
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,878,821 |
تعداد دریافت فایل اصل مقاله | 107,237,589 |
تأثیر فناوری واقعیت افزوده بر واکنشهای شناختی، عاطفی و رفتاری مصرفکنندگان در پلتفرمهای تجارت الکترونیک | ||
بررسیهای مدیریت رسانه | ||
دوره 4، شماره 2، 1404، صفحه 330-356 اصل مقاله (980.98 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/mmr.2025.381522.1106 | ||
نویسندگان | ||
فاطمه محمدی* 1؛ پریسا یزدانی2؛ محمد رسول فیض3 | ||
1استادیار، گروه مدیریت، دانشکدۀ اقتصاد و مدیریت، دانشگاه قم، قم، ایران. | ||
2کارشناسی ارشد، گروه مدیریت، دانشکده مدیریت و اقتصاد، دانشگاه قم، قم، ایران. | ||
3دانشجوی دکتری، گروه مدیریت بازرگانی، دانشکده اقتصاد و مدیریت، دانشگاه سمنان، سمنان، ایران. | ||
چکیده | ||
هدف: امروزه گسترش فناوریها شرایط مناسبی را برای خردهفروشان جهت کسب مزیت رقابتی فراهم کرده است. از این رو مطالعه تأثیر بهکارگیری فناوری واقعیت افزوده بر رفتار مصرفکننده بسیار مهم است. در این تحقیق پاسخهای شناختی، عاطفی و رفتاری مصرفکنندگان به این فناوری بررسی شده است. روش: پژوهش از نوع کمّی و به روش توصیفی ـ علی انجام شده است. جامعۀ آماری افرادی بودهاند که از فروشگاههای مجهز به فناوری واقعیت افزوده خرید کردهاند. پاسخگویان با استفاده از روش نمونهگیری تصادفی ساده در دسترس انتخاب شدند. برای تحلیل دادههای جمعآوری شده، از روش مدلسازی معادلات ساختاری و نرمافزار اسمارت پیالاس استفاده شد. یافتهها: تعامل و کیفیت سیستم، بر غوطهوری؛ لذت و سودمندی رسانه، بر قصد استفادۀ مجدد و همچنین تعامل، بر علاقه به محصول اثر مثبت دارند. تأثیر کیفیت سیستم بر سودمندی رسانه تأیید نشد؛ اما تأثیر آگاهی از ویژگیهای محصول و همبستگی واقعیت افزوده بر سودمندی رسانه به تأیید رسید. همچنین، تأثیر سودمندی رسانه بر اعتمادبهنفس مصرفکنندگان در انتخاب محصول و قصد خرید تأیید شد. نتیجهگیری: میتوان گفت واقعیت افزوده، بر واکنشهای مشتری در تجارت الکترونیک اثرگذار است. برنامههای واقعیت افزوده بهصورت مستقیم و غیرمستقیم تأثیرهای کمابیش خوبی بر پاسخهای مصرفکنندگان دارد. | ||
کلیدواژهها | ||
پاسخهای رفتاری؛ پاسخهای شناختی؛ تجارت الکترونیک؛ پاسخهای عاطفی؛ واقعیت افزوده | ||
عنوان مقاله [English] | ||
Consumers' Cognitive, Emotional, and Behavioral Responses to Augmented Reality Technology in E-Commerce Platforms | ||
نویسندگان [English] | ||
Fatemeh Mohammadi1؛ Parisa Yazdani2؛ Mohammad Rasool Feiz3 | ||
1Assistant Prof., Department of Management, Faculty of Economics and Management University of Qom, Qom, Iran. | ||
2MSc, Department of Management, Faculty of Management and Economics, Qom University, Qom, Iran. | ||
3Ph.D. Candidate, Department of Business Management, Faculty of Economics and Management, Semnan University, Semnan, Iran. | ||
چکیده [English] | ||
Objective In today’s rapidly evolving digital landscape, the integration of emerging technologies such as Augmented Reality (AR) has become a strategic imperative for businesses seeking to enhance customer experience and gain a competitive edge in e-commerce. By overlaying digital content onto the physical environment, AR creates immersive and interactive experiences that significantly transform how consumers perceive, interact with, and evaluate products online. As e-commerce platforms strive to bridge the gap between virtual and physical shopping, understanding consumer responses to AR has gained notable academic and practical relevance. This study examines the cognitive, emotional, and behavioral responses of consumers to AR applications in online retail environments. Research Methodology This research is applied in nature and follows a quantitative, descriptive-causal approach. The target population consists of individuals who have previously purchased from online stores incorporating AR technology. Using a simple random sampling method, a total of 200 valid responses were collected. Data was gathered through a