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A B S T R A C T 

 

The alteration of igneous rocks indicates the formation and identification of valuable mineral deposits, such as bentonite, which is in increasing 
demand across various industries, including oil and steel. Remote sensing methods, leveraging the spectral characteristics of minerals, can 
detect hydrothermal alteration zones associated with various ore deposits, including bentonite, thereby reducing the cost of time and 
fieldwork. This study investigates the alteration of igneous rocks in the Khor and Biabanak region, located in the eastern part of Isfahan 
province, Iran, northeast of Nain city. Using ETM+ satellite data and field observations, we aimed to identify new potential bentonite resources. 
The ETM+ satellite data was processed using preprocessing stages including Layer Stacking, Subseting, Radiometric Corrections, Geometric 
Corrections, SLC-off Gap Filling, Noise Reduction (Destriping), Cloud and Water Masking, and Band Scaling/Normalization). This was 
followed by applying False Color Composite (FCC), Principal Component Analysis (PCA), the Enhanced Crosta technique, and the Least 
Squares Fitting (LS-Fit) method, which enabled us to identify promising mineral zones. Field surveys and X-ray Diffraction (XRD) analysis 
of samples confirmed significant concentrations of smectite (montmorillonite), indicative of substantial bentonite deposits. These findings 
suggest that integrating remote sensing techniques with field validation successfully identified areas with significant bentonite potential for 
further exploration. The successful application of these methods, particularly in a region with limited prior bentonite-focused remote sensing 
studies, highlights their utility in similar geological settings, offering a valuable approach for mineral exploration. 
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1. Introduction 

Remote sensing is a technique that measures objects from a distance 
without direct contact [1]. Remote sensing data can provide reflectance 
spectroscopic information that aids in locating mineral deposits and 
reducing the expenses and time of fieldwork studies [2, 3]. Remote 
sensing methods, especially those utilizing the spectral properties of 
minerals, have been effective in identifying hydrothermal alteration 
zones associated with various ore deposits, including bentonite [4, 5]. 
These techniques, especially when using ASTER data, have proven 
effective in mapping hydrothermal alteration zones, as demonstrated by 
studies [6, 7] in which good geological exposure allows for the direct 
identification of spectral signatures from rocks and soils. A key principle 
of mineral exploration is the increased likelihood of finding new 
deposits near existing ones. For example, if mining is occurring in a 
certain area, similar minerals are more likely to be found nearby, with 
the likelihood decreasing with distance. In this context, remote sensing 
can effectively identify areas with high potential for mineralization, 
primarily through multi- or hyperspectral remote sensing images [8, 9]. 
It is important to note that iron oxide minerals often co-occur with clay 
minerals, such as those found in bentonite within hydrothermal 
alteration zones. The processes that lead to the formation of bentonite 
can also result in the formation of iron oxides. Therefore, detecting areas 
with enhanced iron oxide signatures can be a valuable indicator when  

 
 
 
locating potential bentonite deposits. 

Landsat 7, launched in April 1999, features the Enhanced Thematic 
Mapper Plus (ETM+). Its primary mission was to extend the data 
collection initiated by Landsat-4 and Landsat-5 TM. The sensor's bands 
1 through 7, which encompass the blue, green, red, near infrared, and 
shortwave infrared spectra, correspond to those of the Landsat TM and 
have a ground resolution of 30 meters. This study utilized bands 1, 2, 3, 
4, 5, and 7. The thermal infrared band of ETM+ (Band 6) had a ground 
resolution of 60 meters. Most types of studies can be sufficiently 
conducted with a spatial resolution of 30 meters [10]. However, this 
study did not use Band 6. Image processing techniques, such as band 
combination and ratioing, PCA, SAM, SID, MTMF, LSU, and CEM, 
were applied using the spectral data obtained from the satellites [11, 12]. 

Multispectral data frequently include bands with overlapping 
information. Principal Component Analysis (PCA) addresses this by 
analyzing the statistical properties of multi-band images; thus, 
eliminating redundant and unnecessary data [13]. PCA mitigates the 
impact of irradiance that affects all bands and enhances the reflectance 
characteristics of geological materials. This technique is applicable to 
multivariate datasets, such as multispectral images in remote sensing, to 
extract spectral signatures of specific minerals, including those related 
to hydrothermal alteration. The Crosta technique, a feature-oriented 
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PCA method, relies on the correlation between the eigenvector matrix 
values used in PCA and the spectral responses of target materials. This 
approach identifies the principal components that encapsulate the 
spectral information of the target mineral, with the resulting pixel values 
represented as either dark or bright [14]. Many studies have successfully 
determined mineralization zones using PCA, proving its effectiveness 
compared to classical methods [12, 15-17]. 

