
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,881,400 |
تعداد دریافت فایل اصل مقاله | 107,242,690 |
تحلیل رابطه شاخصهای تنوع عملکردی با معیارهای ارزیابی سلامت مرتع | ||
نشریه علمی - پژوهشی مرتع و آبخیزداری | ||
دوره 78، شماره 3، مهر 1404، صفحه 415-431 اصل مقاله (1.43 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jrwm.2025.392850.1818 | ||
نویسندگان | ||
زهرا حیدری قهفرخی* 1؛ پژمان طهماسبی2؛ علیاصغر نقی پور2 | ||
1گروه مهندسی طبیعت دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران | ||
2گروه مهندسی طبیعت، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهر شهرکرد، کشور ایران | ||
چکیده | ||
ارزیابی سلامت مراتع به دلیل تأثیر آن بر پایداری اکوسیستمها، از اهمیت بالایی برخوردار است. این پژوهش به بررسی ارتباط بین معیارهای ارزیابی سلامت مرتع و شاخصهای تنوع عملکردی در بخشی از مراتع منطقه حفاظتشده سبزکوه (استان چهارمحال و بختیاری) پرداخته است. برای این منظور، چهار مکان مرتعی با شدت چرای متفاوت (مرجع، چرای سبک، متوسط و سنگین) انتخاب شد. در هر مکان، دو منطقه معرف با سه ماکروپلات ۳۰×۳۰ مترمربعی نمونهبرداری شد. ویژگیهای عملکردی گیاهی از جمله ارتفاع گیاه، صفات مختلف برگ، میانگین قطر تاج و فرم رویشی اندازهگیری شدند. شاخصهای تنوع عملکرد شامل غنا، یکنواختی، پراکندگی عملکرد، آنتروپی رائو و میانگین وزنی صفات با استفاده از بسته آماری FD در نرمافزار R4.4.2 محاسبه شد. همچنین، سه معیار ارزیابی سلامت مرتع شامل پایداری خاک و رویشگاه، عملکرد هیدرولوژیک و سلامت موجودات زنده بررسی شدند. دادهها با آزمون ANOVA، همبستگی و رگرسیون تک متغیره به ترتیب با استفاده از تابع aov و duncan.test و بستههای آماری ggcorrplot، dplyr، reshape2، ggpubr و ggpmisc برای 21 جفت داده تحلیل گردید. نتایج نشان داد که پایداری خاک و رویشگاه، عملکرد هیدرولوژیک و سلامت موجودات زنده ارتباط مثبت معنیداری با برخی ویژگیهای عملکردی مانند وزن خشک برگ (R2= 0.6)، سطح برگ (R2= 0.5)، طول برگ (R2= 0.5)، فرم رویشی پهنبرگ چندساله (R2= 0.3) و گندمی چندساله (R2= 0.5) نشان دادند، درحالیکه با برخی دیگر مانند واگرایی عملکرد (R2= 0.5)، پراکندگی عملکرد (P < 0.05)، قطر تاج (P < 0.05)، فرم رویشی گندمی یکساله (P < 0.05) و بوتهای (R2= 0.5) رابطه منفی داشتند. این یافتهها بر اهمیت استفاده از شاخصهای کمی تنوع زیستی در کنار ارزیابیهای کیفی برای بهبود مدیریت مراتع و استخراج یک پروتکل ارزیابی کمی تأکید میکند. | ||
کلیدواژهها | ||
تنوع زیستی؛ وضعیت مرتع؛ عملکرد هیدرولوژیک؛ چرای دام؛ منطقه حفاظتشده سبزکوه | ||
عنوان مقاله [English] | ||
Analysis of the Relationship Between Functional Diversity Indices and Evaluation Criteria of Rangeland Health | ||
نویسندگان [English] | ||
Zahra Heidari1؛ Pejman Tahmasebi2؛ Ali Asghar Naghipour2 | ||
1Department of Nature Engineering, Faculty of Natural Resources and Earth Science, Shahrekord University, Shahrekord, Iran | ||
2Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, University of Shahrekord, Shahrekord, Iran | ||
چکیده [English] | ||
Assessing rangeland health is of great importance due to its impact on ecosystem sustainability. This study investigated the relationship between evaluation criteria of rangeland health and functional diversity indices in part of the Sabzkouh Protected Area (Chaharmahal Va Bakhtiari Province, Iran). For this purpose, four rangeland sites with different grazing intensities (reference, light, moderate, and heavy grazing) were selected. In each site, two representative areas were sampled using three 30×30 meter macroplots. Plant functional traits, including plant height, various leaf traits, mean crown diameter, and growth form, were measured. Functional diversity indices, including Functional Richness, Functional Evenness, Functional Dispersion, Rao’s