structured questionnaire featuring validated scales. Reliability and validity were verified using Cronbach’s alpha, composite reliability (CR), and average variance extracted (AVE). The data analysis was conducted through Structural Equation Modeling (SEM) using Smart PLS software. Findings The proposed conceptual model suggests that four key AR features—interactivity, system quality, product informativeness, and AR realism—serve as independent variables influencing consumer outcomes. These variables affect consumer decision-making through cognitive mediators (media usefulness and choice confidence) and affective mediators (immersion, enjoyment, and product interest). The final outcome variables include behavioral responses such as reuse intention and purchase intention. Findings indicate that interactivity significantly influences immersion (β = 0.173) and enjoyment (β = 0.579), enhancing users’ emotional involvement and hedonic response. However, its impact on product interest was statistically insignificant, suggesting that while AR interactivity improves the shopping experience, it may not necessarily foster emotional attachment to the product itself. System quality exhibited a strong positive impact on immersion (β = 0.500) but failed to significantly influence media usefulness, possibly due to consumers prioritizing clarity and realism over system performance. Conversely, product informativeness had the highest influence on media usefulness (β = 0.783), followed by AR realism (β = 0.193), underscoring the importance of providing detailed and visually enhanced product information via AR interfaces. Media usefulness significantly influenced both choice confidence (β = 0.602) and reuse intention (β = 0.303), validating its role as a core cognitive mechanism in consumer decision-making. Despite its visual appeal, AR realism did not significantly affect choice confidence, indicating that realism alone may be insufficient without contextual and informational depth. On the emotional front, immersion positively influenced enjoyment (β = 0.251), and enjoyment significantly predicted reuse intention (β = 0.619), confirming the mediating role of affective responses in reinforcing behavioral intentions. Interestingly, product interest did not significantly affect choice confidence, implying that initial emotional attraction does not always translate into confident decision-making. Lastly, choice confidence emerged as a strong predictor of purchase intention (β = 0.373), highlighting the importance of psychological assurance in facilitating conversion. The model demonstrated robust goodness-of-fit, with a GoF index of 0.53, indicating high explanatory power. Among the 14 proposed hypotheses, 10 were supported, and 4 were rejected. Collectively, these findings reinforce the critical role of cognitive and affective responses in mediating the relationship between AR features and consumer behavior. Specifically, media usefulness and enjoyment emerged as key mediators transforming technical attributes into favorable behavioral outcomes. Discussion & Conclusion From a theoretical perspective, this study contributes to the growing body of knowledge at the intersection of marketing, technology adoption, and consumer psychology. The integrated model extends existing frameworks by explicitly distinguishing between cognitive and affective processes and empirically testing their distinct mediating roles. It also addresses a gap in the literature by focusing on AR usage in e-commerce within a developing country context, where empirical evidence remains scarce. Practically, the findings provide actionable insights for e-commerce practitioners