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Abstract: 

The significant variations in solar and magnetic parameters during peak solar activity periods necessitate 

detailed analysis to understand the interactions between the solar wind and the magnetosphere. The present 

research investigated the impact of various solar wind parameters on the Polar Cap (PC) magnetic activity 

index. The primary objective of this research is to identify and analyze the relationships between solar wind 

speed (VSW), solar wind dynamic pressure (PSW), and the interplanetary electric activity index (AE) with 

the PC index. A multilayer perceptron (MLP) artificial neural network model has been utilized to explore 

these relationships. Identifying and predicting complex nonlinear relationships between the input variables 

and the PC index is the distinctive feature of the model. The dataset used in this research was obtained from 

Defense Meteorological Satellite Program (DMSP) satellites and includes VSW, PSW, and AE parameters 

during periods of peak solar activity in 2002 and 2014. These data were used to analyze the temporal and 

seasonal variations of the PC index. 

The results indicate that artificial neural network models can effectively predict the PC index, and a strong 

correlation between the PC index and the input parameters, particularly in the first half of the years under 

research, has been observed. The results show the high potential of machine learning models to analyze and 

predict geomagnetic phenomena, which can improve forecasting and management of geomagnetic 

disturbances, and serve as a suitable alternative to classical models. 
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Introduction: 

The solar physics system is vast and contains numerous parameters influencing Earth's magnetosphere. 

When assessing the impact of the magnetosphere on the ionosphere, these parameters become even more 

complex. The Polar Cap (PC) magnetic activity index, by definition, corresponds to the intensity of 

magnetic disturbances in the polar cap and is calibrated against the effective interplanetary Electric Field 

(EF) (Kan & Lee, 1979). The PC index reflects the energy transferred from the solar wind to the 

magnetosphere and is strongly controlled by solar wind parameters such as the interplanetary electric field 

(EKL) (Troshichev & Sormakov, 2015). 

One crucial component within the magnetosphere is the ring current, an electric current that flows around 

the Earth in the inner magnetosphere near the Earth's magnetic equator. The ring current generated by 

energetic ions in the solar wind plays a main role in weakening the Earth's magnetic field in equatorial 

regions during geomagnetic storms. The ring current can also interact with other parameters, such as the 

Interplanetary Magnetic Field (IMF) components, to influence the intensity of magnetic 

disturbances(Kozyra & Nagy, 1991). 

The ring current injection time (τ) represents the period during which the ring current in Earth’s 

magnetosphere intensifies. This process is initiated by the entry of charged particles and high-energy 

protons from the solar wind into the magnetosphere, transferring energy to this region. Specifically, ring 

current injection occurs when the southward component of the interplanetary magnetic field (BZ) is 

negative, which allows Earth’s magnetic field to couple with the interplanetary field and enhances the 

transfer of solar wind energy into the magnetosphere. Under such conditions, the interplanetary electric 

field VBs (which is the product of solar wind speed and the southward BZ component) channels solar wind 



 

 

energy into the magnetosphere, resulting in increased injection of plasma and charged particles into Earth's 

magnetic orbits, thereby strengthening the ring current(O'Brien & McPherron, 2000). 

The primary driving parameter in the solar wind-magnetosphere interaction is the southward component 

(BZ) of the IMF. At the same time, the IMF's BY component, which drives the ring current, also plays a key 

role in this interaction, with its effects typically assumed to be independent of its sign.  

For a constant level of the solar wind, the interplanetary magnetic field (IMF) BY significantly influences 

the magnetospheric convection and plasma dynamics. During the northern hemisphere’s summer, BY<0 

enhances the flux of energetic protons and the rate of ring current growth compared to BY>0. Conversely, 

in the winter, BY>0 shows stronger effects on ring current development and plasma convection. This 

seasonal modulation reflects the sensitivity of magnetospheric dynamics to the direction of the IMF BY, 

which governs magnetic reconnection and energy transfer processes. The results indicate that BY modulates 

magnetospheric convection and plasma transport within the inner magnetosphere(Holappa & Buzulukova, 

2022; Rice et al., 2024). 