Quadratic entropy and growth forms, were calculated using the FD package in R 4.4.2. Additionally, three evaluation criteria of rangeland health, including soil/site stability, hydrologic functions, and biotic integrity, were evaluated. The data were analyzed using ANOVA, correlation, and univariate regression tests, employing the aov and duncan.test functions and the R packages ggcorrplot, dplyr, reshape2, ggpubr, and ggpmisc for 21 data pairs. Results revealed that soil/site stability, hydrologic function, and biotic integrity had significant positive relationships with certain functional traits such as leaf dry weight (R² = 0.6), leaf area (R² = 0.5), leaf length (R² = 0.5), perennial forb (R² = 0.3), and perennial grass (R² = 0.5). Conversely, negative correlations were observed with other indices including functional divergence (R² = 0.5), functional dispersion (P < 0.05), mean crown diameter (P < 0.05), annual grass (P < 0.05), and shrub (R² = 0.5). These findings emphasize the importance of incorporating quantitative biodiversity indices alongside qualitative assessments to improve rangeland management and develop a quantitative evaluation protocol. | ||
کلیدواژهها [English] | ||
Biodiversity, Rangeland condition, Hydrologic function, Livestock grazing, Sabzkouh Protected Area | ||
مراجع | ||
Adams, B.W., Ehlert, G., Stone, C., Alexander, M., Lawrence, D., Willoughby, M., & Miller, A.J., (2016). Rangeland health assessment for grassland, forest and tame pasture: field workbook. Azimi, R., Heshmati, G.A., Kianian, M.K., Hossein Jafari, S., & Zakeri, D., (2018). Role of plant species and ecological patches in conserving and fixing natural landsʹ soil using landscape functional analysis (LFA)(Case study: Dehbar rangeland, Torghabeh, Mashhad, Iran). Journal of Rangeland Science, 8(2), 166-175. Balvanera, P., Pfisterer, A.B., Buchmann, N., He, J.S., Nakashizuka, T., Raffaelli, D., & Schmid, B., (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9(10), 1146-1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x Bihamta, M.R., & Zare Chahouki, M.A., (2008). Principles of statistics for the natural resources science. University of Tehran Press, First Edition. (In Persian) Bradford, J., Duniway, M., & Munson, S. 2019. Assessing rangeland health under climate variability and change. In D. J. Gibson and J. A. Newman (Eds.), Grasslands and Climate Change (pp. 293-309). Cambridge University Press. https://doi.org/10.1017/9781108163941.019 Brauman, K.A., Daily, G.C., Duarte, T.K., & Mooney, H.A., (2007). The nature and value of ecosystem services: an overview highlighting hydrologic services. Annual Review of Environment and Resources, 32, 67-98. https://doi.org/10.1146/annurev.energy.32.031306.102758 Briske, D.D., & Coppock, D.L., (2023). Rangeland stewardship envisioned through a planetary lens. Trends in Ecology & Evolution, 38(2), 109-112. https://doi.org/10.1016/j.tree.2022.09.012 Briske, D.D., Vetter, S., Coetsee, C., & Turner, M.D., (2024). Rangeland afforestation is not a natural climate solution. Frontiers in Ecology and the Environment, 22(5), e2727. https://doi.org/10.1002/fee.2727 Conti, G., & Díaz, S., (2013). Plant functional diversity and carbon storage–an empirical test in semi‐arid forest ecosystems. Journal of Ecology, 101(1), 18-28. https://doi.org/10.1111/1365-2745.12012 Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E., . . . & Poorter, H., (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4), 335-380. https://doi.org/10.1071/BT02124 