
تعداد نشریات | 163 |
تعداد شمارهها | 6,812 |
تعداد مقالات | 73,433 |
تعداد مشاهده مقاله | 134,201,503 |
تعداد دریافت فایل اصل مقاله | 104,906,867 |
اثر متیل جاسمونات برمیزان تولید ترکیبات زیستفعال در ریشه موئین شیرین بیان (Glycyrrhiza glabra) | ||
علوم باغبانی ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 1-17 اصل مقاله (1.79 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2024.380834.2200 | ||
نویسندگان | ||
مریم اله دو* 1؛ لیلا مهرآوران2؛ حمیده خواجه3 | ||
1گروه اصلاح نباتات و بیوتکنولوژی. دانشکده کشاورزی. دانشگاه زابل. زابل. ایران | ||
2گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران | ||
3پژوهشکده زیست فناوری کشاورزی، دانشگاه زابل، زابل، ایران | ||
چکیده | ||
با توجه به میزان اندک ترکیبات زیست فعال مهم، مانند گلیسیریزین و گلیسریتنیک اسید در شیرین بیان و پیچیدگی سنتز شیمیایی آنها، تولید درون شیشه ایریشه موئین و تحریک تولید آنها با استفاده از الیسیتورها روشی کارآمد برای تولید در شرایط درون شیشهای میباشد. لذا در این پژوهش، با استفاده از اگروباکتریوم رایزوژنز اقدام به تولید ریشه موئین شد. جهت حذف باکتری، بعد از تلقیح ازدو نوع آنتی بیوتیک سفوتاکسیم معمولی و نمک سفوتاکسیم سدیم، و برای افزایش تولید ترکیبات زیست فعال از الیسیتور متیل جاسمونات با غلظت 100 میکرومولار استفاده شد. برداشت ریشهها در یک، دو، سه و پنج روز بعد از تیمار انجام شد. نتایج نشان دادکه محتوای گلیسیریزین، گلیسریتنیک اسید و فلاونوئید کل در تمام تیمارها نسبت به تیمار شاهد کاهش داشت. میزان این کاهش در تیمار بدون الیسیتور ، حذف باکتری با یک واکشت با نمک سفوتاکسیم سدیم بیشترین (959/0 و 925/0 برابر بهترتیب برای گلیسیریزین و گلیسریتنیک اسید) بود. میزان فنل کل (22/31 گالیک اسید بر گرم وزن خشک) و فعالیت آنتی اکسیدانی (85/90 درصد)، در ریشههایی که دو روز تحت تاثیر الیسیتور بودند و و ریشههای شاهد بیشترین مقدار بود. در این تحقیق، میزان گلیسیریزین و گلیسریتنیک اسید تحت تاثیر الیسیتور متیل جاسمونات قرار نگرفت و یا کاهش یافت که میتواند به اثر گونه و اکوتیپ، تعداد واکشت بعد از تلقیح، نوع آنتی بیوتیک، غلظت الیسیتور و مدت زمانی که ریشههای موئین تحت تاثیر الیسیتور قرار گرفتهاند نسبت داده شود. بر اساس نتایج، استفاده از سفوتاکسیم برای حذف باکتری از محیط کشت توصیه میشود. | ||
کلیدواژهها | ||
گلیسیریزین؛ گلیسریتنیک اسید. نمک سفوتاکسیم سدیم | ||
عنوان مقاله [English] | ||
Effect of Methyl Jasmonate on the Production of Bioactive Compounds in Hairy Root Licorice (Glycyrrhiza glabra) | ||
نویسندگان [English] | ||
Maryam Allahdou1؛ Leila Mehravaran2؛ Hamideh Khajeh3 | ||
1Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran | ||
2Department of Plant Breeding and Biotechnology, Agriculture Faculty, University of Zabol, Zabol. Iran | ||
3Institute of Agricultural Biotechnology, University of Zabol, Zabol. Iran | ||
چکیده [English] | ||
Considering the low amount of important bioactive compounds such as glycyrrhizin and glycyrrhetinic acid in licorice and their complex biosynthesis, in vitro production of hairy roots is an efficient method for licoric secondary metabolites production. Therefore, this experiment aimed to investigate the efficiency of licorice hairy roots in the presence of Agrobacterium rhizogenes and the effect of methyl jasmonate (MeJA) at 100 µm, as an elicitor, on inducing glycyrrhizin and glycyrrhetinic acid production.. After inoculation, two kinds of the cefotaxime were used to eliminate the bacterium. The hairy roots were then harvested after one, two, three, and five days of elicitation. Overall, The results showed that the amount of glycyrrhizin, glycyrrhetinic acid and total flavonoids decreased in all treatments compared to the control, and the magnitude of this reduction in hairy roots treated with one inoculation of cefotaxime sodium salt and no MeJA was the highest in terms of glycyrrhizin (0.959 times) and glycyrrhetinic acid (0.925 times) production. In addition, the amount of total phenol (31.22 GAE/g D.W) and antioxidant activity (90.85%) was highest in in the hairy roots subjected to MeJA for two days and the control. MeJA had negative or no effect on production of glycyrrhizin and glycyrrhetinic acid, which can be related to type of species, ecotype, and antibiotics as well as the number of subcultures after inoculation, the concentration of the elicitor, and a period of time at which hairy roots exposed to a given elicitor. Based on our findings, cefotaxime is recommended to omit the bacteria from culture media. Overall, our findings could be used as an economically method to increase bioactive compounds, especially glycyrrhizin and glycerethnic acid, at a short time and low cost. | ||
