
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,878,819 |
تعداد دریافت فایل اصل مقاله | 107,237,588 |
تشخیص و دستهبندی تیپ گاو بر اساس انحراف انتهای ستون فقرات با استفاده از یادگیری ماشین | ||
مهندسی بیوسیستم ایران | ||
دوره 56، شماره 2، شهریور 1404، صفحه 51-67 اصل مقاله (2.3 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2025.398902.665603 | ||
نویسندگان | ||
محسن دانشمند وزیری1؛ عبداله ایمان مهر* 2؛ محسن حیدری سلطان آبادی3 | ||
1محقق، بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج | ||
2استادیار پژوهش، بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش | ||
3دانشیار پژوهش، بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش | ||
چکیده | ||
در مزارع پرورش گاو شیری، عملیات یادگیری ماشینی میتواند بر اساس امتیازدهی وضعیت بدنی (BCS) با بهرهگیری از ویژگیهای استخراجشده از تصاویر برای شناسایی و طبقهبندی انواع گاوها مورد استفاده قرار گیرد. بهطور خاص، الگوریتمهای یادگیری ماشین میتوانند انحنای ستون فقرات را اغلب با شناسایی نقاط کلیدی و برازش یک خط یا منحنی، تجزیه و تحلیل کنند تا بین نژادهای مختلف گاو تمایز قائل شوند و وضعیت آن را ارزیابی کنند. در این مطالعه، جهت تشخیص و طبقهبندی انواع تیپ گاو بر اساس وضعیت انحنای انتهای ستون فقرات (کفل) از مدلهای یادگیری ماشین که در سالهای اخیر بهطور مکرر در علوم کامپیوتر مورد استفاده قرار گرفتهاند، شامل SVM، KNN و CNN همراه با شبکه از پیش آموزشدیده مبتنی بر یادگیری عمیق Resnet50 بهمنظور افزایش موفقیت معماریها استفاده شد. در هر یک از الگوریتمها استخراج و ثبت و ادغام ویژگیهای تصاویر برای تشخیص نوع تیپ گاوها انجام گرفت و در نهایت الگوریتم CNN از پیش آموزشدیده مبتنی بر یادگیری عمیق با بالاترین میزان دقت (93 درصد) توانست نوع تیپ گاو را درست تشخیص دهد. بنابراین میتوان با تلفیق این سیستم پردازشی با مکانیزم تصویربرداری، امکان تشخیص و طبقهبندی گاوها را بر اساس انواع حالات و مشخصات بدنی در محیطهای گاوداری در مدت زمان کوتاهتر، سادهتر و کاربرپسند فراهم ساخت. این رویکرد نیاز به استخراج دستی ویژگیهای دام را حذف میکند، بکارگیری نیروی انسانی را کاهش میدهد و بهدقت تشخیص بهبودیافتهای دست مییابد. | ||
کلیدواژهها | ||
امتیازدهی وضعیت بدنی؛ انحنای کفل گاو؛ الگوریتمهای یادگیری ماشین؛ شبکه عصبی اغتشاشی؛ یادگیری عمیق | ||
عنوان مقاله [English] | ||
Identifying and classifying cow types based on spinal end deviation using machine learning | ||
نویسندگان [English] | ||
mohsen daneshman vaziri1؛ Abdollah Imanmehr2؛ mohsen Heidarisoltanabadi3 | ||
1Researcher, Agricultural Engineering Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran.. | ||
2Assistant professor, Agricultural Engineering Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran. | ||
3Associated professor, Agricultural Engineering Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran. | ||
چکیده [English] | ||
In dairy farms, machine learning operations can be used to identify and classify cow types based on body condition scoring (BCS) using features extracted from images. In particular, machine learning algorithms can analyze the curvature of the spine, often by identifying key points and fitting a line or curve, to distinguish between different breeds of cattle and assess their condition. In this study, machine learning models that have been frequently used in computer science in recent years, including SVM, KNN, and CNN, were used in conjunction with a pre-trained deep learning network Resnet50 to enhance the success of the architectures. In each of the algorithms, image features were extracted, registered, and merged to identify the type of cows, and finally, the pre-trained CNN algorithm based on deep learning was able to correctly identify the type of cow with the highest accuracy (93 percent). Therefore, by combining this processing system with the imaging mechanism, it is possible to identify and classify cows based on various states and physical characteristics in cattle environments in a shorter, simpler, and more user-friendly time. This approach eliminates the need for manual extraction of livestock features, reduces the use of human resources, and achieves improved recognition accuracy. | ||
کلیدواژهها [English] | ||
Body condition scoring, cow rump curvature, machine learning algorithms, convolutional neural network, deep learning | ||