Interplanetary shocks represent sudden and strong enhancements in the solar wind dynamic pressure (PSW), 

which compress the Earth's magnetosphere, manifesting as a geomagnetic field impulse. If this shock 

coincides with a magnetic storm, it is considered a sudden storm commencement; otherwise, it is simply an 

impulse. The pressure waves propagated in the magnetosphere affect magnetic field oscillations and the 

flux of energetic particles in the geosynchronous orbit(Lee et al., 2004). 

Compressional waves in the magnetosphere, often generated by sudden changes in the dynamic pressure of 

the solar wind, refer to pressure oscillations that propagate through the magnetosphere. These waves induce 

magnetic field oscillations and variations in the flux of energetic particles in the geosynchronous orbit. This 

process significantly impacts the stability and distribution of particles in these orbits, leading to wide-

ranging effects on the structure and functionality of the magnetosphere(Yamamoto et al., 2024). 

The PC index correlates with PSW variations (either increasing or decreasing). Discrepancies between the 

behavior of PSW and PC become apparent as EKL and PSW diverge (Troshichev & Sormakov, 2019). The 

relationship between magnetospheric dynamics and IMF orientation was qualitatively discovered in the 

1960s (Dungey, 1961), it was observed that when the IMF with a southward direction reaches Earth, 

magnetic reconnection between the Earth's magnetic field and the IMF occurs. Consequently, the Earth's 

magnetic field can directly connect to the IMF, allowing high-energy particles from the solar wind to enter 

the magnetosphere along magnetic field lines. If this process continues for several hours both the magnetic 

field and plasma within the magnetosphere will be severely disrupted by the solar wind, leading to a 

geomagnetic storm (Gonzalez et al., 1994). 

Studies on the effect of solar wind dynamic pressure on the collapse and injection of the ring current, based 

on solar wind and the geomagnetic index, show that ring current injection increases when the 

magnetosphere is compressed by solar wind dynamic pressure (Wang et al., 2003). The physical analysis 

of the convection pattern of hot ions forming the ring current suggests that the position of the ring current 

is controlled by the interplanetary electric field VBS during ring current injection. It should be noted, 

however, that injection into the ring current occurs not only during southward IMF intervals but also for 

northward IMF intervals, although the latter is much weaker and depends on the solar wind-magnetosphere 

energy coupling parameter (Akasofu, 1981). 

In empirical models developed for ring current collapse and injection, the solar wind dynamic pressure is 

critical in controlling ring current injection, particularly during strong magnetic storms. The strength of ring 

current injection is proportional to the solar wind dynamic pressure with a power index of 0.2 during 

southward IMF intervals. Thus, ring current injection increases when the magnetosphere is compressed by 

high solar wind dynamic pressure (Wang et al., 2003). 



 

 

The main objective of this research is to investigate the impact of solar wind parameters on the Polar Cap 

(PC) magnetic activity index and to evaluate the effectiveness of multilayer perceptron (MLP) artificial 

neural network models in predicting this index. Additionally, this research aims to identify and analyze the 

complex relationships between solar wind speed (VSW), solar wind dynamic pressure (PSW), and the 

interplanetary electric activity index (AE) with the PC index during periods of peak solar activity in 2002 

and 2014. The findings of this research can contribute to improving predictive models and the management 

of geomagnetic disturbances, aiding scientists in better understanding the complex interactions between the 

solar wind and the magnetosphere. 

2- Research Methodology 

This numerical research is designed as a modeling approach using a multilayer perceptron (MLP) neural 

network. The solar wind parameters, which determine the efficiency of the solar wind-magnetosphere-

ionosphere coupling were examined using the MLP artificial neural network. In this research, we predicted 

the Polar Cap (PC) magnetic activity index, which indicates magnetic disturbances in the polar cap, by 

utilizing solar wind speed (VSW), solar wind dynamic pressure (PSW), and the ionospheric response to solar 

wind pressure pulses, represented by the AE index. 

