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Environmental planning and resource management necessitate an analysis of 

changes in land use and land cover (LULC). In recent years, climate change and 

human activities, notably the erection of the Ilisu dam, have adversely impacted 

the Tigris River Basin (TRB), one of the most vital natural resources in Western 

Asia, resulting in significant alterations in its LULC. Based on this, the present 

study developed multi-temporal (2003-2023) LULC maps for TRB through 

classifying Landsat images using the random forest (RF) and support vector 

machine (SVM) algorithms, and simulating future LULC states (2028) 

employing the cellular automata (CA)-Markov model. RF exhibited better 

performance than SVM in the classification of Landsat images, and its results 

were chosen for further investigation. The CA-Markov model simulated the 

landscape map of 2028 by considering LULC dynamics between 2018 and 2023. 

The model's performance was validated, confirming acceptable results with an 

accuracy rate of 0.798 and F1 score of 0.789. Notably, LULC changes in TRB 

were critical, including a reduction in water resources, wetlands and croplands. 

This could lead to several environmental challenges, highlighting the significance 

of quick LULC changes. The construction of the Ilisu Dam on the Tigris River in 

Turkey has worsened the situation by exacerbating water shortages, expanding 

bare ground, harming wetlands, reducing water quality, soil salinization, and 

damaging the aquatic ecosystems. The drying wetlands and expanding bare 

grounds will become potential dust sources in the future and affect surrounding 

countries. Accordingly, intergovernmental actions and special policies are needed 

to manage this environmental crisis. 
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1. Introduction 

Land use/land cover (LULC) changes have significant impacts on human life. Information on 

LULC proves necessary in various environmental applications, including managing 

hydrological processes, natural disasters, watersheds, and climate changes (Al-Taei et al., 

2023). While changes in LULC are a regular occurrence in the environment, the rapid LULC 

modifications resulting from economic and industrial development, as well as population 

growth, lead to detrimental environmental effects (Talukdar et al., 2020). In recent times, 

human-induced changes in LULC have considerably influenced water quality and quantity, soil 

and air quality, soil erosion, biodiversity, and local to regional weather and climate conditions 

(Roy et al.,2022). 

The Tigris River basin (TRB), located in West Asia, has suffered significant damage due to 

human-induced LULC change in recent years (Brown et al., 2022; Giovanis and Ozdamar, 

2021). Since river basins are key elements in the environment and society, providing fresh 

water, controlling water quality and flow, safeguarding against natural hazards, and overseeing 

biodiversity conservation (Al-Taei et al., 2023), LULC change in these areas could inflict 

considerable harm on the environment. The water crisis is a critical issue in this basin that 

requires further examination. While it is challenging to differentiate the impacts of natural and 

anthropogenic factors on water resources (Zucca et al., 2021), inadequate water resource 

management plans and the absence of cooperation among riparian countries represent the two 

principal causes of the water crisis in TRB (Al-Madhhachi et al., 2020). 

One major concern regarding water scarcity in the TRB is the construction of the Ilisu dam, 

in Turkey, which has resulted in the destruction of numerous villages and displacement of 

countless people (Abatzoglou et al., 2018). Moreover, the dam's construction has ecological 

implications for the Tigris Valley, and it affects water supply in the downstream areas of the 

basin, leading to a reduction in the water flow of the Tigris River. As a consequence, this results 

in heightened agricultural demands and disruption of natural habitats, as well as desertification 

and salinity in remote regions, and ultimately exacerbating water scarcity (Abatzoglou et al., 

2018). 

In any river basin, water flow change can lead to significant LULC change. Therefore, it is 

crucial to study the LULC of TRB after the construction of the Ilisu dam. Remote sensing (RS) 

imagery has been used as a beneficial method for quantitatively investigating LULC change 

(Talukdar et al., 2020). Satellite remote sensing provides practical means to collect information 

about LULC and detect its changes due to access to data at different temporal and spatial scales 

(Faruque et al., 2022). Nonetheless, RS-based LULC change detection remains complex, 

particularly when the study area is extensive and morphological features are diverse, as 

conventional methods do not suffice to create LULC maps (Al-Taei et al., 2023). Additionally, 

the varying spatial and temporal distribution of landscapes, as well as their distinct spectral 

characteristics, contribute to the complexity of LULC mapping (Aryal et al., 2023; Momeni et 

al., 2016). Machine learning can address these challenges as it can analyze hidden patterns and 

extract relevant information from the complex interdependencies between dependent and 

independent variables (Khorrami et al., 2022). 

Machine learning is a computational technique that allows computers to learn from data and 

make decisions or predictions without requiring explicit programming (El Naqa and Murphy, 

2015). Additionally, machine learning algorithms possess immense potential for combining 

new exploratory variables to develop a data model for LULC mapping (Wang et al., 2022). 

With the development of machine learning, improved access to remote sensing data, and 

enhanced computing power, generating LULC maps has become increasingly feasible. Various 
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machine learning algorithms have been effectively utilized in mapping LULC based on RS data, 

including classification and regression trees (Loukika et al., 2021), random forest (RF) (Pan et 

al., 2022), support vector machine (SVM) (Loukika et al., 2021), artificial neural network 

(Ghayour et al., 2021), minimum distance (Ghayour et al., 2021), maximum likelihood 

classification (Singh and Pandey, 2021b), random trees (Singh and Pandey, 2021b), derivative-

free multi-layer perceptron (Jamali, 2020), complex tree (Jamali, 2020), deep neural network 

(Abdi, 2020), and extreme gradient boosting (Abdi, 2020). 