and technology developers. Businesses should prioritize interactivity and product informativeness when designing AR-enabled shopping experiences. Incorporating real-time customization options, high-fidelity graphics, and clear product information can enhance user engagement and perceived value. Furthermore, creating emotionally rewarding experiences—through features that generate immersion and enjoyment—can drive repeat usage and strengthen brand loyalty. The study also emphasizes the limitations of relying solely on technical system features to influence cognitive evaluations. Without meaningful content and emotional resonance, system quality alone may not be sufficient to shape consumer perceptions. Thus, a balanced approach that integrates functionality with experiential and informational richness is essential for maximizing the impact of AR in online retail. Future research should explore the moderating effects of demographic variables such as age, gender, digital literacy, and previous exposure to AR technologies. Longitudinal studies could provide insights into how consumer perceptions and behaviors evolve over time with repeated AR interactions. Additionally, qualitative research may uncover deeper psychological motivations and barriers underlying AR adoption. As the digital marketplace continues to evolve, AR stands out as a transformative technology capable of redefining online consumer experiences. By enabling users to visualize, interact with, and evaluate products in near-real environments, AR reduces uncertainty and enhances decision quality. Successful implementation of AR not only improves operational metrics such as conversion rates and return reduction but also fosters consumer empowerment, satisfaction, and loyalty. This study lays the groundwork for further nuanced explorations into how immersive technologies shape the future of digital commerce. | ||
کلیدواژهها [English] | ||
Behavioral responses, Cognitive response, Emotional responses, E-commerce, Augmented reality | ||
مراجع | ||
آتش سوز، علی و رحمانی، پریناز (۱۴۰۲). نقش برنامههای واقعیت افزوده موبایل بر استفاده مداوم و قصد خرید توسط مصرفکننده. مطالعات مدیریت کسبوکار هوشمند، ۱۱(۴۳)، ۲۹-۱.
داوری، علی و رضازاده، آرش (1392). مدلسازی معادلات ساختاری با نرمافزار Smart PLS. انتشارات جهاد دانشگاهی، تهران.
کریمی، مینا؛ صادقی نیارکی، ابوالقاسم و حسینی نوه، علی (۱۳۹۸). مقایسه انواع تارگتهای مورداستفاده در برنامههای مبتنی بر واقعیت افزوده در GIS فراگستر، مهندسی فناوری اطلاعات مکانی، ۷ (۲)، ۶۲-۴۳.
References Algharabat, R., Abdallah Alalwan, A., Rana, N. P. & Dwivedi, Y. K. (2017). Three dimensional product presentation quality antecedents and their consequences for online retailers: The moderating role of virtual product experience. Journal of Retailing and Consumer Services, 36, 203–217. https://doi.org/10.1016/j.jretconser.2017.02.007 Andrews, D. (2013). The interplay of information diagnosticity and need for cognitive closure in determining choice confidence. Psychology and Marketing, 30(9), 749–764. https://doi.org/10.1002/mar.20643 Ariely, D. (2000). Controlling the information flow: Effects on consumers’ decision making and preferences. Journal of Consumer Research, 27(2), 233–248. https://doi.org/10.1086/314322 Atashsooz, A. & Rahmani, P. (2023). The role of mobile augmented reality applications on continuous use and purchase intention by the consumer, Business Intelligence Management Studies, 11 (43). 