2.1 Equations and Modeling 

The PC magnetic activity was modeled using several key equations describing the relationships between 

solar wind parameters and the PC index. These equations contribute to a better understanding of how these 

parameters influence magnetospheric behavior and form the basis for the numerical analyses conducted in 

this research. 

2.1.1 Interplanetary Electric Field (EKL) 

One of the most important parameters in geophysical analyses is the interplanetary electric field (EKL), 

which significantly affects the energy transfer from the solar wind to the magnetosphere. The EKL electric 

field is determined by the Kan and Lee formula: 

  EKL=VSW(BY
2+BZ

2)
1

2 sin
2 θ

2
    (1) 

In this equation, EKL represents the interplanetary electric field, VSW is the solar wind speed, BY and BZ 

are the components of the interplanetary magnetic field (IMF), and θ is the angle between the transverse 

component of the IMF and the geomagnetic dipole. 

2.1.2 Solar Wind Dynamic Pressure (PSW) 

Predicting the PC index requires modeling the impact of solar wind dynamic pressure on the 

magnetosphere. Solar wind dynamic pressure is generated by the collision of solar wind particles with the 

magnetospheric boundary, influencing the density of the magnetosphere. The relationship between the PC 

index and solar wind dynamic pressure (PSW) is expressed as follows: 

   PC=α×Pswβ   (2) 

In this equation, PC is the Polar Cap magnetic activity index, PSW is the solar wind dynamic pressure, and 

α and β are empirical parameters derived from observational data. This equation empirically models the 

effect of dynamic pressure on PC index variations(Kivelson & Russell, 1995). 

2.1.3 Ring Current Injection Time (τ) 

Another critical aspect of magnetospheric analysis is examining the ring current injection time (τ), which 

is influenced by the interplanetary magnetic field (IMF). 



 

 

The ring current injection time (τ) represents the period during which the ring current in Earth's 

magnetosphere intensifies. This process begins with the entry of charged particles, particularly energetic 

protons from the solar wind, into the magnetosphere and the subsequent transfer of energy to this region. 

Specifically, the ring current injection occurs when the southward component of the interplanetary magnetic 

field (BZ ) is negative. Under these conditions, a process known as magnetic reconnection occurs at the 

magnetopause, facilitating the transfer of energy from the solar wind into the magnetosphere(O'Brien & 

McPherron, 2000; Pfau-Kempf et al., 2024). 

Interplanetary electric fields, such as VBS, play a crucial role in this process by enhancing the energy 

transfer from the solar wind to the magnetosphere. Following this reconnection, more plasma and charged 

particles are injected into Earth's magnetic field lines, leading to an intensification of the ring current. 

The ring current is a type of electric current that flows in the inner magnetosphere near the magnetic equator 

and plays a critical role in geomagnetic variations. Its injection and intensification, particularly during 

geomagnetic storms, result in significant changes in the strength of Earth's magnetic field in equatorial and 

polar regions. Consequently, it plays a vital role in geomagnetic phenomena and space weather 

interactions(Feldstein et al., 1984; Hashimoto et al., 2002). 

 The following equation is used for modeling this time: 

τ=2.40e9.74/(4.69+VBs)   (3) 

In this relation, VBS is measured in mV/m. Here, VBS is defined as: 

VBS= {
|VBZ |        BZ<0

0                 BZ>0
   (4) 

Here V represents the solar wind speed, and BZ is the Z-component of the interplanetary magnetic field 

(IMF) in the geocentric solar magnetic (GSM) coordinate system. Northward IMF (positive BZ), significant 

displacement in the magnetosphere is not expected, and VBS is assumed to be 0. Plasma is only injected 

into the ring current under the influence of a southward IMF component, while the dawn-dusk electric field 

component in the interplanetary environment remains below 0.5 mV/m³(O'Brien & McPherron, 2000). 