The Crosta technique can be used with a selection of four to six 
multispectral bands from Landsat and ASTER satellite data. The choice 
of specific bands is based on their reflectance values. After conducting 
PCA, the most appropriate component was identified by analyzing how 
the newly created bands correlate with bands of high and low 
reflectivity. The reflectivity signs of these bands were then assessed. If 
the band with the highest reflectivity is positive, the eigenvector loading 
is positive, resulting in the target minerals appearing brighter. 
Conversely, if the highest-reflectivity band is negative, the eigenvector 
loading is negative. To improve the visibility of the minerals, the 
component was multiplied by -1. Crosta et al. (2003) utilized this 
approach to adapt PCA for detecting alunite, illite, kaolinite-smectite, 
and kaolinite in Patagonia, Argentina [14]. They employed the following 
band combinations: 1, 3, 5, 7 (with bands 1 and 5 showing low reflectance 
and bands 3 and 7 showing high reflectance) for alunite; 1, 3, 5, 6 (with 
bands 1 and 5 showing high reflectance and bands 3 and 6 showing low 
reflectance) for illite; 1, 4, 6, 9 (with bands 1 and 6 showing low 
reflectance and bands 4 and 9 showing high reflectance) for kaolinite-
smectite; and 1, 4, 6, 7 (with bands 1 and 6 showing low reflectance and 
bands 4 and 7 showing high reflectance) for kaolinite. 

2. Geographic location of the area 

The study area covers approximately 400 square kilometers in the 
eastern part of Isfahan province, northeast of Nain city, within the Khor 
and Biabanak district. It is situated south of Khor city and north of 
Mehriz city, between latitudes 33°33'45" to 33°41'06" N and longitudes 
55°15'07" to 55°25'09" E. This area can be observed on a 1:100,000 
geological map (Fig. 1). 

3. Geological characteristics of the area 

The research site is situated in the Central Iran Zone. The oldest 
geological formations present in this area are part of the Upper Jurassic-
Lower Cretaceous Chah Palang formation. These rocks, exposed in Kuh-
e Matang, are characterized by variegated mud shale with sandstone 
interlayers [2]. 

These rocks are conformably overlain by the Neocomian Noqreh 
formation, which includes a variety of rock types, such as alternating 
quartz conglomerate, red and green sandstone, marl, limestone, and 
argillite, as well as individual lenses of gypsiferous clay or gypsum. The 
Noqreh formation is conformably overlain by the Shah Kuh formation 
[3]. 

The Shah Kuh formation primarily comprises orbitolina limestone 
but also includes marl and sandstone. This formation is exposed in Kuh-
e Matang and in fault blocks to the southwest and east of it. Overlying 
the Shah Kuh formation's limestone is a sequence of weakly 
metamorphosed rocks comprising the Biabanak and Mirza formations. 
These formations are of particular interest due to their potential for 
hosting bentonite deposits. 

The Biabanak formation is divided into two members: the lower one 
and the upper one. To the east of Kuh-e Howz-e Mirza, a member of 
flyschoid interstratified rocks is identified in the upper part of the 
formation. The Farrokhi formation is conformably overlain by the 
Paleocene Chupanan formation. 

The Lower Eocene Darreh Anjir formation occurs with a sharp 
angular unconformity over the Lower Cretaceous rocks. This formation 
consists of intercalating conglomerate and sandstone, mudstone and 
marl, and limestone. In the eastern part of the area occupied by the 
Darreh Anjir formation, a 320 m red member is identified. 

The Lower Eocene rocks rest on the rocks of the Darreh Anjir 

formation without apparent unconformity, but they show a sharp 
angular unconformity with older formations. These rocks are 
represented at the base mostly by tuffaceous conglomerate and upward 
by thinly intercalating tuff, tuffaceous sandstone, and tuffaceous 
siltstone. In the lower portions of the sequence, an essentially tuffaceous 
unit is singled out. The apparent thickness of the Lower Eocene volcanic 
rocks is about 200 meters. In the southeastern spurs of Kuh-e Matang 
pyroclastic rocks locally underwent hydrothermal alterations and were 
transformed into bentonite (up to 40 m thick) (Fig. 1) [2]. 