مراجع | ||
Alvarez, J. R., Arroqui, M., Mangudo, P., Toloza, J., Jatip, D., Rodriguez, J., Teyseyre, A., Sanz, C., Zunino, A. & Machado, C. (2018). Body condition estimation on cows from depth images using Convolutional Neural Networks. Comput. Electron. Agric. 155, 12–22. Alvarez, J. R., Arroqui, M., Mangudo, P., Toloza, J., Jatip, D., Rodriguez, J. M., Teyseyre, A., Sanz, C., Zunino, A., Machado, C., Mateos, C. (2019). Estimating body condition score in dairy cows from depth images using convolutional neural networks, transfer learning and model Ensembling techniques. Agronomy. 9 (2), 90. https://doi.org/10.3390/ agronomy9020090. Amin, A. K. M. R., Islam, M. T. & Hossain, M. S. (2022). Smart livestock monitoring: A computer vision-based approach to detect cattle body posture and condition. IEEE Access. 10, 114566–114579. https://doi.org/10.1109/ACCESS.2022.3218910 Bewley, J., Peacock, A., Lewis, O., Boyce, R., Roberts, D., Coffey, M., Kenyon, S. & Schutz, M. (2008). Potential for Estimation of Body Condition Scores in Dairy Cattle from Digital Images. J. Dairy Sci. 91, 3439–3453. Devi, I., Sharma, R., Kumar, A., & Thakur, A. (2024). Deep learning aided computer vision system for automated linear type trait evaluation in dairy cows. Smart Agricultural Technology. 8, 100509. https://doi.org/10.1016/j.atech.2024.100509 Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification. Wiley-Interscience Hansen, M. F., Smith, M. L., Smith, L. N., Abdul Jabbar, K. & Forbes, D. (2018). Automated monitoring of dairy cow body condition, mobility and weight using a single 3D video capture device. Comput. Ind. 98, 14–22. https://doi.org/10.1016/j.compind.2018.02.011. Hou, H., Shi, W., Guo, J., Zhang, Z., Shen, W., & Kou, S. (2021). Cow Rump Identification Based on Lightweight Convolutional Neural Networks. Information. 12(9), 361. https://doi.org/10.3390/info12090361 Huang, X. P., Feng, T., Guo, Y. Y. & Liang, D. (2023). Lightweight dairy cow body condition scoring method is based on improved YOLOv5s (in Chinese). Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 54, 287–296. https://doi.org/10.6041/j.issn.1000-1298.2023. 06.030. Iandola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W. & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv:1602.07360. Imamura, S., Zin, T.T., Kobayashi, I. & Horii, Y. (2017). Automatic evaluation of cow’s bodycondition-score using 3D camera. 2017 IEEE 6th Global Conference on Consumer Electronics. pp. 1–2. https://doi.org/10.1109/GCCE.2017.8229435. Li, J., Sun, P., Qin, C., Li, F.-d. & Wen, J. (2013). Research advance of body condition score in the management of feeding the dairy cows (in Chinese). China Anim. Husb. Vet. Med. 40, 115–119. https://doi.org/10.3969/j.issn.1671-7236.2013.10.025. Li, X., Hu, Z., Huang, X., Feng, T., Yang, X. & Li, M. (2019). Cow body condition score estimation with convolutional neural networks. 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC). pp. 433–437. https://doi.org/10.1109/ icivc47709.2019.8981055. Liu, Y. & Qin, J. (2021). Research and application of dairy cow's body condition score based on attention mechanism. 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). pp. 600–606. https://doi.org/10.1109/ icccbda51879.2021.9442608. Maimon, O. & Rokach, L. (2010). Data Mining and Knowledge Discovery Handbook. 2nd ed. Springer Publishing Company, Incorporated. Moradian, M. & Sepehrifar, M. K. (2009), Improving the accuracy of the KNN algorithm in data mining using dependency rules. 15th Annual International Conference of the Iranian Computer Association. Tehran, https://civilica.com/doc/78938. (In Persian). Neary Micheil & Ann Yager. (2002). Body Condition Scoring in Farm Animals. Purdue University, Department of Animal Sciences, pp. 1-8. Nguyen, T. T., Van den Berg, J., van Mourik, S., & Hogeveen, H. (2018). Automatic body condition scoring in dairy cows using deep learning. Computers and Electronics in Agriculture. 