Interplanetary electric fields play a crucial role in the interaction between the solar wind and the 

magnetosphere. In this study, both EKL and VBS are utilized to represent different aspects of the 

interplanetary electric field. EKL offers a comprehensive and precise calculation by considering the magnetic 

field's angular component, while VBS provides a simplified proxy for energy coupling under specific 

southward BZ  conditions(Boteler, 2019; Tepke, 2019). 

Ring current injection time (τ) is a critical parameter influenced by the southward component of the 

interplanetary magnetic field BZ , where increased energy transfer leads to enhanced ring current intensity. 

VBS, focusing on the BZ component, serves as a simplified metric for assessing energy transfer and ring 

current injection under specific conditions, whereas EKL is more suitable for broader analyses of 

interplanetary energy fields(Troshichev et al., 2012). 

 

2.2 Dataset and Sources 

The dataset used in this research was obtained from the Defense Meteorological Satellite Program (DMSP). 

These satellites record solar wind parameters and ionospheric responses at one-minute intervals, enabling 

researchers to analyze temporal variations in these parameters with high precision. The dataset includes 

solar wind speed (VSW), solar wind dynamic pressure (PSW), and the interplanetary electric activity index 

(AE). The years analyzed in this research are 2002 and 2014 characterized by peak solar activity. The 

dataset includes daily average and instantaneous values of VSW, PSW, and AE, which play a crucial role in 



 

 

magnetic analyses and are divided into the first and second six months to examine seasonal variations. The 

dataset was normalized within the range of -1 to 1. This normalization allows the neural network model to 

train more efficiently and provide more accurate predictions. 

2.3 Tools and Materials 

A multilayer perceptron (MLP) neural network was employed to predict the PC index. The model was 

implemented using MATLAB version 2019. The multilayer perceptron is a feedforward artificial neural 

network composed of several layers of neurons with activation functions. It typically consists of three 

layers: an input layer, one or more hidden layers, and an output layer. Each neuron uses a nonlinear 

activation function to mathematically learn the correct representation of the dataset (Wallace et al., 2022). 

One input layer, three hidden layers with approximately 350 neurons each, and one output layer were used. 

A sigmoid activation function was employed for the neurons, optimized after testing several mathematical 

functions. 

2.4 Data Analysis Methods 

The dataset was analyzed using a multilayer perceptron neural network. The learning rate of the model was 

set at 1000, and the dataset was randomly divided into a training subset (70%) and a test subset (30%). The 

perceptron model was trained to predict the PC index, and the results were evaluated using the mean squared 

error (MSE). Each experiment was repeated five times, and the average results were presented in the 

relevant tables. This method ensures the stability and reliability of the results. The training subset was used 

to optimize hyperparameters and build the model, while the test subset was used to evaluate the model's 

performance. The model accuracy was assessed using 

 the mean squared error (MSE). Techniques like regularization and dropout were employed to prevent 

overfitting. 

2.5 Neural Network Configuration 

The neural network consists of an input layer with three neurons for the parameters VSW, PSW, and AE, three 

hidden layers with approximately 350 neurons in each layer, and an output layer with a single neuron for 

the PC index. Sigmoid activation functions were chosen for the hidden layers to enhance the model's 

capability in modeling nonlinear relationships. The weights and biases were randomly initialized and 

optimized using the backpropagation algorithm. 

3 Measurement, Observation, and Calculation 

The input dataset, referred to as features here, includes solar wind speed (VSW), solar wind dynamic pressure 

(PSW), and the ionospheric response to solar wind pressure pulses, represented by the AE index. These 

indices play a significant role in the solar wind energy transferred to the magnetosphere, represented by the 

PC index. It can be observed that the annual average PC values are closely correlated with the selected solar 

wind parameters, with a correlation coefficient of R = 0.86 for VSW. In Addition, a correlation coefficient 

of R = 0.97 for the AE index indicates a strong relationship between the annual average PC and AE. The 

correlation coefficient between PSW and PC is R = 0.83, which is substantial (Kan & Lee, 1979). 