The presence of altered pyroclastic rocks transformed into bentonite 
in the southeastern spurs of Kuh-e Matang highlights the direct 
relevance of the region's geology to the study's objective. 

 

 
Fig. 1. The geological map of the area [2]. 

 

4. Satellite data of the study area 

Landsat data have been a valuable tool in various earth sciences 
applications, since its inception and remains relevant today. In 
geological applications, it aids in locating minerals containing iron oxide 
and hydroxyl groups found in hydrothermally altered zones of mineral 
deposits, particularly in arid and semiarid regions. This makes it widely 
utilized in mine exploration studies, especially for identifying 
hydrothermal alteration zones. 

The study area's hydrothermal alteration and iron oxide-enriched 
locations were analyzed using the principal component analysis (PCA), 
also known as the Crosta technique in remote sensing studies. 

Wall rocks containing mineral deposits exhibit end products resulting 
from hydrothermal fluid reactions, which alter the rock's chemistry and 
lead to ore and hydrothermal mineral deposition. All porphyry-type 
deposits show well-developed zones that are distinguishable by 
differences in major oxides and trace element concentrations, which 
manifest as changes in the mineralogical composition of altered zones. 

Hydrothermal alteration, a key process in the formation of many ore 
deposits, including bentonite, changes the mineralogical composition of 
the host rocks. These alterations often result in the formation of clay 
minerals (such as smectite, the primary component of bentonite) and 
iron oxides. Remote sensing techniques, particularly the PCA, are 
effective in mapping these alteration minerals by identifying diagnostic 
spectral features. 

Landsat 7 ETM+ bands 1, 3, 5, and 7 are deemed appropriate for 
geological and exploration geology research. The analysis included 
general statistics, a correlation matrix, and PCA covariance eigenvector 
values for these Landsat 7 ETM+ bands. Specifically, bands 1, 3, 4, and 5 
are sensitive to iron oxide minerals, while bands 1, 4, 5, and 7 are useful 
for detecting hydroxyl-bearing minerals, including clay minerals. 

The study area is located in the UTM system in zone 40 South. 
Satellite data for this area have been acquired through the ETM sensor 
of the Landsat 7 satellite in seven bands. This dataset consists of three 
visible bands (blue, green, and red) along with one near-infrared band 
and two mid-infrared bands, all with a spatial resolution of 30 meters 
and reflective properties. Moreover, the dataset includes a thermal 
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infrared band with a spatial resolution of 120 meters and emissive 
properties. While newer sensors, such as Landsat 8/9 OLI offer improved 
capabilities, ETM+ data was chosen for this study because of its 
availability and historical coverage for the Khor and Biabanak region. 
The selection of ETM+ data was driven by its archival availability and 
extensive temporal coverage for the Khor and Biabanak region, enabling 
potential future time-series analysis. Furthermore, the spectral range of 
ETM+ bands is suitable for detecting the key alteration minerals 
associated with bentonite deposits, namely hydroxyl-bearing minerals 
and iron oxides. 

4.1. Data preprocessing 

The Landsat 7 ETM+ data underwent several preprocessing steps to 
ensure accuracy and consistency in the analysis. These steps included 
Layer Stacking, Subsetting, Radiometric Corrections, Geometric 
Corrections, SLC-off Gap Filling, Noise Reduction (Destriping), Cloud 
and Water Masking, and Band Scaling/Normalization. During geometric 
correction, the ground control points (GCPs) and digital elevation 
model (DEM) were used to ensure sub-pixel accuracy. Radiometric 
correction involved converting the digital numbers to surface 
reflectance using appropriate atmospheric correction models. The SLC-
off gaps were filled using a nearest neighbor interpolation technique. 

After these preprocessing steps, the main image processing 
techniques for mineral mapping, such as PCA and LS-Fit, were 
performed. Table 1 presents the general statistics and correlation matrix 
values for the bands (1, 2, 3, 4, 5, and 7) utilized in the study. 

 
Table 1. Correlation Matrix values of Landsat 7 ETM+ satellite image data for six 
bands. 