153, 346–356. https://doi.org/10.1016/j.compag.2018.08.046. Paul, A., Mondal, S., Kumar, S., Kumari, T. (2020). Body condition scoring in dairy cows - a conceptual and systematic review. Ind. J. Anim. Res. 54 (8), 929–935. https://doi.org/ 10.18805/ijar.B-3859. Qiao, Y., Guo, Y. & He, D. (2023). Cattle body detection based on YOLOv5-ASFF for precision livestock farming. Comput. Electron. Agric. 204, 107579. https://doi.org/10.1016/j. compag.2022.107579. Qiao, Y., Kong, H., Clark, C., Lomax, S., Su, D., Eiffert, S. & Sukkarieh, S. (2021). Intelligent perception for cattle monitoring: a review for cattle identification, body condition score evaluation, and weight estimation. Comput. Electron. Agric. 185, 106143. https://doi. org/10.1016/j.compag.2021.106143. Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. (2016). You only look once: unified, realtime object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 779–788. https://doi.org/10.1109/cvpr.2016.91. Ren, S. Q., He, K. M., Girshick, R. & Sun, J. (2017). Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39 (6), 1137–1149. https://doi.org/10.1109/Tpami.2016.2577031. Roii, S., Yael, E., Yisrael, P. & Ilan, H. (2016). Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. J. Dairy Sci. 99 (9), 7714–7725. https://doi.org/10.3168/jds.2015-10607. Shafiei, Sh. & Nakhaei, N. (2018), A technique to improve the speed and accuracy of the KNN classifier algorithm. Journal of Science and Engineering Elites. Vol. 3(5). 134-142. (In Persian). Shi, W.; Dai, B.; Shen, W.; Sun, Y.; Zhao, K. & Zhang, Y. (2023). Automatic estimation of dairy cow body condition score based on attention-guided 3D point cloud feature extraction. Comput. Electron. Agric. 206, 107666. Shigeta, M., Ike, R., Takemura, H. & Ohwada, H. (2018). Automatic measurement and determination of body condition score of cows based on 3D images using CNN. J. Rob. Mechatronics. 30 (2), 206–213. https://doi.org/10.20965/jrm.2018.p0206. Simonyan, K. & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556. Sokolova, M. & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45 (4), 427–437. Song, X., Bokkers, E. A. M., van Mourik, S., Groot Koerkamp, P. W. G. & vander Tol, P. P. J. (2019). Automated body condition scoring of dairy cows using 3-dimensional feature extraction from multiple body regions. J. Dairy Sci. 102 (5), 4294–4308. https://doi.org/10. 3168/jds.2018-15238. Tian, Y., Li, L., & Zhang, H. (2020). Automatic recognition of back posture in dairy cows for lameness detection using deep learning. Computers and Electronics in Agriculture. 177, 105708. https://doi.org/10.1016/j.compag.2020.105708. Wang, Y., Zhang, R., Liu, Y., & Fu, Z. (2020). Automatic estimation of dairy cow body condition score using back posture extraction with deep learning. Biosystems Engineering. 195, 186–198. https://doi.org/10.1016/j.biosystemseng.2020.04.015. Wu, Y., Li, Y., Zhao, Y., Yang, P., Li, Z. & Guo, H. (2021). Review of research on body condition score for dairy cows based on computer vision (in Chinese). Nongye Jixie Xuebao/ Trans. Chin. Soc. Agric. Mach. 52, 268–275. https://doi.org/10.6041/j.issn.1000-1298. 2021.S0.033. Yukun, S., Pengju, H., Yujie, W., Ziqi, C., Yang, L., Baisheng, D., Runze, L. & Yonggen, Z. (2019). Automatic monitoring system for individual dairy cows based on a deep learning framework that provides identification via body parts and estimation of body condition score. J. Dairy Sci. 102, 10140–10151. Zhao, K., Liu, X. & Ji, J. (2021). Automatic body condition scoring method for dairy cows based on EfficientNet and convex Hull feature of point cloud (in Chinese). Trans. Chin. Soc. Agric. Mach. 52, 192–201 +173. https://doi.org/10.6041/j.issn.1000- 1298.2021.05.021. Zhao, K., Zhang, M., Shen, W., Liu, X., Ji, J., Dai, B. & Zhang, R. (2023). Automatic body condition scoring for dairy cows based on efficient net and convex hull features of point clouds. Comput. Electron. Agric. 205, 107588. Zin, T. T., Seint, P. T., Tin, P., Horii, Y. & Kobayashi, I. (2020). Body condition score estimation based on regression analysis using a 3D camera. Sensors. 20 (13). https://doi.org/10. 3390/s20133705. | ||
آمار تعداد مشاهده مقاله: 25 تعداد دریافت فایل اصل مقاله: 24 |