The dataset used in this research, comprising solar wind and PC index data, was sourced from the U.S. 

Defense Meteorological Satellite Program (DMSP), which collects extensive data that can reveal various 

ionospheric and magnetospheric states (T. Paul O'Brien, 2000). 

As shown in Figure (1), 2002 and 2014 were selected for analysis due to the high incidence of solar storms 

and sunspot activity observed during these years. 



 

 

 

 

 

 

 

 

 

 

 

 

Relative irradiance, as shown in Figure 1, reflects the variations in solar radiative energy reaching Earth's 

surface. This measure is closely related to sunspot numbers, which represent areas of strong magnetic 

activity on the Sun's surface that periodically appear and disappear during the solar cycle(Sedrati et al., 

2024). 

When sunspot numbers increase, solar radiative energy—or relative irradiance—also rises due to 

heightened solar activity. This correlation is particularly noticeable during solar maximum, when the Sun 

emits higher levels of energy. Sunspot numbers thus serve as indicators of solar activity and fluctuations in 

solar irradiance, as illustrated in Figure 1(Maghrabi & Alghamdi, 2024). 

 

3.1 Data Preprocessing 

Data preprocessing is a critical stage in any data analysis process, directly affecting the quality and accuracy 

of research results. Various data preprocessing steps were undertaken for statistical analysis and machine 

learning modeling. 

3.2 Data Cleaning: 

First, the raw dataset was examined to address potential issues such as missing data, invalid values, and 

obvious errors. For rows where more than 40% of the values are missing, the entire row was removed. If 

the missing values are less than this threshold, they were imputed using the nearest-neighbor approach 

depending on the data type(García et al., 2015). After handling missing data, the outliers were identified 

and removed using the Interquartile Range (IQR) method to obtain a valid dataset. In this method, outliers 

are detected and removed by dividing the sorted dataset into four quartiles: Q1, Q2, Q3, and Q4, with each 

quartile containing 25% of the sorted data. The IQR is the difference between Q3 and Q1: 

LB = Q1 - 1.5×(Q3 - Q1)   (5) 

UB=Q3 + 1.5× (Q3 - Q1)   (6) 

Here, LB and UB are the lower and upper bounds for acceptable values, and any values outside this range 

are considered outliers and are removed from the dataset(Beer et al., 2010). 

3.3 Normalization: 

Figure 1: Solar activity during the years 1998-2018 



 

 

The dataset was normalized to ensure uniformity and comparability on an appropriate scale. This process 

involves converting the dataset to a common scale to reduce the impact of large variances across different 

scales(Han et al., 2022). To ensure the accuracy of the dataset, the input parameters were normalized using 

the Min-Max method. This range was selected to correctly encapsulate the PC index values, as the PC index 

contains both positive and negative values. In this method, a positive PC index indicates disturbed planetary 

conditions due to solar wind, while a negative PC index corresponds to calm planetary 

conditions(Troshichev et al., 2006). This normalization enhances the performance of the neural network 

model by ensuring that the dataset is uniformly used during the learning process. After outliers were 

removed and missing values corrected, the data were normalized. The collected data, sampled at a 1-minute 

interval, includes 289,000 data rows. Each year was divided into two six-month periods. 

To implement and evaluate the multilayer perceptron (MLP) neural network model, MATLAB version 

2019 was utilized. The neural network model consists of an input layer, three hidden layers with 

approximately 350 neurons each, and an output layer. The sigmoid function was used for the neurons in 

this network, which was selected as the optimal function after testing several mathematical functions. 

During the training process, various parameters, including weights and biases, were iteratively adjusted and 

optimized. 

A learning rate of 1000 was selected to keep the number of iterations consistent across each experiment. 