1-29 (in Persian) Beck, M. & Crié, D. (2018). I virtually try it … I want it! Virtual Fitting Room: A tool to increase on-line and off-line exploratory behavior, patronage and purchase intentions. Journal of Retailing and Consumer Services, 40, 279–286. https://doi.org/10.1016/j.jretconser.2016.08.006 Beyond boredom and anxiety (eBook, 1975) [WorldCat.org]. (n.d.). Retrieved June 18, 2021, from https://www.worldcat.org/title/beyond-boredom-and-anxiety/oclc/565395946 Bleier, A., Harmeling, C. M. & Palmatier, R. W. (2019). Creating effective online customer experiences. Journal of Marketing, 83(2), 98–119. https://doi.org/10.1177/0022242918809930 Childers, T. L., Carr, C. L., Peck, J. & Carson, S. (2001). Hedonic and utilitarian motivations for online retail shopping behavior. Journal of Retailing, 77(4), 511–535. https://doi.org/10.1016/S0022-4359(01)00056-2 Cox, D. S. & Cox, A. D. (1988). What Does Familiarity Breed? Complexity as a Moderator of Repetition Effects in Advertisement Evaluation. Journal of Consumer Research, 15(1), 111. https://doi.org/10.1086/209149 Cyr, D., Head, M. & Ivanov, A. (2009). Perceived interactivity leading to e-loyalty: Development of a model for cognitive-affective user responses. International Journal of Human Computer Studies, 67(10), 850–869. https://doi.org/10.1016/j.ijhcs.2009.07.004 Dacko, S. G. (2017). Enabling smart retail settings via mobile augmented reality shopping apps. Technological Forecasting and Social Change, 124, 243–256. https://doi.org/10.1016/j.techfore.2016.09.032 Davari, A. & Rezazadeh, A. (2013). Structural equation modeling with Smart PLS software. Jahad Daneshgahi Publications, Tehran. (in Persian) Davis, F. D., Bagozzi, R. P. & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x DeLone, W. H. & McLean, E. R. (2004). Measuring e-commerce success: Applying the DeLone and McLean Information Systems Success Model. International Journal of Electronic Commerce, 9(1), 31–47. https://doi.org/10.1080/10864415.2004.11044317 Dickinger, A. & Stangl, B. (2013). Website performance and behavioral consequences: A formative measurement approach. Journal of Business Research, 66(6), 771–777. https://doi.org/10.1016/J.JBUSRES.2011.09.017 Domina, T., Lee, S. E. & MacGillivray, M. (2012). Understanding factors affecting consumer intention to shop in a virtual world. Journal of Retailing and Consumer Services, 19(6), 613–620. https://doi.org/10.1016/j.jretconser.2012.08.001 Drengner, J., Jahn, S. & Furchheim, P. (2018). Flow revisited: process conceptualization and a novel application to service contexts. Journal of Service Management, 29(4), 703–734. https://doi.org/10.1108/JOSM-12-2016-0318 Fombona Cadavieco, J., Vázquez Cano, E., & Valle Mejíaas, M. E. D. (2018). Análisis de la geolocalización y realidad aumentada en dispositivos móviles, propuestas socio-educativas relacionadas con el entorno y las salidas de campo. Profesorado: Revista de Curriculum y Formación Del Profesorado, 22(4), 197-222. https://dialnet.unirioja.es/servlet/articulo?codigo=6780470&info=resumen&idioma=ENG Fornell, C. & Larcker, D.F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 39-50. Gao, Q., Rau, P. L. P. & Salvendy, G. (2009). Perception of interactivity: Affects of four key variables in mobile advertising. International Journal of Human-Computer Interaction, 25(6), 479–505. https://doi.org/10.1080/10447310902963936 Hilken, T., de Ruyter, K., Chylinski, M., Mahr, D. & Keeling, D. I. (2017). Augmenting the eye of the beholder: exploring the strategic potential of augmented reality to enhance online service experiences. Journal of the Academy of Marketing Science, 45(6), 884–905. https://doi.org/10.1007/s11747-017-0541-x Hinsch, C., Felix, R. & Rauschnabel, P. A. (2020). Nostalgia beats the wow-effect: Inspiration, awe and meaningful associations in augmented reality marketing. Journal of Retailing and Consumer Services, 53, 