههای فلزات سنگین محسوب میشود. گزارشات متعددی در زمینه جذب آسان کادمیوم توسط گیاه برنج و انتقال آن به ساقه و دانههای برنج وجود دارد. باتوجه به وجود آلودگی کادمیوم در برخی از شالیزارهای کشور و اهمیت این موضوع در امنیت غذایی، هدف از این مقاله مروری، بررسی عوامل مؤثر بر تجمع کادمیوم در گیاه برنج و بررسی روشهای مختلف فیزیکی، شیمیایی و بویژه زیستی در کاهش سمیت کادمیوم در برنج می باشد. یافتهها نشان داده استفاده از روشهای اصلاحی شامل تلقیح خاک با میکروارگانیسمهای مقاوم به کادمیوم و ریزوباکتریهای محرک رشد گیاه، استفاده از مواد محرک رشد گیاه، مولکولهای سیگنال دهنده، اصلاحکنندههای آلی و معدنی مانند بیوچار، کمپوست، نیتروژن، آهن، روی، کود دامی، بقایای گیاهی، استفاده از کولتیوارهای برنج با قابلیت پائین جذب کادمیوم، مدیریت آب و... میتوانند برای کاهش تجمع کادمیوم در برنج استفاده شوند. | ||
کلیدواژهها | ||
برنج؛ تجمع زیستی؛ زیستپالایی؛ کادمیوم؛ PGPR | ||
عنوان مقاله [English] | ||
The role of cadmium-resistant bacteria and modifiers in improving rice crop quality | ||
نویسندگان [English] | ||
Shayan Shariati1؛ Naser Mehrdadi2؛ Hossein Ali Alikhani3؛ komeil Zeynali3 | ||
1Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran. | ||
2Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran | ||
3Department of Soil Science Engineering, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran | ||
چکیده [English] | ||
Ensuring food security is essential for human survival. Rice (Oryza sativa L.) is a globally significant food crop and serves as the staple diet for more than half of the world's population. According to statistics from the Food and Agriculture Organization (FAO), rice consumption per capita in Iran is 60% higher than the global average. Therefore, addressing challenges that threaten this strategic crop is of paramount importance. In this context, numerous studies have identified cadmium as one of the common and critical contaminants of rice. Cadmium is toxic to plants, animals, and humans and does not play any role in biological processes. Due to its high water solubility, rapid accumulation in the food chain, severe toxicity to living organisms, and mutagenic nature, cadmium is considered one of the most hazardous heavy metal pollutants. Several reports highlight the ease with which cadmium is absorbed by rice plants and transferred to their stems and grains. Given the cadmium contamination in some paddy fields in Iran and its implications for food security, this review aims to investigate the factors influencing cadmium accumulation in rice plants and examine various physical, chemical, and especially biological methods for mitigating cadmium toxicity in rice. The findings suggest that remediation strategies such as inoculating soil with cadmium-resistant microorganisms and plant growth-promoting rhizobacteria (PGPR), using plant growth stimulants, signaling molecules, organic and inorganic amendments like biochar, compost, nitrogen, iron, zinc, animal manure, plant residues, cultivating rice varieties with low cadmium uptake capacity, and proper water management can effectively reduce cadmium accumulation in rice. | ||
کلیدواژهها [English] | ||
Bioaccumulation, Bioremediation, Cadmium, PGPR, Rice | ||
مراجع | ||
Adhikary, S., Saha, J., Dutta, P., & Pal, A. (2024). Bacterial Homeostasis and Tolerance to Potentially Toxic Metals and Metalloids through Diverse Transporters: Metal-Specific Insights. Geomicrobiology Journal, 1-23. Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., ... & Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 22, 8148-8162. Akram, M., Ullah, S., Ikram, K., Zaheer, M. S., Mansha, M. Z., Ali, H. H., ... & Khan, N. (2024). Effect of cadmium toxicity on Zn, Mn, Cd, Fe concentration and translocation, bioaccumulation, uptake of Cd in root and shoot of different rice varieties. Pak. J. Bot, 56 (1), 55-63. Ali, U., Zhong, M., Shar, T., Fiaz, S., Xie, L., Jiao, G., ... & Hu, P. (2020). The influence of pH on cadmium accumulation in seedlings of rice (Oryza sativa L.). Journal of plant growth regulation, 39, 930-940. Alikhani, H. A., Shariati, S., Etesami, H., & Fallah Nosrat Abad, A. (2022). Azotobacter as a Rice Plant (Oryza sativa L.) Growth Promoting Biofertilizer. Iranian Journal of Soil and Water Research, 53(3), 633-661. (In Persian). Anwen, X., Danting, C., Chin, L. W., & Zhihong, Y. (2021). Root morphology and anatomy affect cadmium translocation and accumulation in rice. Rice Science, 28(6), 594-604. Aryal, M. (2021). A comprehensive study on the bacterial biosorption of heavy metals: materials, performances, mechanisms, and mathematical modellings. Reviews in Chemical Engineering, 37(6), 715-754. Asgher, M., Khan, M. I. R., Anjum, N. A., & Khan, N. A. (2015). Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma, 252, 399-413. Bai, Y., Gu, C., Tao, T., Chen, G., & Shan, Y. (2013). Straw incorporation increases solubility and uptake of cadmium by rice plants. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 63(3), 193-199. Beheshtian, N., Karimi, E., Oskoueian, E., Shokryazdan, P., & Jahromi, M. F. (2024). Lactic Acid Bacteria Supplementation: A Bioprotective Approach to Mitigating Cadmium-Induced Toxicity and Modulating Gene Expression in Murine Models. Food and Chemical Toxicology, 115043. Bolan, N. S., & Duraisamy, V. P. (2003). Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Soil Research, 41(3), 533-555. Bradham, K. D., Diamond, G. L., Nelson, C. M., Noerpel, M., Scheckel, K. G., Elek, B., ... & Thomas, D. J. (2018). Long-term in situ reduction in soil lead bioavailability measured in a mouse model. Environmental science & technology, 52(23), 13908-13913. Cai, Q., Xu, M., Ma, J., Zhang, X., Yang, G., Long, L., ... & Xiao, Y. (2023). Improvement of cadmium immobilization in contaminated paddy soil by using ureolytic bacteria and rice straw. Science of the Total Environment, 874, 162594. Cai, Y., Cao, F., Cheng, W., Zhang, G., & Wu, F. (2011a). Modulation of exogenous glutathione in phytochelatins and photosynthetic performance against Cd stress in the two rice genotypes differing in Cd tolerance. Biological Trace Element Research, 143, 1159-1173. Cambier, P., Michaud, A., Paradelo, R., Germain, M., Mercier, V., Guérin-Lebourg, A., ... & Houot, S. (2019). Trace metal availability in soil horizons amended with various urban waste composts during 17 years–Monitoring and modelling. Science of the total environment, 651, 2961-2974. Cao, F., Cai, Y., Liu, L., Zhang, M., He, X., Zhang, G., & Wu, F. (2015). Differences in photosynthesis, yield and grain cadmium accumulation as affected by exogenous cadmium and glutathione in the two rice genotypes. Plant growth regulation, 75, 715-723. Chang, J. D., Huang, S., Wiseno, I., Sui, F. Q., Feng, F., Zheng, L., ... & Zhao, F. J. (2023). Dissecting the promotional effect of zinc on cadmium translocation from roots to shoots in rice. Journal of experimental botany, 74(21), 6790-6803. Charkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M., & Nikliński, J. (2023). Cadmium toxicity and health effects—a brief summary. Molecules, 28(18), 6620. Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the total environment, 533, 205-214. Chen, G., Du, R., & Wang, X. (2023). Genetic regulation mechanism of cadmium accumulation and its utilization in rice breeding. International Journal of Molecular Sciences, 24 (2), 1247. Chen, J., Bian, P., Huang, H., Zhong, K., Huang, D., Nong, X., ... & Zhang, C. (2022). The mechanism of silkworm excrement organic fertilizer to reduce the Cd availability in paddy soil. Soil and Sediment Contamination: An International Journal, 31 (1), 1-14. Chen, X. W., Wu, L., Luo, N., Mo, C. H., Wong, M. H., & Li, H. (2019). Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice. Geoderma, 337, 749-757. Cui, L., Li, L., Zhang, A., Pan, G., Bao, D., & Chang, A. (2011). Biochar amendment greatly reduces rice cd uptake in a contaminated paddy soil: a two-year field experiment. Bioresources, 6 (3). Dai, Z. H., Guan, D. X., Bundschuh, J., & Ma, L. Q. (2023). Roles of phytohormones in mitigating abiotic stress in plants induced by metal (loid) s As, Cd, Cr, Hg, and Pb. Critical Reviews in Environmental Science and Technology, 53 (13), 1310-1330. Deng, X., Wu, S., Yang, Y., Qin, Y., Huang, Q., Wu, W., ... & Zeng, Q. (2023). A rice–chicory rotation pattern ensures safe grain production and phytoremediation of cadmium-contaminated paddy fields: A four-year field experiment in southern China. Chemosphere, 322, 138192. Du, Y., Hu, X. F., Wu, X. H., Shu, Y., Jiang, Y., & Yan, X. J. (2013). Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China. Environmental Monitoring and Assessment, 185, 9843-9856. El Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E. E., Bolan, N., ... & Rinklebe, J. (2022). Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology, 52 (5), 675-726. Fallah, A., Armandeh, M., Shariati, S., Hosseini, M., & Gholizadeh, A. (2022). The importance of rock phosphate in sustainable agriculture (its importance, reserves and application in rice cultivation). Agricultural Research Education And Extension Organization (AREEO). 244p. (In Persian). Farooq H, Asghar HN, Khan MY, Saleem M, Zahir ZA (2015) Auxinmediated growth of rice in cadmium-contaminated soil. Turk J Agric For, 39, 272–276 Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156(3), 609-643. Gao, Y., Duan, Z., Zhang, L., Sun, D., & Li, X. (2022). The status and research progress of cadmium pollution in rice-(Oryza sativa L.) and wheat-(Triticum aestivum L.) cropping systems in China: A critical review. Toxics, 10(12), 794. Gharib, H. (2013). Current Situation of Food Security in Iran and Future Outlook. Strategy, 21(4). (In Persian). Gu, J. F., Zhou, H., Tang, H. L., Yang, W. T., Zeng, M., Liu, Z. M., ... & Liao, B. H. (2019). Cadmium and arsenic accumulation during the rice growth period under in situ remediation. Ecotoxicology and Environmental Safety, 171, 451-459. Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., ... & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and environmental safety, 211, 111887. Hassan, M. J., Shafi, M., Zhang, G., Zhu, Z., & Qaisar, M. (2008). The growth and some physiological responses of rice to Cd toxicity as affected by nitrogen form. Plant growth regulation, 54, 125-132. Hassan, M. J., Wang, F., Ali, S., & Zhang, G. (2005). Toxic effect of cadmium on rice as affected by nitrogen fertilizer form. Plant and Soil, 277, 359-365. He, J., Ren, Y., Chen, X., & Chen, H. (2014). Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicology and environmental safety, 108, 114-119. Hu, J., Tao, R., Cao, C., Xie, J., Gao, Y., Hu, H., ... & Ma, Y. (2023). Effect of leaf surface regulation of zinc fertilizer on absorption of cadmium, plumbum and zinc in rice (Oryza sativa L.). Sustainability, 15(3), 1877. Hu, L., McBride, M. B., Cheng, H., Wu, J., Shi, J., Xu, J., & Wu, L. (2011). Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oryza sativa L.) genotypes. Environmental Research, 111(3), 356-361. Huang, F., Gao, L. Y., Wu, R. R., Wang, H., & Xiao, R. B. (2020a). Qualitative and quantitative characterization of adsorption mechanisms for Cd2+ by silicon-rich biochar. Science of the Total Environment, 731, 139163. Huang, Q., Wan, Y., Luo, Z., Qiao, Y., Su, D., & Li, H. (2020b). The effects of chicken manure on the immobilization and bioavailability of cadmium in the soil-rice system. Archives of Agronomy and Soil Science, 66(13), 1753-1764. Hussain, B., Ashraf, M. N., Abbas, A., Li, J., & Farooq, M. (2021). Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Science of The Total Environment, 754, 142188. Jalloh, M. A., Chen, J., Zhen, F., & Zhang, G. (2009). Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress. Journal of Hazardous Materials, 162 (2-3), 1081-1085. Jiang, M., Jiang, J., Li, S., Li, M., Tan, Y., Song, S., ... & Huang, J. (2020). Glutamate alleviates cadmium toxicity in rice via suppressing cadmium uptake and translocation. Journal of hazardous materials, 384, 121319. Jing, H., Yang, W., Chen, Y., Yang, L., Zhou, H., Yang, Y., ... & Zia-ur-Rehman, M. (2023). Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety. Science of the Total Environment, 165369. Kang, Z., Gong, M., Li, Y., Chen, W., Yang, Y., Qin, J., & Li, H. (2021). Low Cd-accumulating rice intercropping with Sesbania cannabina L. reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. Science of The Total Environment, 800, 149600. Kang, Z., Zhang, W., Qin, J., Li, S., Yang, X., Wei, X., & Li, H. (2020). Yield advantage and cadmium decreasing of rice in intercropping with water spinach under moisture management. Ecotoxicology and Environmental Safety, 190, 110102. Karimi, S. , Shariati, S. , pourbabaei, A. A. , Alikhani, H. A. & Kalami, R. (2023). Determining sensitivity to heavy metals in surfactant-producing bacteria and their efficiency in removing Total petroleum hydrocarbons. Iranian Journal of Soil and Water Research, 54 (10), 1565-1579. (In Persian). Khan, Z., Elahi, A., Bukhari, D. A., & Rehman, A. (2022). Cadmium sources, toxicity, resistance and removal by microorganisms-A potential strategy for cadmium eradication. Journal of Saudi Chemical Society, 26(6), 101569. Khavari-Nejad, R. A., Najafi, F., & Rezaei, M. (2014). The influence of cadmium toxicity on some physiological parameters as affected by iron in rice (Oryza Sativa L.) plant. Journal of Plant Nutrition, 37(8), 1202-1213. Kicińska, A., Pomykała, R., & Izquierdo‐Diaz, M. (2022). Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73(1), e13203. Kong, F., & Lu, S. (2022). Effects of microbial organic fertilizer (MOF) application on cadmium uptake of rice in acidic paddy soil: Regulation of the iron oxides driven by the soil microorganisms. Environmental Pollution, 307, 119447. Kouchaki-Penchah, H., Alizadeh, M. R., & Aghamolki, M. T. K. (2023). Measuring eco-efficiency of rice cropping systems in Iran: An integrated economic and environmental approach. Sustainable Energy Technologies and Assessments, 57, 103281. Kulsum, P. G. P. S., Khanam, R., Das, S., Nayak, A. K., Tack, F. M., Meers, E., ... & Biswas, J. K. (2023). A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. Environmental Research, 220, 115098. Lee, H. J., Abdula, S. E., Jang, D. W., Park, S. H., Yoon, U. H., Jung, Y. J., ... & Cho, Y. G. (2013). Overexpression of the glutamine synthetase gene modulates oxidative stress response in rice after exposure to cadmium stress. Plant cell reports, 32, 1521-1529. Lee, K., Bae, D. W., Kim, S. H., Han, H. J., Liu, X., Park, H. C., ... & Chung, W. S. (2010). Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. Journal of Plant Physiology, 167(3), 161-168. Li, H., Liu, Y., Jiao, X., Li, J., Liu, K., Wu, T., ... & Luo, D. (2023). Response of soil nutrients retention and rice growth to biochar in straw returning paddy fields. Chemosphere, 312, 137244. Li, H., Zhang, H., Yang, Y., Fu, G., Tao, L., & Xiong, J. (2022a). Effects and oxygen-regulated mechanisms of water management on cadmium (Cd) accumulation in rice (Oryza sativa). Science of the Total Environment, 846, 157484. Li, Y., Dong, S., Qiao, J., Liang, S., Wu, X., Wang, M., ... & Liu, W. (2020). Impact of nanominerals on the migration and distribution of cadmium on soil aggregates. Journal of Cleaner Production, 262, 121355. Li, Y., Rahman, S. U., Qiu, Z., Shahzad, S. M., Nawaz, M. F., Huang, J., ... & Cheng, H. (2023a). Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. Environmental Pollution, 325, 121433. Li, Y., Wei, S., Chen, X., Dong, Y., Zeng, M., Yan, C., ... & Jiao, R. (2023b). Isolation of cadmium-resistance and siderophore-producing endophytic bacteria and their potential use for soil cadmium remediation. Heliyon, 9(7). Li, Y., Zhang, S., Bao, Q., Chu, Y., Sun, H., & Huang, Y. (2022b). Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice (Oryza sativa L.). Environmental Pollution, 304, 119178. Lima, I. M., Boykin, D. L., Klasson, K. T., & Uchimiya, M. (2014). Influence of post-treatment strategies on the properties of activated chars from broiler manure. Chemosphere, 95, 96-104. Limcharoensuk, T., Sooksawat, N., Sumarnrote, A., Awutpet, T., Kruatrachue, M., Pokethitiyook, P., & Auesukaree, C. (2015). Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand. Ecotoxicology and environmental safety, 122, 322-330. Lin, H. C., Hao, W. M., & Chu, P. H. (2021). Cadmium and cardiovascular disease: An overview of pathophysiology, epidemiology, therapy, and predictive value. Revista Portuguesa de Cardiologia (English Edition), 40(8), 611-617. Liu, D., Zhang, C., Chen, X., Yang, Y., Wang, S., Li, Y., ... & Cheng, W. (2013a). Effects of pH, Fe, and Cd on the uptake of Fe 2+ and Cd 2+ by rice. Environmental Science and Pollution Research, 20, 8947-8954. Liu, J., Ma, J., He, C., Li, X., Zhang, W., Xu, F., ... & Wang, L. (2013b). Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall‐bound form of silicon. New Phytologist, 200(3), 691-699. Liu, L., Quan, S., Li, L., Lei, G., Li, S., Gong, T., ... & Yang, W. (2024). Endophytic Bacteria Improve Bio-and Phytoremediation of Heavy Metals. Microorganisms, 12(11), 2137. Liu, R., & Lian, B. (2019). Immobilisation of Cd (II) on biogenic and abiotic calcium carbonate. Journal of hazardous materials, 378, 120707. Liu, H., Hussain, S., Zheng, M., Sun, L., Fahad, S., Huang, J., ... & Nie, L. (2014). Progress and constraints of dry direct-seeded rice in China. J. Food Agric. Environ, 12(2), 465-472. Liu, Y., Tie, B., Li, Y., Lei, M., Wei, X., Liu, X., & Du, H. (2018). Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains. Ecotoxicology and Environmental Safety, 163, 223-229. Liu, Z., Wang, Q. Q., Huang, S. Y., Kong, L. X., Zhuang, Z., Wang, Q., ... & Wan, Y. N. (2022). The risks of sulfur addition on cadmium accumulation in paddy rice under different water-management conditions. Journal of Environmental Sciences, 118, 101-111. Ma, X., Sharifan, H., Dou, F., & Sun, W. (2020). Simultaneous reduction of arsenic (As) and cadmium (Cd) accumulation in rice by zinc oxide nanoparticles. Chemical Engineering Journal, 384, 123802. Mahar, A., Ping, W. A. N. G., Ronghua, L. I., & Zhang, Z. (2015). Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere, 25(4), 555-568. Meng, D., Li, J., Liu, T., Liu, Y., Yan, M., Hu, J., ... & Yin, H. (2019). Effects of redox potential on soil cadmium solubility: insight into microbial community. Journal of Environmental Sciences, 75, 224-232. Meng, Y., Jing, H., Huang, J., Shen, R., & Zhu, X. (2022). The role of nitric oxide signaling in plant responses to cadmium stress. International Journal of Molecular Sciences, 23(13), 6901. Mitra, S., Pramanik, K., Sarkar, A., Ghosh, P. K., Soren, T., & Maiti, T. K. (2018). Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. Ecotoxicology and environmental safety, 156, 183-196. Mohammadian, M., astaraei, A., Lakzian, A., Emami, H. & Kavoosi, M. (2020). Evaluation and Comparison of the Effects of Different Application Methods and Sources of Nitrogen on Nitrogen Use Efficiency of Hashemi Rice Variety. Iranian Journal of Soil Research. 34(1), 1-16. (In Persian). Mostofa, M. G., Rahman, A., Ansary, M. M. U., Watanabe, A., Fujita, M., & Tran, L. S. P. (2015). Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Scientific reports, 5(1), 14078. Mubeen, S., Ni, W., He, C., & Yang, Z. (2023). Agricultural strategies to reduce cadmium accumulation in crops for food safety. Agriculture, 13(2), 471. Nagaraju, R., Kalahasthi, R., Balachandar, R., & Bagepally, B. S. (2022). Cadmium exposure and DNA damage (genotoxicity): a systematic review and meta-analysis. Critical Reviews in Toxicology, 52(10), 786-798. Najafabadi, M. M., Sabouni, M., Azadi, H., & Taki, M. (2022). Rice production energy efficiency evaluation in north of Iran; application of Robust Data Envelopment Analysis. Cleaner Engineering and Technology, 6, 100356. Nath, S., Deb, B., Sharma, I., & Pandey, P. (2014). Role of cadmium and lead tolerant pseudomonas aeruginosa in seedling germination of rice (Oryza sativa L.). J Environ Anal Toxicol, 4(221), 2161-0525. Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. Journal of Geochemical exploration, 96(2-3), 183-193. Niknejad, H., Bandpei, B. E., Sarvestani, R. A., Mohseni-Bandpei, A., Saeedi, R., Abtahi, M., & Gholami-Borujeni, F. (2024). Probabilistic health risk assessment of heavy metals in rice produced in Mazandaran province, Iran. Journal of Food Composition and Analysis, 128, 106068. Nogawa, K., & Kido, T. (2023). Itai-Itai disease and health effects of cadmium. In Toxicology of Metals, Volume I (pp. 353-369). CRC press. OECD-FAO Agricultural Outlook, 2022. [Data set]. Olvera, D. A. C., & Avelizapa, N. G. R. (2022). Environmental pollution and current bioremediation strategies for cadmium containing residues. In Biotechnology for treatment of residual wastes containing metals (pp. 157-171). River Publishers. Palansooriya, K. N., Shaheen, S. M., Chen, S. S., Tsang, D. C., Hashimoto, Y., Hou, D., ... & Ok, Y. S. (2020). Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment international, 134, 105046. Patil, A., Chakraborty, S., Yadav, Y., Sharma, B., Singh, S., & Arya, M. (2024). Bioremediation strategies and mechanisms of bacteria for resistance against heavy metals: a review. Bioremediation Journal, 1-33. Paul, S., Guha, T., Dey, S., Paul, S., & Kundu, R. (2022). Amelioration of cadmium toxicity by enhancing nitrogen assimilation and photosynthetic activity by two different nitrogen supplements in rice (Oryza sativa L.) cv. Lalat. Plant Stress, 4, 100082. Peng, H., Chen, Y., Weng, L., Ma, J., Ma, Y., Li, Y., & Islam, M. S. (2019). Comparisons of heavy metal input inventory in agricultural soils in North and South China: A review. Science of the Total Environment, 660, 776-786. Pirzadeh, M., Afyuni, M., & Khoshgoftarmanesh, A. H. (2012). Status of Zinc and Cadmium in Paddy Soils and Rice in Isfahan, Fars and Khuzestan Provinces and their Effect on Food Security. Journal of Water and Soil Science, 16 (60), 81-93. (In Persian). Pramanik, K., Mitra, S., Sarkar, A., & Maiti, T. K. (2018). Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. Journal of hazardous materials, 351, 317-329. Priya, A. K., Gnanasekaran, L., Dutta, K., Rajendran, S., Balakrishnan, D., & Soto-Moscoso, M. (2022). Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere, 307, 135957. Rahimi, G. & Charkhabi, A. (2014). Assessment of Some Heavy Metals in Paddy Soils and their Accumulation in the Organs of Rice in the Lenjan Area of Isfahan Province. Water and Soil Science, 24(2), 107-120. (In Persian). Rahmani, H. R. & Khanmohammadi, Z. (2024). Investigation of heavy metals in the soil of some paddy fields around Isfahan and the effect of cadmium on food security. Iranian Journal of Soil and Water Research, 55(10), 1845-1861. (In Persian). Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment international, 125, 365-385. Raj, R., Dalei, K., Chakraborty, J., & Das, S. (2016). Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. Journal of Colloid and Interface Science, 462, 166-175. Rajkumar, M., Sandhya, S., Prasad, M. N. V., & Freitas, H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology advances, 30(6), 1562-1574. Rastmanesh, F., Ghazalizadeh, S., Shalbaf, F., & Zarasvandi, A. (2023). Micronutrients and heavy metals in rice farms: the case of Ahvaz and Bawie Counties, Khuzestan Province, Iran. Environmental Monitoring and Assessment, 195(1), 173. Rehman, M. Z. U., Rizwan, M., Ghafoor, A., Naeem, A., Ali, S., Sabir, M., & Qayyum, M. F. (2015). Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation. Environmental Science and Pollution Research, 22, 16897-16906. Rezaei, L., Alipour, V., Sharafi, P., Ghaffari, H., Nematollahi, A., Pesarakloo, V., & Fakhri, Y. (2021). Concentration of cadmium, arsenic, and lead in rice (Oryza sativa) and probabilistic health risk assessment: a case study in Hormozgan province, Iran. Environmental Health Engineering and Management Journal, 8(2), 67-75. Rezaian, F., & Hesari, J. (2014). Study on contamination of white rice by cadmium, lead and arsenic in Tabriz. Food Research Journal, 23(4), 581-594. (In Persian). Rizwan, M., Ali, S., Abbas, T., Rehman, M. Z. U., & Al-Wabel, M. I. (2018). Residual impact of biochar on cadmium uptake by rice (Oryza sativa L.) grown in Cd-contaminated soil. Arabian Journal of Geosciences, 11, 1-8. Rizwan, M., Ali, S., Adrees, M., Rizvi, H., Zia-ur-Rehman, M., Hannan, F., ... & Ok, Y. S. (2016). Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environmental Science and Pollution Research, 23, 17859-17879. Roy, B., Maitra, D., Sarkar, S., Podder, R., Das, T., Ghosh, J., & Mitra, A. K. (2024). Biofilm and metallothioneins: A dual approach to bioremediate the heavy metal menace. Environmental Quality Management, 33(4), 659-676. Roychoudhury, A., Basu, S., & Sengupta, D. N. (2012). Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiologiae Plantarum, 34, 835-847. Saengwilai, P., & Meeinkuirt, W. (2021). Cadmium (Cd) and zinc (Zn) accumulation by Thai rice varieties and health risk assessment in a Cd–Zn co-contaminated paddy field: Effect of soil amendments. Environmental Geochemistry and Health, 1-16. Sahmoune, M. N. (2018). Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchemical Journal, 141, 87-95. Sasaki, A., Yamaji, N., & Ma, J. F. (2014). Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Journal of experimental botany, 65(20), 6013-6021. Satarug, S., Đorđević, A. B., Yimthiang, S., Vesey, D. A., & Gobe, G. C. (2022). The NOAEL equivalent of environmental cadmium exposure associated with GFR reduction and chronic kidney disease. Toxics, 10(10), 614. Sebastian, A., & Prasad, M. N. V. (2013). Cadmium accumulation retard activity of functional components of photo assimilation and growth of rice cultivars amended with vermicompost. International Journal of Phytoremediation, 15(10), 965-978. Sebastian, A., & Prasad, M. N. V. (2015a). Operative photo assimilation associated proteome modulations are critical for iron-dependent cadmium tolerance in Oryza sativa L. Protoplasma, 252, 1375-1386. Sebastian, A., & Prasad, M. N. V. (2015b). Iron-and manganese-assisted cadmium tolerance in Oryza sativa L.: lowering of rhizotoxicity next to functional photosynthesis. Planta, 241, 1519-1528. Senila, M., & Kovacs, E. (2024). Use of diffusive gradients in thin-film technique to predict the mobility and transfer of nutrients and toxic elements from agricultural soil to crops—an overview of recent studies. Environmental Science and Pollution Research, 1-22. Shadborestan, A., Khaksar, E., Shokrzadeh, M., & Taghavi, M. (2012). Cadmium, Lead and Chromium contents in rice (champa) produced in the Mobarakeh County in 2009. J Mazandaran Univ Med Sci, 21 (2), 122-127. (In Persian). Shadmani, L., Jamali, S., & Fatemi, A. (2021). Isolation, identification, and characterization of cadmium-tolerant endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their role in enhancing phytoremediation. Brazilian Journal of Microbiology, 52, 1097-1106. Shah, K., & Nahakpam, S. (2012). Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiology and Biochemistry, 57, 106-113. Shariati, S., Pourbabaee, A. A., Alikhani, H. A., & Rezaei, K. A. (2019). Investigation of heavy metal contamination in the surface sediments of Anzali wetland in North of Iran. Pollution, 5(1), 211-224. Sharma, M., Sharma, S., Paavan, Gupta, M., Goyal, S., Talukder, D., ... & Baskoutas, S. (2024). Mechanisms of microbial resistance against cadmium–a review. Journal of Environmental Health Science and Engineering, 22(1), 13-30. Shehzad, M. T., Sabir, M., Saifullah, Siddique, A. B., Rahman, M. M., & Naidu, R. (2022). Impact of water regimes on minimizing the accumulation of Arsenic in rice (Oryza sativa L.). Water, Air, & Soil Pollution, 233(9), 383. Shen, B., Wang, X., Zhang, Y., Zhang, M., Wang, K., Xie, P., & Ji, H. (2020). The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. Science of the Total Environment, 711, 135229. Shi, T., Ma, J., Wu, X., Ju, T., Lin, X., Zhang, Y., ... & Wu, F. (2018). Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotoxicology and environmental safety, 164, 118-124. Shi, Z., Qi, X., Zeng, X. A., Lu, Y., Zhou, J., Cui, K., & Zhang, L. (2021). A newly isolated bacterium Comamonas sp. XL8 alleviates the toxicity of cadmium exposure in rice seedlings by accumulating cadmium. Journal of Hazardous Materials, 403, 123824. Siddique, A. B., Rahman, M. M., Islam, M. R., & Naidu, R. (2022). Influences of soil pH, iron application and rice variety on cadmium distribution in rice plant tissues. Science of the Total Environment, 810, 152296. Singh, I., & Shah, K. (2014a). Evidences for structural basis of altered ascorbate peroxidase activity in cadmium-stressed rice plants exposed to jasmonate. Biometals, 27, 247-263. Singh, I., & Shah, K. (2014b). Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings. Phytochemistry, 108, 57-66. Singh, I., & Shah, K. (2015). Evidences for suppression of cadmium induced oxidative stress in presence of sulphosalicylic acid in rice seedlings. Plant growth regulation, 76, 99-110. Singh, P., & Shah, K. (2014c). Evidences for reduced metal-uptake and membrane injury upon application of nitric oxide donor in cadmium stressed rice seedlings. Plant physiology and biochemistry, 83, 180-184. Singh, S. K., Singh, P. P., Gupta, A., Singh, A. K., & Keshri, J. (2019). Tolerance of heavy metal toxicity using PGPR strains of Pseudomonas species. In PGPR amelioration in sustainable agriculture (pp. 239-252). Woodhead Publishing. Siripornadulsil, S., & Siripornadulsil, W. (2013). Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicology and environmental safety, 94, 94-103. Song, J., Song, Q., Wang, D., & Liu, Y. (2023). Mitigation strategies for excessive cadmium in rice. Comprehensive Reviews in Food Science and Food Safety, 22(5), 3847-3869. Song, W. E., Chen, S. B., Liu, J. F., Li, C. H. E. N., Song, N. N., Ning, L. I., & Bin, L. I. U. (2015). Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. Journal of Integrative Agriculture, 14(9), 1845-1854. Song, X. Q., Liu, L. F., Jiang, Y. J., Zhang, B. C., Gao, Y. P., Liu, X. L., ... & Zhou, Y. H. (2013). Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants. Molecular plant, 6(3), 768-780. Song, Y., Jin, L., & Wang, X. (2017). Cadmium absorption and transportation pathways in plants. International journal of phytoremediation, 19(2), 133-141. Soubasakou, G., Cavoura, O., & Damikouka, I. (2022). Phytoremediation of cadmium-contaminated soils: A review of new cadmium hyperaccumulators and factors affecting their efficiency. Bulletin of Environmental Contamination and Toxicology, 109(5), 783-787. Srivastava, R. K., Pandey, P., Rajpoot, R., Rani, A., Gautam, A., & Dubey, R. (2015). Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings. Protoplasma, 252, 959-975. Sterckeman, T., Goderniaux, M., Sirguey, C., Cornu, J. Y., & Nguyen, C. (2015). Do roots or shoots control cadmium accumulation in the hyperaccumulator Noccaea caerulescens?. Plant and Soil, 392, 87-99. Strobel, B. W., Borggaard, O. K., Hansen, H. C. B., Andersen, M. K., & Raulund‐Rasmussen, K. (2005). Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil. European Journal of Soil Science, 56(2), 189-196. Sufian, J. , babaakbari, M. , Avanes, A. and Moradi, S. (2025). Investigating the Effect of Activated Chlorella vulgaris Algae Biochar and Hydrochar on the Distribution and Bioavailability of Cadmium in Soil. Iranian Journal of Soil and Water Research, 55(11), 2191-2208. (In Persian). Suksabye, P., Pimthong, A., Dhurakit, P., Mekvichitsaeng, P., & Thiravetyan, P. (2016). Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil. Environmental Science and Pollution Research, 23, 962-973. Sun, L., Song, K., Shi, L., Duan, D., Zhang, H., Sun, Y., ... & Xue, Y. (2021). Influence of elemental sulfur on cadmium bioavailability, microbial community in paddy soil and Cd accumulation in rice plants. Scientific Reports, 11(1), 11468. Talukdar, D., Sharma, R., Jaglan, S., Vats, R., Kumar, R., Mahnashi, M. H., & Umar, A. (2020). Identification and characterization of cadmium resistant fungus isolated from contaminated site and its potential for bioremediation. Environmental Technology & Innovation, 17, 100604. Tarviji, H., Shekoohiyan, S., Moussavi, G., & Heidari, M. (2023). Comparison of contamination levels and health risks of toxic metals in raw and home-cooked rice; a field study on some rural households of Northern Iran. Journal of Food Composition and Analysis, 122, 105461. Tran, T.A., Popova, L.P., 2013. Functions and toxicity of cadmium in plants: recent advances and future prospects. Tur. J. Bot. 37, 1–13 Treesubsuntorn, C., Dhurakit, P., Khaksar, G., & Thiravetyan, P. (2018). Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Environmental Science and Pollution Research, 25, 25690-25701. Uraguchi, S., Kamiya, T., Clemens, S., & Fujiwara, T. (2014). Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa). Physiologia Plantarum, 151(3), 339-347. Vallejos-Torres, G., Gaona-Jimenez, N., Ordoñez-Sánchez, L., Lozano, C., Arevalo, A. A., Lozano, A., ... & Marín, C. (2023). Effects of arbuscular mycorrhizal fungi, poultry manure compost, and cadmium on plant growth and nutrient absorption of Oryza sativa. Chilean journal of agricultural research, 83(6), 656-665. Volpe, M. G., Nazzaro, M., Di Stasio, M., Siano, F., Coppola, R., & De Marco, A. (2015). Content of micronutrients, mineral and trace elements in some Mediterranean spontaneous edible herbs. Chemistry Central Journal, 9, 1-9. Waalkes, M. P., & Misra, R. R. (2023). Cadmium carcinogenicity and genotoxicity. In Toxicology of Metals, Volume I (pp. 231-243). CRC Press. Wang MY, Chen AK, Wong MH, Qiu RL, Cheng H, Ye ZH (2011) Cadmium accumulation in and tolerance of rice Oryza sativa L. varieties with different rates of radial oxygen loss. Environ Pollut 159:1730–1736. Wang X, Zhang ZW, Tu SH, Feng WQ, Xu F, Zhu F, Zhang DW, Du JB, Yuan S, Lin HH (2013) Comparative study of four rice cultivars with different levels of cadmium tolerance. Biologia 68,74–81 Wang Y, Jiang X, Li K, Wu M, Zhang R, Zhang L, Chen G (2014) Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. BioMetals 27:389–401 Wang, C., Lum, A., Ozuna, S., Clark, D., & Keasling, J. (2001). Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene. Applied microbiology and biotechnology, 56, 425-430. Wang, K., Yu, H., Zhang, X., Ye, D., Huang, H., Wang, Y., ... & Li, T. (2022a). Hydrogen peroxide contributes to cadmium binding on root cell wall pectin of cadmium-safe rice line (Oryza sativa L.). Ecotoxicology and environmental safety, 237, 113526. Wang, M., Chen, S., Zheng, H., Li, S., Chen, L., & Wang, D. (2020). The responses of cadmium phytotoxicity in rice and the microbial community in contaminated paddy soils for the application of different long-term N fertilizers. Chemosphere, 238, 124700. Wang, Y., Shang, S., Li, X., Chen, S., Li, R., Jia, W., & Deng, H. (2022b). Effect of iron plaque on gaseous elemental mercury uptake, translocation, and volatilization by paddy rice. Bulletin of Environmental Contamination and Toxicology, 109(6), 1155-1161. Wang, Y., Sun, Y., Chen, L., Shao, H., Zeng, Y., Zeng, Y., ... & Huang, S. (2023). Interactive effects of water management and liming on CH4 emissions and rice cadmium uptake in an acid paddy soil. Environmental Science and Pollution Research, 30(5), 13551-13559. World Food Summit 1996, Rome Declaration on World Food Security. Wu, S., Zhou, Z., Zhu, L., Zhong, L., Dong, Y., Wang, G., & Shi, K. (2022). Cd immobilization mechanisms in a Pseudomonas strain and its application in soil Cd remediation. Journal of Hazardous Materials, 425, 127919. Wu, Z., Jiang, Q., Yan, T., Zhang, X., Xu, S., Shi, H., ... & Wang, F. (2020). Ammonium nutrition mitigates cadmium toxicity in rice (Oryza sativa L.) through improving antioxidase system and the glutathione-ascorbate cycle efficiency. Ecotoxicology and Environmental Safety, 189, 110010. Wu, Z., Zhang, C., Yan, J., Yue, Q., & Ge, Y. (2015). Effects of sulfur supply and hydrogen peroxide pretreatment on the responses by rice under cadmium stress. Plant growth regulation, 77, 299-306. Xie, Y., Bu, H., Feng, Q., Wassie, M., Amee, M., Jiang, Y., ... & Chen, L. (2021). Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass. Environmental Research, 200, 111730. Xie, Z., Wang, D., Ben Fekih, I., Yu, Y., Li, Y., Alwathnani, H., ... & Rensing, C. (2023). Whole genome sequence analysis of Cupriavidus necator C39, a multiple heavy metal (loid) and antibiotic resistant bacterium isolated from a gold/copper mine. Microorganisms, 11(6), 1518. Xin, J. (2024). Enhancing soil Health to minimize Cadmium accumulation in agro-products: The role of microorganisms, organic amendments, and nutrients. Environmental Pollution, 123890. Xu, B., & Yu, S. (2013). Root iron plaque formation and characteristics under N2 flushing and its effects on translocation of Zn and Cd in paddy rice seedlings (Oryza sativa). Annals of Botany, 111(6), 1189-1195. Xu, C., Zhao, X., Duan, H., Gu, W., Zhang, D., Wang, R., & Lu, X. (2024a). Synergistic enzymatic mechanism of lepidolite leaching enhanced by a mixture of Bacillus mucilaginosus and Bacillus circulans. Science of The Total Environment, 947, 174711. Xu, M., Ren, M., Yao, Y., Liu, Q., Che, J., Wang, X., & Xu, Q. (2024b). Biochar decreases cadmium uptake in indica and japonica rice (Oryza sativa L.): Roles of soil properties, iron plaque, cadmium transporter genes and rhizobacteria. Journal of Hazardous Materials, 477, 135402. Xu, S., Xing, Y., Liu, S., Hao, X., Chen, W., & Huang, Q. (2020). Characterization of Cd2+ biosorption by Pseudomonas sp. strain 375, a novel biosorbent isolated from soil polluted with heavy metals in Southern China. Chemosphere, 240, 124893. Xu, Y., Feng, J., & Li, H. (2021). How intercropping and mixed systems reduce cadmium concentration in rice grains and improve grain yields. Journal of Hazardous Materials, 402, 123762. Xu, Y., Shu, G., Liu, Z., Wang, Z., Lei, H., Zheng, Q., ... & Chen, L. (2024c). Preliminary Study on Screening and Genetic Characterization of Lactic Acid Bacteria Strains with Cadmium, Lead, and Chromium Removal Potentials. Fermentation, 10(1), 41. Yan, H., Jiao, X., Chen, Y., Liang, H., Liang, W., & Liu, C. (2024a). Knockout of OsHMA3 in an indica rice increases cadmium sensitivity and inhibits plant growth. Plant Growth Regulation, 1-12. Yan, Z. X., Li, Y., Peng, S. Y., Wei, L., Zhang, B., Deng, X. Y., ... & Cheng, X. (2024b). Cadmium biosorption and mechanism investigation using two cadmium-tolerant microorganisms isolated from rhizosphere soil of rice. Journal of Hazardous Materials, 470, 134134. Yang, W., Chen, Y., Yang, L., Xu, M., Jing, H., Wu, P., & Wang, P. (2022). Spatial distribution, food chain translocation, human health risks, and environmental thresholds of heavy metals in a maize cultivation field in the heart of China’s karst region. Journal of Soils and Sediments, 22(10), 2654-2670. Yang, W., Jing, H., Yang, L., Li, X., Chen, M., Xu, M., ... & Wang, P. (2023). Effects of rapeseed residue organic fertilizer on cadmium toxicity in soil and its uptake and transfer by rice plants (Oryza sativa L.). Land Degradation & Development, 34(10), 2791-2802. Yang, W., Zhou, H., Gu, J., Liao, B., Zhang, J., & Wu, P. (2020). Application of rapeseed residue increases soil organic matter, microbial biomass, and enzyme activity and mitigates cadmium pollution risk in paddy fields. Environmental Pollution, 264, 114681. Yang, Y., Li, Y., Wang, M., Chen, W., & Dai, Y. (2021). Limestone dosage response of cadmium phytoavailability minimization in rice: A trade-off relationship between soil pH and amorphous manganese content. Journal of Hazardous Materials, 403, 123664. Yang, Y., Xiong, J., Chen, R., Fu, G., Chen, T., & Tao, L. (2016). Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Environmental and Experimental Botany, 122, 141-149. Yin, B., Zhou, L., Yin, B., & Chen, L. (2016). Effects of organic amendments on rice (Oryza sativa L.) growth and uptake of heavy metals in contaminated soil. Journal of soils and sediments, 16, 537-546. Yin, D. X., Niu, L. L., Liu, J., Yang, R., Han, B., Liu, Z. Y., ... & Zhao, X. L. (2024). Cadmium-resistant bacterium Ralstonia sp. YDR alleviated Cd toxicity in rice seedlings by enhancing antioxidant defense and inhibiting Cd2+ influx and H+ efflux. Environmental Technology & Innovation, 34, 103614. Yu, F., Liu, K., Li, M., Zhou, Z., Deng, H., & Chen, B. (2013). Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza sativa L.). International journal of phytoremediation, 15(6), 513-521. Yu, L., Zhu, J., Huang, Q., Su, D., Jiang, R., & Li, H. (2014). Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety. Ecotoxicology and environmental safety, 108, 287-293. Yu, X., Zhao, J., Liu, X., Sun, L., Tian, J., & Wu, N. (2021). Cadmium pollution impact on the bacterial community structure of arable soil and the isolation of the cadmium resistant bacteria. Frontiers in microbiology, 12, 698834. Yu, Y., Shi, K., Li, X., Luo, X., Wang, M., Li, L., ... & Li, M. (2022). Reducing cadmium in rice using metallothionein surface-engineered bacteria WH16-1-MT. Environmental Research, 203, 111801. Zhai, Q., Yin, R., Yu, L., Wang, G., Tian, F., Yu, R., ... & Chen, W. (2015). Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control, 54, 23-30. Zhai, Q., Guo, Y., Tang, X., Tian, F., Zhao, J., Zhang, H., & Chen, W. (2019). Removal of cadmium from rice by Lactobacillus plantarum fermentation. Food Control, 96, 357-364. Zhang, C. H., & Ying, G. E. (2008). Response of glutathione and glutathione S-transferase in rice seedlings exposed to cadmium stress. Rice Science, 15(1), 73-76. Zhang, C., Yin, X., Gao, K., Ge, Y., & Cheng, W. (2013a). Non‐protein thiols and glutathione S‐transferase alleviate Cd stress and reduce root‐to‐shoot translocation of Cd in rice. Journal of Plant Nutrition and Soil Science, 176(4), 626-633. Zhang, F., Deng, Y., Peng, R., Jiang, H., & Bai, L. (2024a). Bioremediation of paddy soil with amphitropic mixture markedly attenuates rice cadmium: Effect of soil cadmium removal and Fe/S-cycling bacteria in rhizosphere. Science of The Total Environment, 915, 169876. Zhang, H., Wang, K., Liu, X., Yao, L., Chen, Z., & Han, H. (2024b). Exopolysaccharide-Producing Bacteria Regulate Soil Aggregates and Bacterial Communities to Inhibit the Uptake of Cadmium and Lead by Lettuce. Microorganisms, 12(11), 2112. Zhang, J., Sun, W., Li, Z., Liang, Y., & Song, A. (2009). Cadmium fate and tolerance in rice cultivars. Agronomy for Sustainable Development, 29, 483-490. Zhang, S., Song, M., Zhang, J., & Wang, H. (2024c). Cysteine and thiosulfate promoted cadmium immobilization in strain G303 by the formation of extracellular CdS. Science of The Total Environment, 923, 171457. Zhang, X., Zhang, X., Lv, S., Shi, L., & Wang, R. (2020). Migration and transformation of cadmium in rice-soil under different nitrogen sources in polymetallic sulfide mining areas. Scientific Reports, 10(1), 2418. Zhang, Z. Y., Jun, M. E. N. G., Shu, D. A. N. G., & Chen, W. F. (2014). Effect of biochar on relieving cadmium stress and reducing accumulation in super japonica rice. Journal of Integrative Agriculture, 13(3), 547-553. Zhang, Z., Solaiman, Z. M., Meney, K., Murphy, D. V., & Rengel, Z. (2013b). Biochars immobilize soil cadmium, but do not improve growth of emergent wetland species Juncus subsecundus in cadmium-contaminated soil. Journal of Soils and Sediments, 13, 140-151. Zhao, H., Wu, Y., Lan, X., Yang, Y., Wu, X., & Du, L. (2022). Comprehensive assessment of harmful heavy metals in contaminated soil in order to score pollution level. Scientific Reports, 12 (1), 3552. Zhao, S., Zhang, Q., Xiao, W., Chen, D., Hu, J., Gao, N., ... & Ye, X. (2023a). Comparative transcriptomic analysis reveals the important process in two rice cultivars with differences in cadmium accumulation. Ecotoxicology and Environmental Safety, 252, 114629. Zhao, Y., Wang, J., Huang, W., Zhang, D., Wu, J., Li, B., ... & Yan, M. (2023b). Abscisic-acid-regulated responses to alleviate cadmium toxicity in plants. Plants, 12(5), 1023. Zhou, H., Zeng, M., Zhou, X., Liao, B. H., Peng, P. Q., Hu, M., ... & Zou, Z. J. (2015). Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars. Plant and soil, 386, 317-329. Zhou, J., Li, P., Meng, D., Gu, Y., Zheng, Z., Yin, H., ... & Li, J. (2020). Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment. Environmental pollution, 260, 113990. Zhou, P., Zhang, P., He, M., Cao, Y., Adeel, M., Shakoor, N., ... & Lynch, I. (2023). Iron-based nanomaterials reduce cadmium toxicity in rice (Oryza sativa L.) by modulating phytohormones, phytochelatin, cadmium transport genes and iron plaque formation. Environmental Pollution, 320, 121063. Zhou, X., Liu, X., Zhao, J., Guan, F., Yao, D., Wu, N., & Tian, J. (2021). The endophytic bacterium Bacillus koreensis 181–22 promotes rice growth and alleviates cadmium stress under cadmium exposure. Applied Microbiology and Biotechnology, 105, 8517-8529. Zhou, X., Zhang, X., Ma, C., Wu, F., Jin, X., Dini-Andreote, F., & Wei, Z. (2022). Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in tomato rhizosphere. Chemosphere, 307, 136138. Zhou, Y., Zhu, X., Li, S., Zhang, M., & Yan, X. (2024). Bioremediation of Cd contamination at smelting sites by sulphate-reducing bacteria (SRB). In 2023 9th International Conference on Advances in Energy Resources and Environment Engineering (ICAESEE 2023) (pp. 631-639). Atlantis Press. Zou, M., Zhou, S., Zhou, Y., Jia, Z., Guo, T., & Wang, J. (2021). Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. Environmental Pollution, 280, 116965. | ||
آمار تعداد مشاهده مقاله: 38 تعداد دریافت فایل اصل مقاله: 34 |