ABSTRACT
Desertification is one of the most significant land degradation processes in arid and semi-arid regions, driven by both natural and anthropogenic factors. This study aims to assess desertification trends and environmental changes in the Mand basin using remote sensing techniques and spatiotemporal analyses over three time periods as 2000, 2013, and 2023. Satellite-derived vegetation indices, including NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), SAVI (Soil Adjusted Vegetation Index), LAI (Leaf Area Index), VCI (Vegetation Condition Index), LST (Land Surface Temperature), and albedo, were employed to monitor ecological shifts. LAI and SAVI also demonstrated decreasing tendencies, reflecting vegetation loss and soil exposure. In contrast, the EVI slightly increased during the same period, possibly due to changes in land management practices or vegetation types. Albedo values revealed a fluctuating but meaningful trend; in 2000 (mean = 0.2378, SD = 0.0461), in 2013 (mean = 0.2343, SD = 0.0647), and in 2023 (mean = 0.2271, SD = 0.0389). Despite a temporary increase in 2013 (up to 0.4345), the overall decrease in albedo suggests progressive soil degradation and expansion of bare surfaces, reinforcing the desertification process. Regional analysis revealed that central and southern parts of the basin experienced the most severe degradation, with increasing bare soil surfaces and declining vegetation cover. Based on albedo thresholds, the basin was classified into three desertification risk zones: low risk (20%); albedo > 0.4, moderate risk (50%); albedo 0.2–0.4, and high risk (30%); albedo<0.2. Statistical correlation analysis confirmed a strong positive relationship between NDVI and LAI (r=0.85, p < 0.01), while a robust negative correlation between albedo and vegetation indices supported the hypothesis of ongoing desertification. Findings highlight the need for sustainable land management policies, vegetation restoration programs, and continuous monitoring using remote sensing technologies to mitigate further desertification and ensure long-term ecological stability.
Extended Abstract
Introduction
Desertification is one of the most important land degradation processes in arid and semi-arid regions of the world, which occurs under the influence of natural and human factors. This phenomenon means the reduction or loss of the biological capacity of soil and vegetation, which can lead to significant changes in ecosystem functioning, a decrease in biodiversity, and an increase in environmental poverty. Desertification has significant impacts on natural resources, water security, soil health, and ecosystem resilience. Driven by land mismanagement, human activities, climate change, and frequent droughts, desertification accelerates ecosystem degradation. Advanced remote sensing technologies offer powerful tools for continuous environmental monitoring, enabling a thorough understanding of desertification processes. Soil indices such as albedo, LAI, and VCI also play an important role in detecting soil surface changes and desertification trends. Zhu et al. (2020) investigated desertification in Minqing County, northeast China, using Landsat images from 1978 to 2017 and the EVI index. The results of this study showed that vegetation cover and greenness increased over 31 years. Although several studies on desertification have been conducted using remote sensing technologies, there is still a need for comprehensive and area-based assessments in sensitive areas with high land use changes. This study aims to identify the desertification trend in the period 2000-2023 in the Mand basin in southwestern Iran using vegetation indices (NDVI, EVI, SAVI), soil indices (albedo, LAI, VCI). This study, using remote sensing data, multiple environmental indicators, and spatiotemporal analyses, has a special place in the existing literature. The main goal of this research is to accurately assess the desertification process, identify the relationships between the effective variables, and provide the necessary context for sustainable management of vulnerable areas.
Methodology
This research employs a regional and temporal analysis approach based on satellite data for three key periods as 2000, 2013, and 2023. After preprocessing and geometric correction, the images were analyzed using GIS and remote sensing software. Vegetation indices such as NDVI, EVI, and SAVI were employed to evaluate vegetation health, while soil and environmental condition indicators like albedo, LAI, and VCI provided insights into soil dryness and overall ecosystem vitality. Correlation and regression analyses elucidated relationships among these variables across time. Spatial maps were generated to illustrate desertification development and land degradation patterns within the region. In this study, all spatial indices were extracted based on Landsat 5 and 8 satellite data, after loading them into Google Earth Engine (GEE). After loading the images, cloud and noise filtering, cropping based on the study area, and data purification were performed to obtain high-quality and reliable data.
