
تعداد نشریات | 162 |
تعداد شمارهها | 6,622 |
تعداد مقالات | 71,539 |
تعداد مشاهده مقاله | 126,866,377 |
تعداد دریافت فایل اصل مقاله | 99,907,114 |
تحلیل انرژی با شبیهسازی هندسه و پارامترهای اقلیمی گلخانه رز مینیاتوری در TRNSYS و اعتبارسنجی با دادههای اندازهگیری شده | ||
مهندسی بیوسیستم ایران | ||
دوره 55، شماره 2، تیر 1403، صفحه 21-40 اصل مقاله (2.4 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2024.377097.665554 | ||
نویسندگان | ||
وحید ثوابی1؛ غلامرضا چگینی* 2؛ اکبر عرب حسینی3 | ||
1دانشجوی دکتری ،گروه فنی کشاورزی، دانشکده فناوری ابوریحان،دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، تهران ایران | ||
22. دانشیار گروه فنی کشاورزی-دانشکدگان کشاورزی و منابع طبیعی، دانشکده فناوری ابوریحان -دانشگاه تهران، تهران ، ایران | ||
3دانشگاه تهران، پردیس کشاورزی و منابع طبیعی، دانشکده فناوری ابوریحان،دانشگاه تهران،تهران، ایران | ||
چکیده | ||
تامین هزینه انرژی گلخانه از مهمترین چالشهای تولید محصولات در گلخانه میباشد. لذا برای بهبود عملکرد حرارتی گلخانه پیشبینی نیاز حرارتی گلخانه ضروری است و دستیابی به یک راهکار مطلوب برای پیشبینی رفتار حرارتی و مدیریت انرژی بسیار پیچیده است. در این پژوهش، مدل یک گلخانه واقعی گل رز در شهر پاکدشت با نرمافزار TRNSYS شبیهسازی شده است. در این مدل، هندسه گلخانه، سیستمهای تهویه، سرمایشی وگرمایشی مطابق نمونه واقعی آن شبیهسازی شده است. در طول یک ماه، دما و رطوبت نسبی داخل گلخانه با استفاده از حسگرهایی که در نقاط مختلف گلخانه نصب شده بودند اندازهگیری شد. دادههای شبیهسازی شده با دادههای اندازهگیری شده در طول یک ماه مقایسه شدند. اختلاف بین نتایج شبیهسازی و دادههای اندازهگیری شده با معیارهای ریشه میانگین مربعات خطا (RMSE)، ضریب تغییرات ریشه میانگین مربعات خطا (CV RMSE) و میانگین خطای بایاس نرمال شده (NMBE) محاسبه شدند. میزان خطا برای دمای داخل گلخانه 5/3 درجه سلسیوس و برای رطوبت نسبی داخل گلخانه 12 درصد بود. با استفاده از شبیهسازی گلخانه موازنه انرژی برای گلخانه در طول یک سال به تفکیک هر ماه محاسبه شد و مشخص شد که بیشترین تلفات انرژی در گلخانه مربوط به سیستم تهویه و انتقال حرارت از دیوارهای آن میباشد و جهت گیری گلخانه نقش مهمی در عملکرد حرارتی آن داشت و انرژی خورشیدی دریافتی از دیوارها را تا 5% تحت تاثیر قرار داد. | ||
کلیدواژهها | ||
موازنه انرژی؛ گلخانه؛ شبیه سازی انرژی؛ طراحی گلخانه | ||
عنوان مقاله [English] | ||
Energy analysis by simulating the geometry and climatic parameters of a miniature rose greenhouse in TRNSYS and validation with measured data | ||
نویسندگان [English] | ||
Vahid Savabi1؛ Gholamreza chegini2؛ Akbar Arabhosseini3 | ||
1Phd Student Agrotechnology Department of Agrotechnology, َFaculty of Agriculture, College of Abouraihan, University of Tehran, In Pakdasht, Tehran Iran | ||
2Associeted Professor, Agrotechnology Department of Agrotechnology, َFaculty of Agriculture, College of Abouraihan, University of Tehran, In Pakdasht, Tehran Iran | ||
3Professor, Agrotechnology Department of Agrotechnology, َFaculty of Agriculture, College of Abouraihan, University of Tehran, In Pakdasht, Tehran Iran | ||
چکیده [English] | ||
Energy costs for greenhouses are one of the most important challenges for crop production in such environments. Predicting the thermal needs of a greenhouse is essential to improve its thermal performance, and achieving an optimal solution for predicting thermal behavior and energy management is very complex. In this study, a real rose greenhouse model in Pakdasht city was simulated using TRNSYS software. In this model, the greenhouse geometry as well as the ventilation, cooling, and heating systems were simulated according to their real counterparts. During a month, the temperature and relative humidity inside the greenhouse were measured using sensors installed at different points in the greenhouse. The simulated data were compared with the measured data collected each month. The difference between the simulation results and the measured data was calculated using the following criteria: root mean square error (RMSE), coefficient of variation of root mean square error (CV RMSE), and normalized mean bias error (NMBE). The temperature error inside the greenhouse was 3.5 °C and 12% for relative humidity. Using greenhouse simulation, the greenhouse energy balance was calculated for each month over a year, which showed that the largest energy losses in the greenhouse were related to the ventilation system and heat transfer through its walls. In addition, the orientation of the greenhouse played a significant role in its thermal performance, with orientation changing up to 5% of the solar energy received by the walls. | ||