DeMaere, C.G. (2019). The Relationship of Plant Diversity to Alberta's Range Health Assessment [Master’s thesis, University of Alberta]. Díaz, S., Fargione, J., Chapin III, F.S., & Tilman, D., (2006). Biodiversity loss threatens human well-being. PLoS biology, 4(8), e277. https://doi.org/10.1371/journal.pbio.0040277 Esler, K., & Rebelo, A., (2014). Quantifying Functional Biodiversity. African Journal of Range & Forage Science, 31, 235-236. https://doi.org/10.2989/10220119.2014.933877 Faal Feizabadi, M. (2021). Ecosystem multifunctionality related to species diversity, Functional diversity and functional redundancy along the gradient of productivity in semi-arid ecosystems [Doctoral dissertation, Shahrekord University]. Iran. (In Persian) Faal Feizabadi, M., Tahmasebi, P., Broujeni, E.A., Ebrahimi, A., & Omidipour, R., (2021). Functional diversity, functional composition and functional β diversity drive aboveground biomass across different bioclimatic rangelands. Basic and Applied Ecology, 52, 68-81. https://doi.org/10.1016/j.baae.2021.01.007 Fensham, R.J., & Fairfax, R.J., (2008). Water-remoteness for grazing relief in Australian arid-lands. Biological Conservation, 141(6), 1447-1460. https://doi.org/10.1016/j.biocon.2008.03.016 Garnier, E., Cortez, J., Billès, G., Navas, M.L., Roumet, C., Debussche, M., . . . & Bellmann, A., (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85(9), 2630-2637. https://doi.org/10.1890/03-0799 Goswami, M., Bhattacharyya, P., Mukherjee, I., & Tribedi, P., (2017). Functional diversity: an important measure of ecosystem functioning. Advances in Microbiology, 7(01), 82-93. https://doi.org/10.4236/aim.2017.71007 Gyssels, G., Poesen, J., Bochet, E., & Li, Y., (2005). Impact of plant roots on the resistance of soils to erosion by water: a review. Progress in physical geography, 29(2), 189-217. https://doi.org/10.1191/0309133305pp443ra Jalilian, F. (2019). Assessing rangeland health condition using ecological sustainability indicators in the rangelands of Kiasar, Mazandaran province [Master’s thesis, Gonbad Kavous University]. (In Persian) Kattge, J., Boenisch, G., Diaz, S., Lavorel, S., Prentice, I.C., Leadley, P., . . . Acosta, A.T., (2020). TRY plant trait database - enhanced coverage and open access. Global Change Biology, 26(1), 119-188. https://doi.org/10.1111/gcb.14904 Laliberté, E., & Legendre, P., (2010). A distance‐based framework for measuring functional diversity from multiple traits. Ecology, 91(1), 299-305. https://doi.org/10.1890/08-2244.1 Lamas, M.I.B., Carrera, A.L., & Bertiller, M.B., (2021). Sheep grazing differentially affects the canopy attributes and functional diversity of shrubs and perennial grasses in arid rangelands. Plant Ecology, 222(1), 13-27. https://doi.org/10.1007/s11258-020-01084- Leps, J., de Bello, F., Lavorel, S., & Berman, S., (2006). Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia, 78(4), 481-501. Lindemann-Matthies, P., Junge, X., & Matthies, D., (2010). The influence of plant diversity on people’s perception and aesthetic appreciation of grassland vegetation. Biological Conservation, 143(1), 195-202. https://doi.org/10.1016/j.biocon.2009.10.003 Magurran, A.E., (2003). Measuring biological diversity. Wiley Blackwell. Mahdavi, M., Arzani, H., & Jouri, M.H., (2009). Analysis of rangeland condition's changes using of qualitative method of rangeland health (case study: steppic rangeland of Roudshour) [Research]. Journal of Rangeland, 3(3), 385-397. https://www.sid.ir/paper/136408/en (In