کلیدواژهها [English] | ||
Cefotaxime sodium salt, Glycyrrhetinic acid, Glycyrrhizin, Methyl Jasmonate | ||
مراجع | ||
REFERENCES Alcalde, M. A., Perez-Matas, E., Escrich, A., Cusido, R. M., Palazon, J. & Bonfill, M. (2022). Biotic elicitors in adventitious and hairy root cultures: a review from 2010 to 2022. Molecules, 27, 5253. https://doi.org/10.3390/ molecules27165253. Amagaya, S., Sugishita, E., Ogihara, Y., Ogawa, S., Okada, K. & Aizawa T. (1984). Comparative studies of the stereoisomers of glycirrhithic acid on anti-inflamatory activities. Journal Pharmacobio- Dynamics, 7 (12), 923-928. Baek, S., Ho, T.-T., Lee, H., Jung, G., Kim, Y. E., Jeong, C.-S. & Young Park, S. (2020). Enhanced biosynthesis of triterpenoids in Centella asiatica hairy root culture by precursor feeding and elicitation. Plant Biotechnology Reports, 14, 45–53. https://doi: 10.1007/ s11816-019-00573-w. Baenas, N., García-Viguera, C. & Moreno, D. A. (2014). Elicitation: a tool for enriching the bioactive composition of foods. Molecules, 19, 13541-13563. https://doi: 10.3390/molecules190913541. Castellanos-Arévalo, A. P., Estrada-Luna, A. A., Cabrera-Ponce, J. L., Valencia-Lozano, E., Herrera-Ubaldo, H., de Folter., S. …& Délano-Frier, J. P. (2020). Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths. Plant Cell Reports, 39(9), 1143-1160. https://doi: 10.1007/s00299-020-02553-9. Chang, C. C., Yang, M. H., Wen, H. M. & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food Drug Analysis, 10, 3. https://doi.org/10.38212/2224-6614.2748. Cheruvathur, M. K. & Thomas, T. D. (2014). Effect of plant growth regulators and elicitors on rhinacanthin accumulation in hairy root cultures of Rhinacanthus nasutus (L.) Kurz. Plant Cell, Tissue and Organ Culture, 118, 169-177. https://doi: 10.1007/ s11240-014-0473-9. Ding, H., Deng, W., Ding, L., Ye, X., Yin, S. & Huang, W. (2020). Glycyrrhetinic acid and its derivatives as potential alternative medicine to relieve symptoms in nonhospitalized COVID-19 patients. Journal of Medicinal Virology, 92 (10), 2200-2204. https://doi: 10.1002/jmv.26064. Gai, Q-Y., Jiao, J., Wang, X., Zang, Y-P., Niu, L-L. & Fu, Y-J. (2019). Elicitation of Isatis tinctoria L. hairy root cultures by salicylic acid and methyl jasmonate for the enhanced production of pharmacologically active alkaloids and flavonoids. Plant Cell, Tissue and Organ Culture, 137, 77–86. https://doi: 10.1007/s11240-018- 01553-8. Ghahraman, A. (1999). Basic botany: anatomy and morphology, University of Tehran Press, pp. 539. Giri, C. C. & Zaheer, M. (2016). Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell, Tissue and Organ Culture, 126, 1-18. https://doi: 10.1007/s11240-016-0985-6. Gundlach, H., Muller, M. J., Kutchan, T. M., & Zenk, M. H. (1992). Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proceeding of the National Academy of Sciences of the USA, 89(6), 2389-2393. Häkkinen, S. T., Moyano, E., Cusidó, R. M. & Oksman-Caldentey, K-M. (2016). Exploring the metabolic stability of engineered hairy roots after 16 years maintenance. Frontiers in Plant Science, 7, 1486. https://doi: 10.3389/fpls.2016.01486. Ho, T. T., Lee, J. D., Ahn, M. S., Kim, S. W. & Park, S. Y. (2018). Enhanced production of phenolic compounds in hairy root cultures of Polygonum multiflorum and its metabolite discrimination using HPLC and FT-IR methods. Applied Microbiology and Biotechnology, 102, 9563-9575. https://doi.org/10.1007/s00253-018-9359-9. Huang, D., Ou, B. & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856. https://doi.org/10.1021/jf030723c. Hussain, M. J., Abbas, Y., Nazli, N., Fatima, S., Drouet, S., Hano, C. & Abbasi, B. H. (2022). Root cultures, a boon for the production of valuable compounds: a comparative review. Plants, 11(3), 439. https://doi:10.3390/plants11030439. Kandoudi, W., Tavaszi-Sárosi, S. & Németh-Zámboriné, E. (2023). Inducing the production of secondary metabolites by foliar application of methyl jasmonate in peppermint. Plants, 12, 2339. https://doi.org/10.3390/plants12122339. Kim Y., Wyslouzil B. E . & Weathers P. J. (2002). Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cellular & Developmental Biology – Plant. 38, 1-10. https://doi.org/10.1079/IVP2001243. Kowalska, A. & Kalinowska-Lis, U. (2019). 18β-Glycyrrhetinic acid: its core biological properties and dermatological applications. International Journal of Cosmetic Science, 41(4), 325-331. https://doi: 10.1111/ics.12548. Kuzovkina, I. N., Guseva, A. V., Kovács, D., Szöke, É. & Vdovitchenko, M. Y. (2005). Flavones in genetically transformed Scutellaria baicalensis roots and induction of their synthesis by elicitation with methyl jasmonate. Russian Journal of Plant Physiology, 52, 77-82. https://doi.org/10.1007/s11183-005-0012-y. Li, J. Y., Cao, H. Y., Liu, P., Cheng, G. H. & Sun, M. Y. (2014). Glycyrrhizic acid in the treatment of liver diseases: literature review. Biomedical Research International, 872139. https://doi: 10.1155/2014/872139. Mehrotra, S., Kukreja, A.K., Khanuja, S.P.S. & Mishra, B.N. (2008). Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electronic Journal of Biotechnology, 11(2), 69-75. http://dx.doi.org/10.4067/S0717-34582008000200009. Moradi, N., Sadat Noori, S. A., Fadavi, A., Mortazavian, S. M. M. & Pakdin Parizi, A. (2021). Analysis efficiency of Iranian Ajowan ecotypes on hairy root production by different agrobacterium rhizogenesis strains. Iranian Journal of Genetics and Plant Breeding, 10(1), 117-127. http://doi:10. IJGPB.2022.17488.1325. Nasrollahi, V., Mirzaie-asl, A., Piri, K., Nazeri, S. & Mehrabi, R. (2014). The effect of drought stress on the expression of key genes involved in the biosynthesis of triterpenoid saponins in liquorice (Glycyrrhiza glabra). Phytochemistry, 103, 32-37. http://doi: 10.1016/j.phytochem.2014.03.004. Qu, X. & Christ, B.J. (2007). In vitro culture of the obligate parasite Spongospora subterranea (Cercozoa; plasmodiophorida) associated with root-inducing transferred- DNA transformed potato hairy roots. Journal of Eukaryotic Microbiology, 54(6), 465-467. http://doi: 10.1111/j.1550- 408.2007.00289.x. Ruiz-May, E., De-la- Peña, C., Galaz- Ávalos, M., Lei, Z., Watson, B. S., Sumner, L. W., Loyola-Vargas, V. M., (2011). Methyl jasmonate induces ATP biosynthesis deficiency and accumulation of proteins related to secondary metabolism inCatharanthus roseus (L.) G. hairy roots, Plant and Cell Physiology, 52(8), 1401-1421. https://doi.org/10.1093/pcp/pcr086. Sa´nchez-Sampedro, M. A., Fernandez-Tarrago, J., Corchete, P., (2005). Yeast extract and methyl jasmonate induced silymarin production in cell culture of Silybum marianum (L.) Gaertn. Journal of Biotechnology, 119(1), 60-69. Sarkar, J., Misra, A. & Banerjee, N. (2020). Genetic transfection, hairy root induction and solasodine accumulation in elicited hairy root clone of Solanum erianthum D. Don. Journal of Biotechnology, 323, 238-245. http://doi: 10.1016/j.jbiotec.2020.09.002. Seki, H., Sawai, S., Ohyama, K., Mizutani, M. & Muranaka T. (2011). Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. The Plant Cell, 23, 4112-4123. https://doi.org/10.1105/tpc.110.082685. Sivanandhan, G., Dev, K. G., Jeyaraj, M., Rajesh, M., Arjunan, A., Muthuselvam, M., Manickavasagam, M. & Ganapathi, A. (2013). Increased production of withanolide A, withanone and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell, Tissue and Organ Culture, 114, 121-129. https://doi.org/10.1007/s11240-013-0297-z. Spollansky, T., Pitta-Alvarez, S. & Giulietti, A. (2000). Effect of jasmonic acid and aluminum on production of tropane alkaloids in hairy root cultures of Brugmansia candida. Electronic Journal of Biotechnology. 3(1), 72-75.