The database used was randomly split into training and testing subsets. The training subset consisted of 

70% of the entire dataset, while the validation subset included the remaining 30%. The training dataset was 

randomly selected from all points in the database to optimize hyperparameters and build the perceptron 

model effectively. The validation dataset was also used for predicting the model’s performance and 

assessing it. 

At each stage, the model's error is calculated and reported using the Mean Squared Error (MSE) metric. 

The Mean Squared Error (MSE) is a key metric for evaluating model accuracy by measuring the difference 

between predicted and actual values. This metric calculates error by squaring each sample’s deviation and 

then averaging these squared errors, where lower MSE values indicate higher model accuracy(Goodfellow, 

2016). Regularization is a technique used to reduce model complexity and prevent overfitting. By adding a 

regularization term to the loss function, the model is encouraged to find solutions with smaller weights, 

thus enhancing generalizability. The Dropout technique is another method to prevent overfitting, wherein 

some neurons are randomly deactivated during the learning process. This approach helps the model avoid 

excessive reliance on specific features, resulting in improved generalization capabilities(Srivastava et al., 

2014). 

4. Analysis: 

The impact of solar wind parameters on the Polar Cap (PC) index during periods of peak solar activity in 

2002 and 2014 was investigated using a multilayer perceptron (MLP) neural network. To obtain better 

results and avoid system-related errors, each experiment was repeated five times under identical conditions, 

and the results are presented in the following tables: 

 

Table  1 : The results of five iterations of the Perceptron model for the first semester of 2002. 

Test Dataset 

Error 

(ErrorTS) 

MSE Training 

Dataset 

(MSETR) 

MSE Test 

Dataset 

(MSETS) 

Training 

Dataset Error 

(ErrorTR) 

Linear 

Regression 

(reg) 

Repetition 

2.828427 0.003 0.0032 2.738613 0.79991 1 

2.828427 0.003 0.0032 2.738613 0.79912 2 



 

 

2.828427 0.0029 0.0032 2.692582 0.80979 3 

2.738613 0.0029 0.003 2.692582 0.80532 4 

2.783882 0.0029 0.0031 2.692582 0.80466 5 

2.801555 0.00294 0.00314 2.710995 0.80376 Average 

 

The results obtained from running the model five times for the first half of 2002 are presented in Table (1). 

As observed, the average linear regression coefficient between the PC index and the parameters AE, PSW, 

and VSW is 0.80376. The mean squared error (MSE) of the training and test datasets are 0.00294 and 

0.00314, respectively. The average error for the training and test datasets is 2.710995 and 2.801555, 

respectively. These results indicate the model's satisfactory performance in the first half of 2002 and 

demonstrate a good correlation between the solar wind parameters and the PC index. 

Table  2 : The results of five iterations of the Perceptron model for the second semester of 2002. 

Linear 

Regression 

(reg) 

MSE 

Training 

Dataset 

(MSETR) 

MSE Test 

Dataset 

(MSETS) 

Training 

Dataset Error 

(ErrorTR) 

Test Dataset 

Error 

(ErrorTS) 

Repetition 

0.77925 0.0073 0.0075 4.272002 4.330127 1 

0.77494 0.0074 0.0078 4.301163 4.415588 2 

0.77952 0.0073 0.0076 4.272002 4.358899 3 

0.77814 0.0073 0.0075 4.272002 4.330127 4 

0.77712 0.0073 0.0077 4.272002 4.387482 5 

0.77779 0.00732 0.0076 4.277834 4.364503 Average 

 

The results obtained from running the model five times for the second half of 2002 are presented in Table 

(2). As observed, the average linear regression coefficient between the PC index and the parameters AE, 

PSW, and VSW is 0.777794. The mean squared error (MSE) of the training and test datasets are 0.00732 and 

0.00762, respectively. The average error for the training and test datasets is 4.277834 and 4.364503, 

respectively. These results indicate that the model's performance in the second half of 2002 is less favorable. 