Correlation Matrix Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Band 1 1.000000 0.318319 0.931974 0.206149 0.140918 0.710243 

Band 2 0.318319 1.000000 0.401794 0.979046 0.962496 0.319261 

Band 3 0.931974 0.401794 1.000000 0.314253 0.249639 0.758419 

Band 4 0.206149 0.979046 0.314253 1.000000 0.994295 0.283505 

Band 5 0.140918 0.962496 0.249639 0.994295 1.000000 0.251874 

Band 7 0.710243 0.319261 0.758419 0.283505 0.251874 1.000000 

 

5. Remote sensing studies by geographic information 
systems 

As previously noted, the role of remote sensing studies has grown 
significantly in supporting geological exploration for ore deposits. These 
studies enhance efficiency and streamline workflows by enabling 
disciplined data utilization with the aid of GIS, which allows for 
comprehensive multidimensional evaluations. In this study, GIS 
software (ENVI 5.3) was used for data processing, analysis, and 
visualization, facilitating the integration of remote sensing data with 
other spatial information. 

The primary objective of this research was to delineate 
hydrothermally altered zones potentially associated with bentonite 
mineralization within the study area. To achieve this, we employed a 
combination of visual interpretation using False Color Composites 
(FCC) and spectral analysis techniques including Principal Component 
Analysis (PCA) and Least Squares Fitting (LS-Fit). While this study 
utilizes PCA and LS-Fit, other methods, such as the U-Statistic method 
and singularity methods in combination with fuzzy gamma operators, 
have also been successfully applied to delineate mineral potential zones 
from satellite imagery systems [18-20]. 

5.1. False color composite (FCC) 

False color composites, such as the one used here, are valuable for 
visual interpretation of alteration zones and have been combined with 
techniques, such as singularity analysis for enhanced alteration mapping 
in other studies [21]. Referring to Figs. 2 and 3, previous research has 
shown that clay minerals exhibit the greatest reflectance in band 5 and 

the highest absorption in band 7, while iron oxides show peak 
reflectance in bands 3 and 5 and peak absorption in bands 1 and 4 [22]. 
Since plants have the highest reflectance in band 4 of ETM+ satellite 
data, vegetation will appear very clear and bright green in an RGB (741) 
color composite. As shown in Fig. 4, no significant vegetation cover is 
observed in the study area. 

 

 
Fig. 2. Spectral reflectance for several typical clay minerals [1] 

 

 

 
 

Fig. 3. Spectral reflectance for jarosite, hematite, and goethite [1]. 

 

 
Fig. 4. RGB (741) color composite image of the study region. 

 

5.2. Principal component analysis method (the Crosta method) 

To gather spectral data linked to hydrothermal changes across a vast 
region, a reliable and tested image-processing method was selected: the 
Crosta method based on the PCA. This method was preferred for its 
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ability to efficiently extract “clay + iron” spectral signatures using the 
limited spectral resolution of ETM+, relying solely on scene statistics 
without any prior geological knowledge of the area. 

PCA was applied to a subset of bands 1, 3, 4, and 5 for both ETM+ 
scenes to collect spectral data associated with iron minerals (hematite, 
goethite, and jarosite), which are produced through the weathering of 
sulfides in epithermal environments. Additionally, the PCA was applied 
to the subset of bands 1, 4, 5, and 7 to extract spectral data related to 
hydroxyl-bearing minerals, such as kaolinite, illite, alunite, and other 
minerals typical of hydrothermally altered areas [15, 16]. In addition to 
PCA, fractal models, such as the CN fractal model can also be applied to 
ASTER images to delineate alteration zones [23]. 

5.2.1. Clay minerals alterations (OH type) 

Bands, 7, 5, 4, and 1 were selected, since clay minerals in the spectral 
range of band 5 had reflective features and in the spectral range of band 
7, they exhibited absorptive features and, band 3 was excluded to 
disregard iron oxides, and band 2 was eliminated due to its similarity to 
band 1. 

The covariance matrix and principal component analysis for this 
band combination are presented in Table 2 and 3. According to Table 3, 
the highest difference between the eigenvalues of bands 5 and 7 was 
observed in PC4 (band 7: 0.415046 and band 5: -0.806558). Therefore, 
PC4 was chosen for clay minerals. This image, after negation and 
interactive stretching, is shown in Fig. 5. Bright points in the Fig. 5 not 
only indicate alterations in clay-rich areas but also highlight regions 
containing gypsum. 

 

Table 2. The Covariance matrix values corresponding to bands 1, 4, 5, and 7. 