Results and discussion
The results demonstrate that the area has experienced a substantial expansion of degraded and decertified zones, with approximately 35% of the region affected by desertification indicators by 2023. Key vegetation indices have declined significantly, and the correlation analysis confirms the intensification of land degradation over time. Recurring droughts, water resource depletion, and human activities such as overgrazing and improper agricultural practices primarily drive these patterns. The strong relationships between soil and vegetation degradation emphasize the urgency of adopting integrated land management strategies, soil stabilization, reforestation, and water conservation measures to halt and reverse desertification trends. This authoritative and comprehensive study, using multi-attribute analyses and intertemporal data, showed that the study area has been facing a significant trend of vegetation degradation and desertification in recent decades. The continuous decrease in NDVI, EVI, and SAVI indices and the simultaneous increase in albedo index, as desertification indices, confirm the intensification of desertification processes and the degradation of ecological structures and soil. This trend, along with the strong and significant negative relationships between vegetation indices and dryland and desert soil indices, further highlights the importance of continuous monitoring and management interventions.
Conclusion
This study confirms that satellite-based remote sensing provides critical insights into desertification dynamics, offering valuable tools for early detection and policy formulation. The findings highlight the importance of sustained environmental monitoring, community engagement, and policy interventions to combat land degradation. By integrating technological approaches with sustainable land use policies, it is possible to restore ecological balance, enhance resilience to climate variability, and secure natural resources for future generations. The insights gained here contribute meaningfully to regional efforts for desertification control and sustainable environmental stewardship.
Funding
There is no funding support.
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved the content of the manuscript and agreed on all aspects of the work declaration of competing interest none.
Conflict of Interest
Authors declared no conflict of interest.
Acknowledgments
We are grateful to all the scientific consultants of this paper. |
- باعقیده، محمد، علیجانی، بهلول و ضیائیان، پرویز. (1390). بررسی امکان استفاده از شاخص پوشش گیاهی NDVI در تحلیل خشکسالی استان اصفهان. مطالعات جغرافیایی مناطق خشک،4، 16-1.
- حلبیان، امیرحسین و سلطانیان، محمود. (1395). ارزیابی تغییرات بیابانزایی در اصفهان با استفاده از فناوری سنجشازدور و شبکه عصبی مصنوعی. مخاطرات محیط طبیعی، 5(9)، 45-39. https://doi.org/10.22111/jneh.2018.18479.1165
- حیدریعمدارلو، اسماعیل، دهقانرحیمآبادی، پویان، خسروی، حسن، رفیعشریفآباد، جواد، و برآبادی، حسن. (1403). شاخص احتمال آسیبپذیری پوشش گیاهی: روشی جهت تعیین خطر بیابانزایی. سنجشازدور و سامانه اطلاعات جغرافیایی منابع طبیعی، 1(15)، 1-19. https://doi.org/10.30495/girs.2022.692984
- داوری، سرور، راشکی، علیرضا، اکبری، مرتضی، و طالبانفرد، علی اصغر. (1392). بررسی وضعیت پوشش گیاهی بر روند بیابانزایی منطقه بیابانی دشت قاسمآباد بجستان. ششمین همایش سراسری کشاورزی و منابع طبیعی پایدار.
- روستایی، شهرام، مختاری، داود و خدائی قشلاق، فاطمه. (1399). بررسی خطر وقوع بیابانزایی با استفاده از شاخصهای طیفی در محدوده پیرامونی دریاچه ارومیه، پژوهشهای ژئومورفولوژی کمّی، 9(3)، 17-1.https:// doi.org/10.22034/gmpj.2020.122206
- ذاکری نژاد، رضا. (1402). تهیه نقشه میزان فرسایش و رسوب حوضه آبخیز خسویه با استفاده از مدل USPED و سامانه اطلاعات جغرافیایی (GIS) و مقایسه آن با رخسارههای فرسایش آبی. پژوهشهای فرسایش محیطی، 3(13)، 256-239.