کلیدواژهها [English] | ||
Energy balance, greenhouse, energy simulation, greenhouse design | ||
مراجع | ||
Attar, I., Naili, N., Khalifa, N., Hazami, M., & Farhat, A. (2013). Parametric and numerical study of a solar system for heating a greenhouse equipped with a buried exchanger. Energy Conversion and Management, 70, 163-173. Ahamed, M. S., Guo, H., & Tanino, K. K. (2016). Modeling of heating requirement in Chinese Solar Greenhouse. In 2016 ASABE annual international meeting (p. 1). American Society of Agricultural and Biological Engineers. Ahamed, M. S., Guo, H., & Tanino, K. (2018). A quasi-steady state model for predicting the heating requirements of conventional greenhouses in cold regions. Information processing in agriculture, 5(1), 33-46. Ahamed, M. S., Guo, H., & Tanino, K. (2018). Development of a thermal model for simulation of supplemental heating requirements in Chinese-style solar greenhouses. Computers and Electronics in Agriculture, 150, 235-244. Ahamed, M. S., Guo, H., & Tanino, K. (2020). Modeling heating demands in a Chinese-style solar greenhouse using the transient building energy simulation model TRNSYS. Journal of Building Engineering, 29, 101114. ASHRAE Handbook of Fundamentals (1989), chapter 22: Ventilation and Infiltration. Awani, S., Chargui, R., Kooli, S., Farhat, A., & Guizani, A. (2015). Performance of the coupling of the flat plate collector and a heat pump system associated with a vertical heat exchanger for heating of the two types of greenhouses system. Energy conversion and management, 103, 266-275. Baddadi, S., Bouadila, S., Ghorbel, W., & Guizani, A. (2019). Autonomous greenhouse microclimate through hydroponic design and refurbished thermal energy by phase change material. Cleaner Production, 211, 360-379. Bambara, J., & Athienitis, A. K. (2019). Energy and economic analysis for the design of greenhouses with semi-transparent photovoltaic cladding. Renewable Energy, 131, 1274-1287. Banakar, A., Montazeri, M., Ghobadian, B., Pasdarshahri, H., & Kamrani, F. (2021). Energy analysis and assessing heating and cooling demands of closed greenhouse in Iran. Thermal Science and Engineering Progress, 25, 101042. Brækken, A., Sannan, S., Jerca, I. O., & Bădulescu, L. A. (2023). Assessment of heating and cooling demands of a glass greenhouse in Bucharest, Romania. Thermal Science and Engineering Progress, 41, 101830. Candy, S., Moore, G., & Freere, P. (2012). Design and modeling of a greenhouse for a remote region in Nepal. Procedia Engineering, 49, 152-160. Choab, N., Allouhi, A., El Maakoul, A., Kousksou, T., Saadeddine, S., & Jamil, A. (2020). Effect of greenhouse design parameters on the heating and cooling requirement of greenhouses in moroccan climatic conditions. IEEE Access, 9, 2986-3003. Canakci, M., Emekli, N. Y., Bilgin, S., & Caglayan, N. (2013). Heating requirement and its costs in greenhouse structures: A case study for Mediterranean region of Turkey. Renewable and Sustainable Energy, 24, 483-490. Chen, C., Li, Y., Li, N., Wei, S., Yang, F., Ling, H., ... & Han, F. (2018). A computational model to determine the optimal orientation for solar greenhouses located at different latitudes in China. Solar Energy, 165, 19-26. Chen, J., Ma, Y., & Pang, Z. (2020). A mathematical model of global solar radiation to select the optimal shape and orientation of the greenhouses in southern China. Solar Energy, 205, 380-389. Choab, N., Allouhi, A., El Maakoul, A., Kousksou, T., Saadeddine, S., & Jamil, A. (2019). Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies. Solar Energy, 191, 109-137. Choab, N., Allouhi, A., El Maakoul, A., Kousksou, T., Saadeddine, S., & Jamil, A. (2020). Effect of greenhouse design parameters on the heating and cooling requirement of greenhouses in moroccan climatic conditions. IEEE Access, 9, 2986-3003. Dimitropoulou, A. M. N., Maroulis, V. Z., & Giannini, E. N. (2023). A Simple and Effective Model for Predicting the Thermal Energy Requirements of Greenhouses in Europe. Energies, 16(19), 6788. Dufie, J. A., & Beckman, W. A. (1974). Solar energy thermal processes. Eguía-Oller, P., Martínez-Mariño, S., Granada-Álvarez, E., & Febrero-Garrido, L. (2021). Empirical validation of a multizone building model coupled with an air flow network under complex realistic situations. Energy and Buildings, 249, 111197. Fox, J. A., Adriaanse, P., & Stacey, N. T. (2019). Greenhouse energy management: The thermal interaction of greenhouses with the ground. Journal of Cleaner Production, 235, 288-296. Gupta, R., Tiwari, G. N., Kumar, A., & Gupta, Y. (2012). Calculation of total solar fraction for different orientation of greenhouse using 3D-shadow analysis in Auto-CAD. Energy and Buildings, 47, 27-34. Ha, T., Lee, I. B., Kwon, K. S., & Hong, S. W. (2015). Computation and field experiment validation of greenhouse energy load using Building Energy Simulation model. International Journal of Agricultural and Biological Engineering, 8(6), 116-127. Henshaw, P. (2017). Modelling changes to an unheated greenhouse in the Canadian subarctic to lengthen the growing season. Sustainable Energy Technologies and Assessments, 24, 31-38. Kikhaei, Zarei, Qasim, Ganji Khoramdel, N, Sadeghi, 2021. Determination of water requirement of rose cultivars in hydroponic greenhouse. Water Research in Agriculture, 34(4), 531-542(In persian) Liu, B. Y., & Jordan, R. C. (1963). The long-term average performance of flat-plate solar-energy collectors: with design data for the US, its outlying possessions and Canada. Solar energy, 7(2), 53-74. Mohsenipour, M., Ebadollahi, M., Rostamzadeh, H., & Amidpour, M. (2020). Design and evaluation of a solar-based trigeneration system for a nearly zero energy greenhouse in arid region. Journal of cleaner production, 254, 119990. Mashonjowa, E., Ronsse, F., Milford, J. R., & Pieters, J. G. (2013). Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model. Solar Energy, 91, 381-393. Mohammad, A. T., Mat, S. B., Alrubaih, M. S., & Al-abidi, A. A. (2014). Optimization of cooling load for different greenhouse models in Malaysia. International Journal of Renewable Energy Research, 4(1), 42-48. Ponce, P., Molina, A., Cepeda, P., Lugo, E., & MacCleery, B. (2014). Greenhouse design and control (p. 3). London, UK: CRC press. Rasheed, A., Kwak, C. S., Kim, H. T., & Lee, H. W. (2020). Building energy, a simulation model for analyzing energy saving options of multi-span greenhouses. Applied Sciences, 10(19), 6884. Seem, J. E. (1987). Modeling of heat in buildings. Madison, USA, University of Wisconsin. PhD. Stanghellini, C. (1987). Transpiration of greenhouse crops: an aid to climate management. Wageningen University and Research. Sabir, N., & Singh, B. (2013). Protected cultivation of vegetables in global arena: A review. The Indian Journal of Agricultural Sciences, 83(2). Stanciu, C., Stanciu, D., & Dobrovicescu, A. (2016). Effect of greenhouse orientation with respect to EW axis on its required heating and cooling loads. Energy Procedia, 85, 498-504. Su, Y., & Xu, L. (2017). Towards discrete time model for greenhouse climate control. Engineering in agriculture, environment and food, 10(2), 157-170. Taki, M., Ajabshirchi, Y., Ranjbar, S. F., Rohani, A., & Matloobi, M. (2016). Modeling and experimental validation of heat transfer and energy consumption in an innovative greenhouse structure. Information Processing in Agriculture, 3(3), 157-174. Taki, M., & Yildizhan, H. (2018). Evaluation the sustainable energy applications for fruit and vegetable productions processes; case study: Greenhouse cucumber production. Journal of cleaner production, 199, 164-172. Vadiee, A. (2011). Energy analysis of the closed greenhouse concept: Towards a sustainable energy pathway (Doctoral dissertation, KTH Royal Institute of Technology). Vadiee, A. (2013). Energy management in large scale solar buildings: The closed greenhouse concept (Doctoral dissertation, KTH Royal Institute of Technology). Villagran, E. A., Romero, E. J. B., & Bojacá, C. R. (2019). Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosystems Engineering, 188, 288-304. Yazdanian, M., & Klems, J. H. (1993). Measurement of the exterior convective film coefficient for windows in low-rise buildings. | ||
آمار تعداد مشاهده مقاله: 48 تعداد دریافت فایل اصل مقاله: 61 |