In Tables 1 and 2, the modeling results are presented separately for the first and second halves of the year 

to examine the correlation between solar wind parameters and the PC index. Specifically, Table 1 

demonstrates higher correlations and better model performance in the first half of the year, as indicated by 

higher correlation coefficients and lower Mean Squared Error (MSE) values. These results highlight a 

strong relationship between the input parameters and the PC index during this period. 

In contrast, Table 2, which corresponds to the second half of the year, shows a decrease in the correlation 

coefficient and an increase in MSE values. This indicates a reduction in correlation and model accuracy 

during this timeframe. These variations may be attributed to differences in seasonal conditions, ionospheric 

changes, and reduced solar activity in the second half of the year. Such factors lessen the influence of input 

parameters on the PC index, resulting in weaker correlations. 



 

 

The higher correlation coefficient and lower error values in Table 1 suggest a stronger connection between 

the parameters and the PC index in the first half of the year. Conversely, the lower correlation coefficient 

and higher error values in Table 2 reflect a diminished connection in the second half. These variations may 

arise from seasonal factors and natural changes in magnetic and ionospheric conditions that affect the PC 

index.The findings suggest that the correlation between the PC index and the parameters AE, PSW, and VSW 

is stronger in the first half of the year compared to the second half. These results are consistent with those 

reported by O. A. Troshichev and colleagues in 2002(García et al., 2015). 

 

 

Specifically, the correlation between the PC index and the parameters PSW and VSW during summer (denoted 

as PCSUMM) is higher than in winter (denoted as PCWINT). The multilayer perceptron (MLP) neural network 

accurately captured these results. 

4.1 Validation with the 2014 Dataset 

In this research, the MLP neural network model was validated to assess the accuracy and stability of 

predicting the Polar Cap (PC) magnetic activity index. The validation aimed to evaluate the model's ability 

to generalize and predict new data that it had not encountered during training. To emphasize the reliability 

of the results and validate the model, the 2014 dataset was used. This year was chosen due to its similarity 

in solar activity conditions to 2002. 

The validation results, as presented in Tables 1 and 2 for the first and second semesters of 2002, 

respectively, show that the Perceptron model demonstrates higher correlation coefficients and lower Mean 

Squared Error (MSE) values in the first semester compared to the second semester. This indicates a stronger 

relationship between the input parameters (AE, PSW, and VSW) and the PC index during the first semester. 

Similarly, the validation results for 2014, displayed in Tables 3 and 4 for the first and second semesters, 

confirm the consistency of the model’s performance. Higher correlation coefficients and lower MSE values 

in Table 3 reinforce the model’s capability to capture seasonal variations, aligning with the results observed 

in 2002. These findings validate the effectiveness of the MLP model in reliably predicting the PC index 

under different solar wind conditions. 

Table  3 : The results of five iterations of the Perceptron model for the first semester of 2014. 

Error  MSE Linear Regression (reg) Repetition 

5.5 0.0121 0.81722 1 

5,226,800 0.0122 0.81639 2 

4,772,250 0.0120 0.82025 3 

5,677,640 0.0124 0.81448 4 

5,677,640 0.0124 0.81420 5 

5,270,887 0.0122 0.81651 Average 

 

The results from the first half of 2014, presented in Table (3), indicate that the average linear regression 

coefficient is 0.816508, and the mean squared error is 0.01222. The average error is 5.270869. These results 

demonstrate a strong correlation between the PC index and the parameters AE, PSW, and VSW during the 



 

 

first half of 2014, reflecting the model’s effectiveness in capturing the relationships between solar wind 

parameters and the PC index during this period. 

Table  4 : The results of five iterations of the Perceptron model for the second semester of 2014. 