- https://dor.isc.ac/dor/20.1001.1.22517812.1402.13.3.12.8
- ذاکری نژاد، رضا و فلاح، سلمان. (1402). ارزیابی خطر فرسایش آبی با استفاده از ترکیب مدل تجدیدنظر شده جهانی فرسایش خاک (RUSLE) و نقشه تراکم آبکندی در حوضه آبخیز علا مرودشت استان فارس. پژوهشهای ژئومورفولوژی کمی، 11 (4)، 209-189. https://doi.org/10.22034/gmpj.2022.360905.1375
- ذاکرینژاد، رضا و معاوی، مهشید. (۱403). بررسی اثرات تغییرات کاربری اراضی در پوشش گیاهی (مطالعه موردی: حوضه میان آب شوشتر در بازه زمانی (2020-2000). مطالعات جغرافیایی مناطق خشک، (55)، ۱4۷-۱3۲.
- https://doi.org/10.22034/jargs.2023.407397.1049
- عیسی زاده، وحید، آسیابی، شکوفه و عیسی زاده, اسماعیل. (1399). بررسی پایش دمای سطح زمین با استفاده تصاویر لندست 8 و الگوریتمهای تک کاناله و پنجره مجزا (منطقه مورد مطالعه: شهرستان دزفول. جغرافیا و روابط انسانی،3(3)، 8-25. https://doi.org/10.22034/gahr.2020.259461.1480
- فیروزی، فاطمه، طاووسی، تقی، و محمودی، پیمان. (1398). بررسی حساسیت دو شاخص پوشش گیاهی NDVI و EVI به خشکسالیها و ترسالیها در مناطق خشک و نیمهخشک؛ مطالعه موردی: دشت سیستان ایران. اطلاعات جغرافیایی، 28(110)، 163-179. https://www.doi.org/10.22131/sepehr.2019.36621
- کریمی، مهشید، شاهدی، کاکا، رضائی، طیب، و میریعقوب زاده، میرحسین. (1398). بررسی کارایی شاخصهای پوشش گیاهی در تحلیل خشکسالی کشاورزی با استفاده از تکنیک سنجشازدور در حوزه آبخیز کرخه. سنجشازدور و GIS ایران، 11(4)، 29-46. https://doi.org/10.52547/gisj.11.4.29
- کیخسروی، قاسم. (1394). بررسی تطبیقی شاخصهای خشکسالی هواشناسی و ماهوارهای در روند بیابانزایی طبقات پوشش گیاهی در فصل بهار. کاوش جغرافیایی مناطق بیابان، 2، 231-189. https://dor.isc.ac/dor/20.1001.1.2345332.1394.3.2.9.1
- مجردی، برات، میرمیری، جواد و علیزاده، حسین. (1399). ارزیابی شاخص وضعیت پوشش گیاهی VCI با استفاده از شاخص بارش استاندارد اصلاحشده MSPI بهمنظور پایش و پهنهبندی خشکسالی. مهندسی و مدیریت آبخیز، 12(3).
- https://doi.org/10.22092/ijwmse.2019.116643.1402
- نادی، محمد، کلانتری، سعیده، خوانینزاده، علیرضا و تازه، مهدی. (1401). ارزیابی وضعیت بیابانزایی شهر طبس بر اساس شاخصهای بیابانزایی تکنوژنیکی با استفاده از تصاویر ماهوارهای، مدیریت اکوسیستمهای طبیعی، 2(2)، 45-34. https://doi.org/10.22034/emj.2022.254751
- هاشم گلوگردی، ساره، ولی، عباسعلی، و شریفی، محمدرضا. (1400). کاربرد مدل فضایی ویژگی آلبدو-TGSI در بررسی وضعیت بیابانی شدن مرکز استان خوزستان. انجمن علمی مدیریت و کنترل مناطق بیابانی ایران، 3، 49-66.