Persian) Mason, N.W.H., MacGillivray, K., Steel, J.B., & Wilson, J.B., (2003). An index of functional diversity. Journal of Vegetation Science, 14(4), 571-578. https://doi.org/10.1111/j.1654-1103.2003.tb02184.x Mason, N.W.H., Mouillot, D., Lee, W.G., & Wilson, J.B., (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111(1), 112-118. https://doi.org/10.1111/j.0030-1299.2005.13886.x Molaeinasab, A., Bashari, H., Mosaddeghi, M.R., & Tarkesh Esfahani, M., (2021). Effects of Different Vegetation Patches on Soil Functionality in the Central Iranian Arid Zone. Journal of Soil Science and Plant Nutrition, 21(2), 1112-1124. https://doi.org/10.1007/s42729-021-00426-y Motamedi, J., Karkaj, E.S., & Alilou, F., (2016). Variation in biomass and morphology of Artemisia fragrans Willd. Under grazing in northwest mountainous rangelands of Iran. Acta Ecologica Sinica, 36(6), 477-482. https://doi.org/10.1016/j.chnaes.2016.07.004 Mouillot, D., Villéger, S., Scherer-Lorenzen, M., & Mason, N.W.H., (2011). Functional structure of biological communities predicts ecosystem multifunctionality. PloS one, 6(3), e17476. https://doi.org/10.1371/journal.pone.0017476 Naeem, S., Bunker, D.E., Hector, A., Loreau, M., & Perrings, C., (2009). Biodiversity, ecosystem functioning, and human wellbeing: an ecological and economic perspective. Oxford University Press. National Research Council, (1994). Rangeland health: new methods to classify, inventory, and monitor rangelands. National Academies Press, Washington, D.C. Ohlert, T., Kimmel, K., Avolio, M., Chang, C., Forrestel, E., Gerstner, B.P., . . . & Komatsu, K., (2024). The impact of trait number and correlation on functional diversity metrics in real-world ecosystems. PloS one, 19(9), e0306342. https://doi.org/10.1371/journal.pone.0306342 Omidipour, R. (2019). Stability of rangeland ecosystems in response to plant functional diversity along a gradient of productivity in arid and semi-arid regions [Doctoral dissertation, Shahrekord University]. Iran. (In Persian) Pellant, M., Shaver, P.L., Pyke, D.A., Herrick, J.E., Lepak, N., Riegel, G., . . . & Busby, F.E., (2020). Interpreting Indicators of Rangeland Health, Version 5: Bureau of Land Management Technical Reference 1734-6 (M. Bureau of Land, Ed.) [Report]. U.S. Department of the Interior, Bureau of Land Management, National Operations Center, Denver, CO. http://pubs.er.usgs.gov/publication/70215720 Pellant, M.L., (2005). Interpreting Indicators of Rangeland Health: Version 4. US Department of the Interior, Bureau of Land Management, National Science and Technology Center, Division of Science Integration, Branch of Publishing Services. Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., . . . & Gurvich, D.E., (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167-234. https://doi.org/10.1071/BT12225 Pla, L., Casanoves, F., & Di Rienzo, J., (2011). Quantifying functional biodiversity. Springer Science & Business Media. Pohl, M., Alig, D., Körner, C., & Rixen, C., (2009). Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant Soil, 324, 91-102. https://doi.org/10.1007/s11104-009-9906-3 Pyke, D.A. (2002). Assessing rangelands (2327-6932). U. S. G. Survey. Pyke, D.A., Herrick, J.E., Shaver, P., & Pellant, M., (2002). Rangeland health attributes and indicators for qualitative assessment. Journal of Range Management, 55(6), 584-597. https://doi.org/10.2307/4004002 Pyšek, P., Jarošík, V., Hulme, P.E., Pergl, J., Hejda, M., Schaffner, U., & Vilà, M., (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment. Global Change