Srivastava, M., Singh, G., Sharma, S., Shukla, S. & Misra, P. (2019). Elicitation Enhanced the Yield of Glycyrrhizin and Antioxidant Activities in Hairy Root Cultures of Glycyrrhiza glabra L. Journal of Plant Growth Regulation, 38, 373-384. https:// doi: 10.1007/s00344-018-9847-2. Syklowska-Baranek, K., Pietrosiuk, A., Kokoszka, A. & Furmanowa, M. (2009). Enhancement of taxane production in hairy root culture of Taxus x media var. Hicksii. Journal of Plant Physiology, 166(17), 1950–1954. https:// doi: 10.1016/j.jplph.2009.05.001. Tenea, G.N, Calin A., Gavrila, L. & Cucu N. (2008). Manipulation of root biomass and biosynthethic potential of Glycirrhiza glabra L. plants by Agrobacterium rhizogenes mediated transformation. Roumanian Biotechnological Letters, 13, 3922-3932. Thwe, A., Arasu, M., Li, X., Park, CH., Kim, Sj., Al-Dhabi, NA. & Park, S.U. (2016). Effect of different Agrobacterium rhizogenes strains on hairy root induction and phenylpropanoid biosynthesis in tartary buckwheat (Fagopyrum tataricum Gaertn). Frontiers in Microbiology, 7, 1-10. https://doi.org/10.3389/fmicb.2016.00318 Torkamani, M., Jafari, M., Abbaspour, N., Heidary, R. & Safaie, N. (2014). Enhanced production of valerenic acid in hairy root culture of Valeriana officinalis by elicitation. Open Life Science, 9, 853-863. https://doi.org/10.2478/s11535-014-0320-3. Wang M., Qin, Y-Y., Wei, N-N., Xue, H-Y. & Dai, W-S. (2023). Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation in citrus seeds and its application in gene functional analysis. Frontiers in Plant Science, 14, 1293374. http://dx.doi.org/10.3389/fpls.2023.1293374 Wojdyło, A., Oszmiański, J. & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105, 940-949. https:// doi. org/ 10. 1016/j. foodc hem. 2007. 04. 038. Wongwicha, W., Tanaka, H., Shoyama, Y. & Putalun, W. (2011). Methyl jasmonate elicitation enhances glycyrrhizin production in Glycyrrhiza inflata hairy roots cultures. Zeitschrift fur Naturforschung, 66c, 423 - 428. https://doi: 10.1515/znc-2011-7-815. Yordanova, Z. P., Georgiev, M. I. (2017). Cell factories. In T. Brian, B.G. Murray & D.J. Murphy (Eds.), Encyclopedia of Applied Plant Sciences, (pp. 72–76), vol II, Second edition. Academic Press. https://doi.org/10.1016/B978-0-12-394807-6.00158-1. Zhao, J., Davis, LC. & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283-333. https:// doi: 10.1016/j.biotechadv.2005.01.003. Zhou, F., Wu, G., Cai, D., Xu, B.,Yan, M. …& Lei, H.M. (2019). Synthesis and biological activity of glycyrrhetinic acid derivatives as antitumor agents. European Journal of Medicine Chemistry, 178, 623-635. https://doi: 10.1016/j.ejmech.2019.06.029. | ||
آمار تعداد مشاهده مقاله: 265 تعداد دریافت فایل اصل مقاله: 188 |