- https://doi.org/10.22034/jdmal.2021.534364.1341
- AbdelRahman, M. A. (2023). An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rendiconti Lincei. Scienze Fisiche e Naturali, 34(3), 767-808. https://doi.org/10.1007/s12210-023-01155-3
- AbdelRahman, M. A. E., Afifi, A. A., & Scopa, A. (2022). A Time Series Investigation to Assess Climate Change and Anthropogenic Impacts on Quantitative Land Degradation in the North Delta, Egypt. ISPRS International Journal of Geo-Information, 11(1), 30. https://doi.org/10.3390/ijgi11010030
- AbdelRahman, M. A., & Arafat, S. M. (2020). An approach of agricultural courses for soil conservation based on crop soil suitability using geomatics. Earth Systems and Environment, 4(1), 273-285. https://doi.org/10.1016/j.ejrs.2016.02.001
- Baqeideh, M., Alijani, B., & Ziaian, P (2011). Evaluating the possibility of using the NDVI index to analyze and monitor droughts in Esfahan Province. Journal of Arid Regions Geographic Studies, 2(4), 1-16. [In Persian]
- Berdyyev, A., Al-Masnay, Y. A., Juliev, M., & Abuduwaili, J. (2024). Desertification Monitoring Using Machine Learning Techniques with Multiple Indicators Derived from Sentinel-2 in Turkmenistan. Remote Sensing, 16(23), 4525. https://doi.org/10.3390/rs16234525
- Bezerra, F. G. S., Aguiar, A. P. D. D., Alvalá, R. C. D. S., Giarolla, A., Bezerra, K. R. A., Lima, P. V. P. S., ... & Arai, E. (2020). Analysis of areas undergoing desertification, using EVI2 multi-temporal data based on MODIS imagery as indicator. Ecological Indicators, 117, 106579. https://doi.org/10.1016/j.ecolind.2020.106579
- Davari, S., Rashki, A., Akbari, M., & Talebanfard, A. A. (2013). Assessment of vegetation cover status on desertification trends in the Qasemabad Desert region, Bajestan. The 6th National Conference on Sustainable Agriculture and Natural Resources. [In Persian]
- Eskandari Dameneh, H., Gholami, H., Telfer, M. W., Comino, J. R., Collins, A. L., & Jansen, J. D. (2021). Desertification of Iran in the early twenty-first century: assessment using climate and vegetation indices. Scientific Reports, 11(1), 20548.. https://doi.org/10.1038/s41598-021-99636-8
- Feng, K., Wang, T., Liu, S., Kang, W., Chen, X., Guo, Z., & Zhi, Y. (2022). Monitoring desertification using machine-learning techniques with multiple indicators derived from MODIS images in Mu Us Sandy Land, China. Remote Sensing, 14(11), 2663. https://doi.org/10.3390/rs14112663
- Firouzi, F., Tavosi, T. & Mahmoudi, P. (2019). Investigating the sensitivity of NDVI and EVI vegetation indices to dry and wet years in arid and semi-arid regions (Case study: Sistan plain, Iran). Scientific- Research Quarterly of Geographical Data (SEPEHR), 28(110), 163-179. [In Persian]
- Guo, B., Zhang, R., Lu, M., Xu, M., Liu, P., & Wang, L. (2024). A New Large-Scale Monitoring Index of Desertification Based on Kernel Normalized Difference Vegetation Index and Feature Space Model. Remote Sensing, 16(10), 1771. https://doi.org/10.3390/rs16101771.
