
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,881,402 |
تعداد دریافت فایل اصل مقاله | 107,242,692 |
Modular and Extensible Framework for Real-Time Social Media Ana-lytics: Modeling Functional Requirements | ||
Journal of Information Technology Management | ||
دوره 17، شماره 3، 2025، صفحه 197-216 اصل مقاله (1.11 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jitm.2025.104046 | ||
نویسندگان | ||
Fairouz Zendaoui* ؛ Walid Khaled Hidouci | ||
Laboratoire de la Communication dans les Systèmes Informatiques, Ecole Nationale Supérieure d’Informatique, BP 68M, 16309, Oued-Smar, Alger, Algérie. | ||
چکیده | ||
Social media platforms have become essential sources for studying social, political, and cultural dy-namics. However, current solutions remain fragmented, domain-specific, and often inaccessible to non-experts. This paper introduces an innovative, generic, and extensible conceptual model to bridge this gap. Unlike existing approaches, our framework offers a unified architecture integrating real-time data collection, structured storage, multilingual processing, search, and semantic analysis (in-cluding sentiment analysis and beliefs) within a modular system. It ensures adaptability to the di-verse needs of researchers and professionals. This model stands out through its unified workflow (collection, analysis, and visualization), turnkey interface for non-experts, and extended semantic capa-bilities. We identify critical functional requirements through a comprehensive review of existing tools, highlighting their limitations. We then model a system of independent yet interoperable mod-ules: real-time stream management, filtering, automatic classification (sentiment, topics), and exten-sion mechanisms. While conceptual, this model lays the foundation for practical implementation, illustrated by use cases that show its relevance in research and industry. Designed to meet research-ers' needs, it opens promising avenues for analyzing public opinion and digital behaviors in social media studies. | ||
کلیدواژهها | ||
Social Media Data؛ Real-Time Data Processing؛ Generic Conceptual Model؛ Modular Architecture؛ Semantic Analysis | ||
مراجع | ||
Aïmeur, E., Amri, S., & Brassard, G. (2023). Fake news, disinformation and misinformation in social media: a review. Social Network Analysis and Mining, 13(1), 30.
Bacha, J., Ullah, F., Khan, J., Sardar, A. W., & Lee, S. (2023). A deep learning-based framework for offensive text detection in unstructured data for heterogeneous social media. IEEE Access, 11, 124484-124498.
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Proceedings of the International AAAI Conference on Web and Social Media, 3(1), 361-362. https://doi.org/10.1609/icwsm.v3i1.13937.
Bhandari, N., Navalakhe, R. and Prajapati, G. (2023). Social Media Toxic Content Filtering System using SOIR Model. Journal of Information Technology Management, 15(Special Issue: Digital Twin Enabled Neural Networks Architecture Management for Sustainable Computing), 78-94. doi: 10.22059/jitm.2023.91569.
Brandwatch by Cision. (2024). Social Media Analytics & Consumer Intelligence. https://www.brandwatch.com/.
Camacho, D., Panizo-LLedot, A., Bello-Orgaz, G., Gonzalez-Pardo, A., & Cambria, E. (2020). The four dimensions of social network analysis: An overview of research methods, applications, and software tools. Information Fusion, 63, 88-120.
Gephi.org. (2023). Gephi – The Open Graph Viz Platform (Version 0.10.1). https://gephi.org/.
Joshi, P. (2023). Exploring the Social Dynamics of Health Information Sharing on Social Media: The Influence of Beliefs and Source Information.
Khan, M. A., & AlGhamdi, M. (2024). A customized deep learning-based framework for classification and analysis of social media posts to enhance the Hajj and Umrah services. Expert Systems with Applications, 238, 122204.
Lin, B. Y., Xu, F. F., Zhu, K., & Hwang, S. W. (2018, July). Mining cross-cultural differences and similarities in social media. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 709-719).
Mariani, M. M., Machado, I., & Nambisan, S. (2022). Types of innovation and artificial intelligence: A systematic quantitative literature review and research agenda. Journal of Business Research, 155(Part A), 113364.
Mussina, A. B., Aubakirov, S. S., & Trigo, P. (2020, November). An Architecture for Real-Time Massive Data Extraction from Social Media. In International Conference on Mathematical Modeling and Supercomputer Technologies (pp. 138-145). Cham: Springer International Publishing.
Nugroho, D., & Angela, P. (2024). The impact of social media analytics on SME strategic decision making. IAIC Transactions on Sustainable Digital Innovation (ITSDI), 5(2), 169-178.
Rodríguez-Ibánez, M., Casánez-Ventura, A., Castejón-Mateos, F., & Cuenca-Jiménez, P. M. (2023). A review on sentiment analysis from social media platforms. Expert Systems with Applications, 223, 119862.
Rouhani, S., & Abedin, E. (2020). Crypto-currencies narrated on tweets: a sentiment analysis approach. International Journal of Ethics and Systems, 36(1), 58-72.
Singh, J., Pandey, D., & Singh, A. K. (2024). Event detection from real-time twitter streaming data using community detection algorithm. Multimedia Tools and Applications, 83(8), 23437-23464.
Smith, M., Rainie, L., Shneiderman, B., & Himelboim, I. (2014). Mapping Twitter topic networks: From polarized crowds to community clusters. Pew Research Center.
Social Media Research Foundation. (2024). NodeXL Pro: Network Overview, Discovery and Exploration for Excel. https://www.smrfoundation.org/nodexl/.
Wahid, J. A., Shi, L., Gao, Y., Yang, B., Wei, L., Tao, Y., ... & Yagoub, I. (2022). Topic2Labels: A framework to annotate and classify the social media data through LDA topics and deep learning models for crisis response. Expert Systems with Applications, 195, 116562.
Xue, Z., Li, Q., & Zeng, X. (2023). Social media user behavior analysis applied to the fashion and apparel industry in the big data era. Journal of Retailing and Consumer Services, 72, 103299.
Zendaoui, F., Hidouci, W. K., & Rouhani, S. (2022). Uncertainty identification in microblogs. Journal of Optimization in Industrial Engineering, 15(1), 301-309.
Zendaoui, F., Hidouci, W.K. (2024). Considering Uncertainty Expression in Sentiment Analysis and Tweet Classification. In: Shaikh, A., Alghamdi, A., Tan, Q., El Emary, I.M.M. (eds) Advances in Emerging Information and Communication Technology. ICIEICT 2023. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-53237-5_17.
Zulfakhairi Mokthar, M., Wan Abu Bakar, W. H. R., Shabri, S. and Radzuan, F. A. (2025). The Influence of Social Media on Public Health Protection against the COVID-19 Pandemic through Public Health Awareness and Changes in Behavior: An Integrated Model. Journal of Information Technology Management, 17(1), 86-98. doi: 10.22059/jitm.2025.99925. | ||
آمار تعداد مشاهده مقاله: 18 تعداد دریافت فایل اصل مقاله: 16 |