101987. https://doi.org/10.1016/j.jretconser.2019.101987 Hoffman, D. L. & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of Marketing, 60(3), 50–68. https://doi.org/10.2307/1251841 Hoffman, D. L. & Novak, T. P. (2009). Flow Online: Lessons Learned and Future Prospects. Journal of Interactive Marketing, 23(1), 23–34. https://doi.org/10.1016/j.intmar.2008.10.003 Holbrook, M. B. & Hirschman, E. C. (1982). The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun. Journal of Consumer Research, 9(2), 132. https://doi.org/10.1086/208906 Huang, T. L. & Liao, S. (2015). A model of acceptance of augmented-reality interactive technology: the moderating role of cognitive innovativeness. Electronic Commerce Research, 15(2), 269–295. https://doi.org/10.1007/s10660-014-9163-2 Huang, T. L. & Liao, S. L. (2017). Creating e-shopping multisensory flow experience through augmented-reality interactive technology. Internet Research, 27(2), 449–475. https://doi.org/10.1108/IntR-11-2015-0321 Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic management journal, 20(2), 195-204. Javornik, A. (2016). ‘It’s an illusion, but it looks real!’ Consumer affective, cognitive and behavioural responses to augmented reality applications. Journal of Marketing Management, 32(9–10), 987–1011. https://doi.org/10.1080/0267257X.2016.1174726 Karimi, M., Sadeghi Niaraki, A. & Hosseini Naveh, A. (2019). Comparison of Different Targets Used in Augmented Reality Applications in Ubiquitous GIS. Engineering Journal of Geospatial Information Technology, 7(2), 43-62. (in Persian) Katz, E., Blumler, J. G. & Gurevitch, M. (1973). Uses and gratifications research. Public Opinion Quarterly, 37(4), 509–523. https://doi.org/10.1086/268109 Kim, G., Shin, B. & Kwon, O. (2012). Investigating the value of sociomaterialism in conceptualizing it capability of a firm. Journal of Management Information Systems, 29(3), 327–362. https://doi.org/10.2753/MIS0742-1222290310 Kim, H. C. & Hyun, M. Y. (2016). Predicting the use of smartphone-based Augmented Reality (AR): Does telepresence really help? Computers in Human Behavior, 59, 28–38. https://doi.org/10.1016/j.chb.2016.01.001 Kim, K., Hwang, J. & Zo, H. (2016). Understanding users’ continuance intention toward smartphone augmented reality applications. Information Development, 32(2), 161–174. https://doi.org/10.1177/0266666914535119 Kowalczuk, P. (2018). Consumer acceptance of smart speakers: a mixed methods approach. Journal of Research in Interactive Marketing, 12(4), 418–431. https://doi.org/10.1108/JRIM-01-2018-0022 Lavidge, R. J. & Steiner, G. A. (1961). A Model for Predictive Measurements of Advertising Effectiveness. Journal of Marketing, 25(6), 59–62. https://doi.org/10.1177/002224296102500611 Li, H., Daugherty, T. & Biocca, F. (2001). Characteristics of virtual experience in electronic commerce: A protocol analysis. Journal of Interactive Marketing, 15(3), 13–30. https://doi.org/10.1002/dir.1013 Liang, T. P., Ho, Y. T., Li, Y. W. & Turban, E. (2011). What drives social commerce: The role of social support and relationship quality. International Journal of Electronic Commerce, 16(2), 69–90. https://doi.org/10.2753/JEC1086-4415160204 Lim, W. M. & Ting, D. H. (2012). E-shopping: An analysis of the technology acceptance model. Modern Applied Science, 6(4), 49–62. https://doi.org/10.5539/mas.v6n4p49 Mainemelis, C. (2001). When the muse takes it all: A model for the experience of timelessness in organizations. Academy of Management Review, 26(4), 548–565. https://doi.org/10.5465/AMR.2001.5393891 Mobile AR Market Attracting 1.9 Billion Unique Monthly Active Users by 2022 | FierceElectronics. (n.d.). Retrieved September 12, 