- Halabian, A. H., & Soltanian, M. (2016). Assessment of the Isfahan desertification changes using remote sensing and artificial neural network. Journal of Natural Environmental Hazards, 5(9), 39-54. [In Persian]
- Hashem Geloogerdi, S., Vali, A. & Sharifi, M. R. (2021). Application of TGSI - Albedo feature space model in assessing of desertification status in the center of Khuzestan province. Desert Management, 9(3), 49-66. [In Persian]
- Heydari-Omdarloo, E., Dehghan-Rahimabadi, P., Khosravi, H., Rafie-Sharifabad, J., & Barabadi, H. (2024). Vegetation vulnerability probability index: A method for determining desertification risk. Remote Sensing and Geographic Information System of Natural Resources, 1(15), 1–19. [In Persian]
- Higginbottom, T. P., & Symeonakis, E. (2014). Assessing land degradation and desertification using vegetation index data: Current frameworks and future directions. Remote Sensing, 6(10), 9552-9575. https://doi.org/10.3390/rs6109552
- https://doi.org/10.1016/j.jag.2019.01.001
- https://doi.org/10.3389/fenvs.2024.1309757
- Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295-309. https://doi.org/10.1016/0034-4257(88)90106-X
- Isazade, V., Aasiabi, S. & Isazadeh, E. (2021). Surface temperature monitoring using Landsat 8 images and single channel and separate window algorithms (Study area: Dezful city). Geography and Human Relationships, 3(3), 8-25. [In Persian]
- karimi, M., Shahedi, K., Raziei, T. & Miryaghoobzadeh, M. (2020). Analysis of Performance of vegetation indices on agricultural drought using remote sensing technique in Karkheh basin. Iranian Journal of Remote Sensing and GIS, 11(4), 29-46. [In Persian]
- Keykhosravi, G. (2015). A comparative study of satellite and meteorological drought indices of the desertification process in the spring vegetation of Semnan province. The Journal of Geographical Research on Desert Areas, 3(2), 189-213. [In Persian]
- Kumar, B. P., Babu, K. R., Anusha, B. N., & Rajasekhar, M. (2022). Geo-environmental monitoring and assessment of land degradation and desertification in the semi-arid regions using Landsat 8 OLI/TIRS, LST, and NDVI approach. Environmental Challenges, 8, 100578.https://doi.org/10.1016/j.envc.2022.100578
- Masoudi, M., & Zakerinejad, R. (2010). Hazard assessment of desertification using MEDALUS model in Mazayjan plain, Fars province, Iran. Ecol Environ Conserv, 16(3), 425-430.
- Masoudi, M., & Zakerinejad, R. (2011). A new model for assessment of erosion using desertification model of IMDPA in Mazayjan plain, Fars province, Iran. Ecol Environ Conserv, 17(3), 489-594.
- Meng, X., Gao, X., Li, S., Li, S., & Lei, J. (2021). Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecological indicators, 129, 107908. https://doi.org/10.1016/j.ecolind.2021.107908
- Mijani, K., Mahdavi, R., Gholami, H., & Rezaei, M. (2022). Monitoring and Modeling of Desertification Intensity Using Landsat Satellite Images (Case Study of Yazdanabad-Zarand watershed). Irrigation and Water Engineering, 13(2), 446-462. https://doi.org/10.22125/iwe.2022.162688
- Mojaradi, B., mirmiri, J. & Hosein, A. (2020). Assessment of Vegetation Condition Index Using Modified Standard Precipitation Index to Monitor and zoning Drought. Watershed Engineering and Management, 12(3), 725-736. [In Persian]
- Mutti, P. R., Lúcio, P. S., Dubreuil, V., & Bezerra, B. G. (2020). NDVI time series stochastic models for the forecast of vegetation dynamics over desertification hotspots. International Journal of Remote Sensing, 41(7), 2759-2788. https://doi.org/10.1080/01431161.2019.1697008