Covariance Matrix Band 1 Band 4 Band 5 Band 7 

Band 1 650.588878 415.182147 429.920810 177.582231 

Band 4 415.182147 2614.834448 371.583477 160.032234 

Band 5 429.920810 371.583477 327.086325 134.455771 

Band 7 177.582231 160.032234 134.455771 96.089957 

 

Table 3. The PCA eigenvector matrix values for bands 1, 4, 5, and 7. 

Eigenvector Band 1 Band 4 Band 5 Band 7 

PC 1 0.227905 0.952149 0.187019 0.080599 

PC 2 -0.776017 0.303947 -0.507934 -0.217753 

PC 3 -0.411301 -0.0227 0.23768 0.879673 

PC 4 0.0420342 0.022676 -0.806558 0.415046 

 

 
Fig. 5. PC4 image showcasing clay minerals, where altered regions are depicted as 
bright pixels. 

5.2.2. Iron oxide mineral alterations 

As discussed before, the bands 1-3-4-5 were selected for iron oxide 
mineral analysis. This was because iron oxides had strong reflectance 
properties in the spectral range of band 3 and strong absorption 
properties in the spectral range of band 1. The findings from the 
principal component analysis along with the matrix of eigenvectors of 
this band combination are shown in Table 4. 

 
Table 4. The PCA eigenvector matrix values for bands 1, 3, 4, and 5. 

Eigenvector Band 1 Band 3 Band 4 Band 5 

PC1 0.822915 0.119905 0.552773 0.053626 

PC2 0.027727 -0.89255 0.191831 -0.40717 

PC3 -0.33566 -0.25736 0.481031 0.767922 

PC4 -0.45757 0.350349 0.65288 -0.49156 

 
Table 4 reveals that the highest difference between bands 1 and 3 

eigenvector values is observed in component PC2 (band 1 = +0.027727 
and band 3 = -0.892549). Due to the sign of PC3, there is no need for 
inversion. The image of this PC after stretching in grayscale is shown in 
Fig. 6. 

To identify points contaminated with clay minerals, the optimized 
Crosta technique was employed, and an RGB color combination was 
formed as follows: R=PC4(OH), G=PC3(OH), and B=PC2(Fe). In Fig. 7, 
points contaminated with OH-type alterations are displayed in red to 
orange color after interactive stretching. 

5.3. LS-Fit method 

5.3.1. Clay minerals alterations 

To pinpoint areas of clay mineral alteration (OH type), the LS-Fit 
method leveraged Band 7 of the Landsat ETM+ data, which was 
particularly sensitive to hydroxyl alterations. This band, when combined 
with Band 3 (representing iron oxide minerals) and Band 4 
(representing vegetation cover), provided valuable information for 
identifying zones enriched in clay minerals. While LS-Fit is often 
associated with higher spectral resolution data, such as ASTER, it can 
still be effectively applied to Landsat ETM+ data for minerals with 
distinct spectral features within the available bands. In this case, Band 
7's sensitivity to hydroxyl absorption made it suitable for detecting clay 
minerals. 

 
 

 
Fig. 6. The PC3 image highlighting iron oxide minerals, with altered regions shown 
as bright pixels. 
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Fig. 7. The RGB (432) colour composite image obtained by the Crosta technique. 
OH-type alterations are displayed in red to orange colour. 

 
Fig. 8 visually shows these promising zones identified through the LS-

Fit method using the Band 7 as model band. The image clearly highlights 
areas with potential for clay mineral alteration as bright pixels, 
providing valuable information for further field investigations. 

 

 
Fig. 8. Image obtained by the LS-Fit technique for clay minerals as bright pixels. 

 

5.3.2. Iron oxide mineral alterations 

In addition to clay minerals, iron oxide minerals play a crucial role as 
indicators of hydrothermal alteration zones. The examples of these 
minerals include iron oxides like hematite and goethite, and sulfates, 
such as jarosite, which commonly form from the weathering of sulfides 
in epithermal environments. 

To identify areas with iron oxide alterations, the LS-Fit method 
focused on Band 3 of the Landsat ETM+ data as the model band. This 
band exhibits high reflectance from iron oxides, making it a valuable 
tool for their detection. Since no negative operation was needed for this 
band, the target points related to iron oxide alterations appeared as 
luminous pixels in the processed image. 