2021, from https://www.fierceelectronics.com/components/mobile-ar-market-attracting-1-9-billion-unique-monthly-active-users-by-2022 Oh, H., Yoon, S. Y. & Shyu, C. R. (2008). How can Virtual Reality reshape furniture retailing? Clothing and Textiles Research Journal, 26(2), 143–163. https://doi.org/10.1177/0887302X08314789 Olsson, T., Lagerstam, E., Kärkkäinen, T. & Väänänen-Vainio-Mattila, K. (2013). Expected user experience of mobile augmented reality services: A user study in the context of shopping centres. Personal and Ubiquitous Computing, 17(2), 287–304. https://doi.org/10.1007/s00779-011-0494-x Pantano, E., Rese, A. & Baier, D. (2017). Enhancing the online decision-making process by using augmented reality: A two country comparison of youth markets. Journal of Retailing and Consumer Services, 38, 81–95. https://doi.org/10.1016/j.jretconser.2017.05.011 Park, E., Kim, H. & Ohm, J. Y. (2015). Understanding driver adoption of car navigation systems using the extended technology acceptance model. Behaviour and Information Technology, 34(7), 741–751. https://doi.org/10.1080/0144929X.2014.963672 Peddie, J. (2017). Augmented Reality. https://doi.org/10.1007/978-3-319-54502-8 Phillips, D. M., Olson, J. C. & Baumgartner, H. (1995). Consumption Visions in Consumer Decision Making. ACR North American Advances, NA-22. https://www.acrwebsite.org/volumes/7759/volumes/v22/NA-22/full Porter, M. E., & Heppelmann, J. E. (2017). Why every organization needs an augmented reality strategy. Hbr’s 10 Must, 85, 2-18. Poushneh, A. & Vasquez-Parraga, A. Z. (2017). Discernible impact of augmented reality on retail customer’s experience, satisfaction and willingness to buy. Journal of Retailing and Consumer Services, 34, 229–234. https://doi.org/10.1016/j.jretconser.2016.10.005 Poushneh, A. (2018). Augmented reality in retail: A trade-off between user’s control of access to personal information and augmentation quality. Journal of Retailing and Consumer Services, 41, 169–176. https://doi.org/10.1016/j.jretconser.2017.12.010 Rauschnabel, P. A. (2018). Virtually enhancing the real world with holograms: An exploration of expected gratifications of using augmented reality smart glasses. Psychology and Marketing, 35(8), 557–572. https://doi.org/10.1002/mar.21106 Rejeb, A., Rejeb, K. & Treiblmaier, H. (2023) How augmented reality impacts retail marketing: a state-of-the-art review from a consumer perspective. Journal of Strategic Marketing, 31(3), 718-748. DOI: 10.1080/0965254X.2021.1972439 Rese, A., Baier, D., Geyer-Schulz, A. & Schreiber, S. (2017). How augmented reality apps are accepted by consumers: A comparative analysis using scales and opinions. Technological Forecasting and Social Change, 124, 306–319. https://doi.org/10.1016/j.techfore.2016.10.010 Rese, A., Schreiber, S. & Baier, D. (2014). Technology acceptance modeling of augmented reality at the point of sale: Can surveys be replaced by an analysis of online reviews? Journal of Retailing and Consumer Services, 21(5), 869–876. https://doi.org/10.1016/j.jretconser.2014.02.011 Rezazadeh, A. & Davari, A. (2015). Structural Equation Modeling book with PLC software, Publisher: Jihad Davanghi Roggeveen, A. L. & Sethuraman, R. (2018). Understanding the JR Heritage, Publishing in JR, and the Evolving Retail Field. In Journal of Retailing, 94(1), 1–4. Elsevier Ltd. https://doi.org/10.1016/j.jretai.2018.02.001 Saleem, M., Kamarudin, S., Shoaib, H. M. & Nasar, A. (2022). Retail consumers’ behavioral intention to use augmented reality mobile apps in Pakistan. Journal of Internet Commerce, 21(4), 497-525. DOI: 10.1080/15332861.2021.1975427 Schwarz, N. (2012). Feelings-as-information theory. In Handbook of Theories of Social Psychology: Volume 1 (pp. 289–308). SAGE Publications Inc. https://doi.org/10.4135/9781446249215.n15 Shalley, C., Hitt, M. A., Zhou, J., Mainemelis, C. & Dionysiou, D. D. (2015). Play, Flow, and Timelessness. In The Oxford Handbook of Creativity, Innovation, and Entrepreneurship. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199927678.013.0006 Sismeiro, C. & Bucklin, R. E. (2004). Modeling purchase behavior at an E-commerce Web site: A task-completion approach. Journal of Marketing Research, 41(3), 306–323. https://doi.org/10.1509/jmkr.41.3.306.35985 Smink, A. R., Frowijn, S., van Reijmersdal, E. A., van Noort, G. & Neijens, P. C. (2019). Try online before you buy: How does shopping with augmented reality affect brand responses and personal data disclosure. Electronic Commerce Research and Applications, 35, 100854. https://doi.org/10.1016/j.elerap.2019.100854 Spreer, P. & Kallweit, K. (2014). Augmented reality in retail: Assessing the acceptance and potential for multimedia product presentation at the PoS. SOP Transactions on Marketing Research, 1(1), 23–31. https://doi.org/10.15764/mr.2014.01002 Steuer, J. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of Communication, 42(4), 73–93. https://doi.org/10.1111/j.1460-2466.1992.tb00812.x Tenenhaus, M., Amato, S. & Esposite Vinzi, V. (2004). A global goodness-of-fit index for PLS structural equation modeling. In Proceedings of the XLII SIS scientific meeting, 739-742. van Noort, G., Voorveld, H. A. M. & van Reijmersdal, E. A. (2012). Interactivity in Brand Web Sites: Cognitive, affective, and behavioral responses explained by consumers’ online flow experience. Journal of Interactive Marketing, 26(4), 223–234. https://doi.org/10.1016/j.intmar.2011.11.002 Venkatesh, V. & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x Verhagen, T. & Bloemers, D. (2018). Exploring the cognitive and affective bases of online purchase intentions: a hierarchical test across product types. Electronic Commerce Research, 18(3), 537–561. https://doi.org/10.1007/s10660-017-9270-y Vinzi, V. E., Trinchera, L. & Amato, S. (2010). PLS Path Modeling: from Foundations to Recent Developments and Open Issues for Model Assessment and Improvement. Handbook of Partial Least Squares. 47-82. Wang, W., Cao, D. & Ameen, N. (2023). Understanding customer satisfaction of augmented reality in retail: a human value orientation and consumption value perspective. Information Technology & People, 36(6), 2211-2233. 10.1108/ITP-04-2021-0293. Yang, H., Yu, J., Zo, H. & Choi, M. (2016). User acceptance of wearable devices: An extended perspective of perceived value. Telematics and Informatics, 33(2), 256–269. https://doi.org/10.1016/j.tele.2015.08.007 Yildiz, E. P. (2021). Augmented Reality Research and Applications in Education. Augmented reality and its application, 3. https://doi.org/10.5772/INTECHOPEN.99356 Yim, M. Y. C., Chu, S. C. & Sauer, P. L. (2017). Is Augmented Reality Technology an Effective Tool for E-commerce? An Interactivity and Vividness Perspective. Journal of Interactive Marketing, 39, 89–103. https://doi.org/10.1016/j.intmar.2017.04.001 Yoo, W. S., Lee, Y. & Park, J. K. (2010). The role of interactivity in e-tailing: Creating value and increasing satisfaction. Journal of Retailing and Consumer Services, 17(2), 89–96. https://doi.org/10.1016/j.jretconser.2009.10.003 Yoon, S. Y., Laffey, J. & Oh, H. (2008). Understanding usability and user experience of web-based 3D graphics technology. International Journal of Human-Computer Interaction, 24(3), 288–306. https://doi.org/10.1080/10447310801920516 | ||
آمار تعداد مشاهده مقاله: 176 تعداد دریافت فایل اصل مقاله: 27 |