Biology, 18(5), 1725-1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x Quijas, S., Schmid, B., & Balvanera, P., (2010). Plant diversity enhances provision of ecosystem services: A new synthesis. Basic and Applied Ecology, 11(7), 582-593. https://doi.org/10.1016/j.baae.2010.06.009 Rao, C.R., (1982). Diversity and dissimilarity coefficients: a unified approach. Theoretical population biology, 21(1), 24-43. https://doi.org/10.1016/0040-5809(82)90004-1 Schnitzler, A., Hale, B.W., & Alsum, E.M., (2007). Examining native and exotic species diversity in European riparian forests. Biological Conservation, 138(1), 146-156. https://doi.org/10.1016/j.biocon.2007.04.010 Schwartz, M., Brigham, C., Hoeksema, J., Lyons, K., Mills, M., & Van Mantgem, P., (2000). Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia, 122, 297-305. https://doi.org/10.1007/s004420050035 Smith, E.L., Johnson, P.S., Ruyle, G., Smeins, F., Loper, D., Whetsell, D., . . . Haley, J., (1995). New concepts for assessment of rangeland condition. Rangeland Ecology & Management/Journal of Range Management Archives, 48(3), 271-282. Soltani, S., Yaghmaei, L., Khodagholi, M., & Saboohi, R., (2011). Bioclimatic Classification of Chahar-Mahal & Bakhtiari Province Using Multivariate Statistical Methods [Research]. Journal of Water and Soil Science, 14(54), 53-68. http://jstnar.iut.ac.ir/article-1-1451-en.html (In Persian) Song, Y., Wang, P., & Zhou, D., (2011). Methods of measuring plant community functional diversity. Chinese Journal of Ecology, 30(9), 2053-2059. Tahmasebi, P., Moradi, M., & Omidipour, R., (2017). Plant functional identity as the predictor of carbon storage in semi-arid ecosystems. Plant Ecology & Diversity, 10(2-3), 139-151. https://doi.org/10.1080/17550874.2017.1355414 Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E., (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277(5330), 1300-1302. https://doi.org/10.1126/science.277.5330.1300 Van der Walt, L. (2013). Landscape functionality and plant diversity of grassland fragments along an urban–rural gradient in the Tlokwe Municipal area, South Africa North-West University]. Villéger, S., Mason, N.W.H., & Mouillot, D., (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8), 2290-2301. https://doi.org/10.1890/07-1206.1 Wilcox, B.P., Turnbull, L., Young, M.H., Williams, C.J., Ravi, S., Seyfried, M.S., ... & Caldwell, T.G., (2012). Invasion of shrublands by exotic grasses: ecohydrological consequences in cold versus warm deserts. Ecohydrology, 5(2), 160-173. https://doi.org/10.1002/eco.247 Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E., Folke, C., Halpern, B.S., . . . & Palumbi, S.R., (2006). Impacts of biodiversity loss on ocean ecosystem services. Science, 314(5800), 787-790. https://doi.org/10.1126/science.1132294 Xiao, F., Ouyang, H., Zhang, Q., Fu, B., & Zhang, Z., (2004). Forest ecosystem health assessment and analysis in China. Journal of Geographical Sciences, 14(1), 18-24. https://doi.org/10.1007/BF02873086 Zhang, J.T., Fan, L., & Li, M., (2012). Functional diversity in plant communities: theory and analysis methods. African Journal of Biotechnology, 11(5), 1014-1022. https://doi.org/10.5897/AJB11.3122 Zhao, W.Y., Li, J.L., & Qi, J.G., (2007). Changes in vegetation diversity and structure in response to heavy grazing pressure in the northern Tianshan Mountains, China. Journal of Arid Environments, 68(3), 465-479. https://doi.org/10.1016/j.jaridenv.2006.06.007 | ||
آمار تعداد مشاهده مقاله: 25 تعداد دریافت فایل اصل مقاله: 21 |