Error  MSE Linear Regression 

(reg) 

Repetition 

5,979,130.3 0.0143 0.79521 1 

6.0 0.0144 0.79141 2 

6.0 0.0144 0.79156 3 

6,020,797.2 0.0145 0.78915 4 

6,020,797.2 0.0144 0.78975 5 

6,004,144.1 0.0144 0.79141 Average 

 

 

The results obtained for the second half of 2014, as shown in Table (4), indicate that the average linear 

regression coefficient is 0.791416, the mean squared error (MSE) is 0.01442, and the average error is 

6.004144. These results suggest a lower correlation between the PC index and the parameters AE, PSW, and 

VSW in the second half of 2014 compared to the first half. 

These findings demonstrate that the neural network model was able to predict the PC index in 2014 with 

high accuracy. The higher correlation in the first half and its decrease in the second half align with the 

pattern observed in 2002, further emphasizing the validity and effectiveness of the model. 

 

Figure 2: A comparison of the performance of the artificial neural network between the years 2002 and 2014, as well as a 
comparison of its performance during the first and second semesters(dmsp). 

 

As illustrated in Figure (2), in both 2002 and 2014, the correlation between the PC index and the input 

parameters was higher in the first half of the year compared to the second half. This indicates that the model 

was able to identify similar patterns across different time periods. The results suggest that seasonal 

variations can have a significant impact on the correlation between the input parameters and the PC index. 

The stronger correlation in the first half of the year (summer) may be attributed to changes in solar activity 

and ionospheric conditions. 



 

 

The repetition of experiments and averaging of results indicate the stability and accuracy of the model in 

predicting the PC index. This approach reduces random fluctuations and enhances confidence in the 

obtained results. Machine learning models, such as perceptron neural networks, not only increase the speed 

and accuracy of geophysical analyses but also produce results consistent with observational data and 

traditional models. This highlights the high capability of these models in analyzing complex and large 

datasets. 

The model's ability to consistently recognize seasonal patterns and provide reliable predictions in different 

periods emphasizes the importance of advanced machine learning approaches in geophysical research. By 

leveraging these techniques, researchers can gain deeper insights into the interactions between solar wind 

and the magnetosphere, ultimately leading to improved prediction and management of geomagnetic 

disturbances. 

 

 

 

5 Conclusion: 

The main objective of the present research was to investigate the effect of solar wind parameters on the 

Polar Cap (PC) magnetic activity index during periods of peak solar activity in 2002 and 2014 and to 

evaluate the efficiency of multilayer perceptron (MLP) neural network models in predicting this index. The 

results indicate that artificial neural network models are powerful tools for analyzing and predicting 

geomagnetic phenomena. 

Data analysis showed that the correlation between the PC index and the input parameters VSW, PSW, and AE 

in the first half of both years was higher than in the second half. This finding particularly indicates that the 

MLP model has accurately identified seasonal patterns. Higher solar activity and different ionospheric 

conditions in the first half could be the main reasons for this higher correlation. In the second half, the 

observed decrease in correlation could be related to seasonal changes and reduced solar activity. 

The stability and high accuracy of the model in predicting the PC index were confirmed through repeated 

experiments and averaging the results. These methods reduced random fluctuations and increased 

confidence in the obtained results. On average, the linear regression and mean squared error (MSE) in the 

first half improved compared to the second half, indicating higher accuracy of the model in predicting the 

first half's dataset. 

Moreover, machine learning models, such as multilayer perceptron neural networks, with their ability to 

analyze complex and large datasets, significantly increase the speed and accuracy of geophysical analyses. 

These models provide results that are consistent with observational data and traditional models. The 

model’s ability to accurately predict changes in the PC index based on input parameters demonstrates its 

strength in analyzing complex nonlinear relationships within geophysical datasets. 

The results indicate that artificial neural network models are powerful tools for predicting and managing 

geomagnetic disturbances. By processing complex and large datasets, these models significantly improve 

geophysical analyses and increase prediction accuracy. This can help scientists better understand the 

complex interactions between solar wind and the magnetosphere and improve predictive models for 

geomagnetic disturbances. 
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