Fig. 9 presents a grayscale representation of the residual component 
from the LS-Fit analysis on Band 3, highlighting these areas of potential 
iron oxide alteration. By analyzing the distribution and intensity of these 

bright pixels, we can further refine our understanding of the 
hydrothermal alteration processes within the study area. 

 

 
Fig. 9. Display of the residual component from LS-Fit analysis on band 3. Iron oxide 
alterations shown as bright pixels. 
 

5.4. Providing promising points 

The enhanced Crosta technique offers a significant advantage by 
allowing the simultaneous visualization of both iron oxide and clay 
alteration signatures within a single composite image. To achieve this, 
we performed a second PCA directly on the results obtained from the 
initial PCA analysis. As described earlier, this involved creating an RGB 
color composite image using specific principal components: 

R: PC4 (OH) - representing hydroxyl-bearing minerals 
G (Green): PC3 (OH) - further highlighting hydroxyl alterations 
B (Blue): PC2 (Fe) - representing iron oxide minerals 
The RGB composite image allowed for a more comprehensive 

interpretation of the alteration patterns. By analyzing the variations in 
color and intensity, we identified some promising points as bright blue 
pixels exhibiting strong alteration signatures. These points represent 
areas potentially associated with bentonite mineralization and warrant 
further investigation (Fig. 10). 

 

 
Fig. 10. The locations of promising points as blue pixels identified for potential 
bentonite mineralization using the enhanced Crosta technique. 
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6. Field investigation 

To validate the remote sensing results, a field investigation was 
conducted at central points exhibiting strong alteration signatures. At 
these points, representative rock samples were collected from some of 
the areas showing visible alteration (Figs. 12 and 13). The common 
method for identifying clay minerals is using the XRD analysis. The 
paragenesis of minerals in the region includes smectite, quartz, kaolinite, 
calcite, dolomite, and opal cristobalite. The results confirmed the 
presence of smectite (montmorillonite), indicating significant bentonite 
(Fig. 14). 

 

 
A 

 
B 

 
C 

 
D 

Fig. 12. .A) Bentonite outcrop in the region, B) The gradual transformation of 
volcanics into bentonite, C) The pillow form of the region's volcanics, and D) The 
general view of the region including volcanics next to bentonites and Jasperoid 
masses 

 
Fig. 13. The geological map of the area, UTM Zone 40 S. The promising points and 
sampling locations are marked on the map. 

 

 
Fig. 14. The XRD of prepared sample where S=Smectite, Q=Quartz, Pl=Plagioclase, 
Ca=Calcite, and Do=Dolomite. 

 

7. Conclusion 

This study demonstrated that satellite imagery is highly effective in 
the initial phase of mineral exploration. It plays a crucial role in 
identifying hydrothermal alterations, delineating mineral deposits, and 
locating key mineralization indicators, including contact zones, linear, 
and circular patterns. The integrated approach of using the LS-Fit 
method and the enhanced Crosta technique, in conjunction with field 
validation, proved successful in identifying potential bentonite deposits. 
ETM+ data effectively identified minerals containing hydroxyl groups 
and iron oxides, leading to the identification of prospective exploration 
sites. Given the presence of active bentonite deposits in the region and 
the promising laboratory results, further field investigations and 
sampling are recommended. This approach offered clear advantages 
over previous studies in the region, particularly in terms of cost-
effectiveness and efficiency in the initial stages of exploration. 

Future research should prioritize expanding the study area and 
incorporating higher-resolution imagery, such as ASTER (with its 
higher spectral resolution), particularly in the SWIR region, Landsat 8/9, 
or Sentinel 2. The comparative analysis of alteration mapping accuracy 
using these different data sources, as demonstrated by Esmaelzadeh 
Kalkhoran et al. (2024) [24], should be conducted. In addition, more 
extensive field validation, including geochemical analysis using the XRD 
or Scanning Electron Microscopy (SEM), is needed to refine our 
understanding of the spatial distribution and economic viability of 
bentonite resources in this region and other areas with similar geological 
settings. Furthermore, future investigations should explore the 
integration of alternative methods, such as the Spectrum-Area fractal 
model combined with the TOPSIS decision-making method (previously 
used for delineating iron alteration zones [25]), and the integration of 
SFF and fractal modelling approaches, similar to the methods applied 
by Behbahani et al. [26], with the techniques presented in this study to 
further enhance mineral exploration accuracy . 
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