- Nadi, M., Kalantari, S., Khavaninzadeh, A. & Tazeh, M. (2022). Evaluation of desertification situation in Tabas city based on technogenic desertification indicators using satellite images. Management of Natural Ecosystems, 2(2), 34-45. [In Persian]
- Rivera-Marin, D., Dash, J., & Ogutu, B. (2022). The use of remote sensing for desertification studies: A review. Journal of Arid Environments, 206, 104829. https://doi.org/10.1016/j.jaridenv.2022.104829
- Rostaei, S., Mokhtari, D. & khodaei gheshlagh, F. (2020). Evaluating the risk of desertification using the spectral indices in the surrounding area of Lake Urmia. Quantitative Geomorphological Research, 9(3), 1-17. [In Persian]
- Shao, W.Y., Wang, Z.Q., & Guan, Q.Y. (2023). Environmental sensitivity assessment of land desertification in the Hexi Corridor. Catena, 220, 106728. https://doi.org/10.1016/j.catena.2022.106728
- Song, Z., Lu, Y., Ding, Z., Sun, D., Jia, Y., & Sun, W. (2023). A New Remote Sensing Desert Vegetation Detection Index. Remote Sens. 15, 5742. https://doi.org/10.3390/rs15245742
- Wang, S., Ma, L., Yang, L., Long, X., Guan, C., Zhao, C., & Chen, N. (2024). Quantifying desertification in the Qinghai Lake Basin. Frontiers in Environmental Science, 12, 1309757.
- Watson, D. J. (1947). Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of botany, 11(41), 41-76.
- Zakerienjad, R., & Masoud, M. (2020). Quantitative mapping of desertification risk using modified MEDALUS model: a case study in the Mazayejan Plain, Southwest Iran. AUC Geographica, 54(2), 232–239. https://doi.org/10.14712/23361980.2019.20
- Zakerinejad, R. & Falah, S. (2023). Evaluation of Water Erosion Hazard Map Using the Combination of the RUSLE Model and Gully Erosion Density Map in Alamarvdasht Watershed of Fars Province, Iran. Quantitative Geomorphological Research, 11(4), 189-209.
- Zakerinejad, R. & Moavi, M. (2024). Investigating the effects of land use changes on vegetation (Case study: Mian-Ab watershed in the period 2000-2020). Journal of Arid Regions Geographic Studies, 15(55), 147-132. [In Persian]
- Zakerinejad, R. (2023). Mapping erosion and sediment rates in the Khosuyeh watershed using the USPED model and GIS, and its comparison with water erosion facies. Environmental Erosion Research, 13(3), 239–256. [In Persian]
- Zakerinejad, R., Christian, S., Volker, H., & Michael, M. (2021). Spatial Disterbution Of Water Erosion Using Stochastic Modeling In The Southern Isfahan Province, Iran, Geogr FIS DIN QUAT, 44 (2), 203–216.https://doi.org/10.4461/GFDQ.2021.44.14
- Zhang, L., Qu, J., Gui, D., Liu, Q., Ahmed, Z., Liu, Y., & Qi, Z. (2022). Analysis of desertification combating needs based on potential vegetation NDVI—A case in the Hotan Oasis. Frontiers in Plant Science, 13, 1036814. https://doi.org/10.3389/fpls.2022.1036814
- Zhang, X.L., Zhang, F., Qi, Y.X., Deng, L.F., Wang, X.L., & Yang, S.T. (2019). New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV). Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 215–226.
- Zhu, X., Leung, K. H., Li, W. S., & Cheung, L. K. (2020). Monitoring interannual dynamics of desertification in Minqin County, China, using dense Landsat time series. International Journal of Digital Earth, 13(8), 886-898. https://doi.org/10.1080/17538947.2019.1585979
- Zongfan, B., Ling, H., Xuhai, J., Ming, L., Liangzhi, L., Huiqun, L., & Jiaxin, L. (2022). Spatiotemporal evolution of desertification based on integrated remote sensing indices in Duolun County, Inner Mongolia. Ecological Informatics, 70, 101750. https://doi.org/10.1016/j.ecoinf.2022.101750
-
|