In addition to the necessity of LULC mapping with machine learning algorithms, it is also 

critical to simulate future LULC dynamics to clarify potential changes and consider measures 

to prevent potential risks (Beroho et al., 2023). The frequently used model for LULC prediction 

is the Cellular Automata (CA)-Markov model. This open-structured spatial model improves 

LULC simulation functionality by operating on the transition probability of LULC classes 

(Beroho et al., 2023). The CA-Markov model has been utilized in multiple studies to simulate 

forthcoming LULC scenarios that encompass predicting spatial and decadal LULC 

transformations (El Haj et al., 2023), monitoring and projection of LULC (Abatzoglou et al., 

2018), and evaluating potential landscape risk (Atef et al., 2023). 

Although the TRB situation has considerable impacts on the environment and people's lives, to 

our knowledge, few studies have tackled the analysis of LULC changes in this region. 

Considering the above, this study aimed to simulate the future LULC scenario, focusing on the 

impact of the Ilisu dam on the TRB. To achieve this, Landsat satellite images from 2003 to 2023 

were classified using RF and SVM as machine learning algorithms. Then, the CA-Markov model 

was employed to simulate the 2028 LULC map. The results will assist policymakers in identifying 

vulnerable regions and implementing suitable mitigation measures. 

 

2. Materials and Methods 

2.1. Study area 

The Tigris River is among the largest rivers in the Middle East. Its basin, TRB, is shared by 

four nations: Iran, Iraq, Syria, and Turkey. The TRB has an estimated area of 279,000 square 

kilometers and is situated between the latitudes 30°59´ to 39° 19´ N and longitude 39°15´ to 

48°34´ E. Water quantity, quality, and biodiversity are key concerns of this area. Climate 

projections for TRB indicate a decrease in precipitation and river flow, as well as an increase 

in temperature. Figure 1 shows the location map of the TRB. 

2.2. Spatial database 

In this study, three datasets of Landsat 7, surface reflectance (SR) Tier 1 (2003, 2008), Landsat 

8 SR Tier 1 (2013, 2018, 2023), and the NASA digital elevation model (DEM) (2000) used in 

this study with spatial resolution of 30 m. They were obtained from the Google Earth Engine 

(GEE) (data accessed by the U.S. Geological Survey). To train supervised classification 

methods, sufficient and efficient samples are required. For LULC classification, each sample 

must have a LULC class label and a set of features. To create train samples, 50,000 random 

points were selected in the study area. These points were labeled by visual inspection in seven 

classes: water, trees, wetlands, croplands, built-up lands, barren, and rangeland. Sample points 

were distributed across the study area. This study selected several classification features based 

on the literature (Loukika et al., 2021; Mishra et al., 2019; Pan et al., 2021; Singh and Pandey, 

2021a; Tassi et al., 2021; Yeneneh et al., 2022; Zhong et al., 2021) including morphological 

features, spectral bands, spectral indices, and textural features. In cases where there are 

variations in morphology, employing morphological characteristics is crucial for carrying out 
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LULC classification (Tassi et al., 2021). Therefore, we extracted four features, namely: 

elevation, aspect, hill-shade, and slope, from the NASA-DEM. Additionally, we used nine other 

features derived from Landsat satellite imagery. These comprised six spectral bands including 

Red (R), Green (G), Blue (B), near-infrared (NIR), shortwave infrared (SWIR) 1, and SWIR 2, 

in addition to four spectral indices. Furthermore, the GLCM method generated 18 textural 

features. For more information regarding these GLCM texture features, refer to (Mohanaiah et 

al., 2013). 

 

Figure 1. Location map of the study area 

 

Spectral indices enhance LULC classification by providing more information (Capolupo et 

al., 2020; Singh et al., 2016), where each spectral index detects a specific LULC class. This 

study employed bare soil index (BSI), modified normalized difference water index (MNDWI), 

normalized difference built-up index (NDBI), and normalized difference vegetation index 

(NDVI) for improved classification precision. BSI is practical for discriminating bare soil and 

other LULC classes and improves the detection of bare soil areas (Chen et al., 2004; Diek et 

al., 2017). Classifying built areas is challenging as they are similar to bare soil areas in spectral 

characteristics. NDBI is a beneficial index for mapping built areas. NDVI is a standard 

vegetation index that directly measures vegetation health (Tassi et al., 2021). Built areas are 

correlated with water bodies in some indices. MNDWI is used to overcome this issue and for 

better discrimination of water features (Xu, 2006). The spatial distribution of tonal variations 

in an image creates a visual effect called texture. Texture analysis is a standard method that 

uses the spatial features of an image to obtain valuable new information for its interpretation. 

Accordingly, textural features are helpful for accurate LULC classification (Mishra et al., 

2019). 
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2.3. Methods 

2.3.1 Land use/Land cover (LULC) classification 

According to the literature (Abdi, 2020; Al-Taei et al., 2023; Ghayour et al., 2021; Jamali, 

2020; Loukika et al., 2021; Pan et al., 2021; Roy, 2021; Singh and Pandey, 2021a; Talukdar et 

al., 2020; Yeneneh et al., 2022; Zhong et al., 2021), both SVM and RF classifiers have 

demonstrated high accuracy in LULC classification. Therefore, these classifiers were utilized 

in the current study RF utilizes both decision tree and ensemble learning concurrently, resulting 

in increased interpretability and accuracy. Additionally, RF generates a large number of trees 

with minimal overfitting. SVM is a frequently employed machine learning algorithm with 

exceptional generalization abilities and high modeling precision. Moreover, SVM optimization 

and input space are independent of one another (Farhangi et al., 2023). 

2.3.1.1. Random forest (RF) algorithm 

RF is an ensemble learning algorithm utilizing a group of decision trees for modeling. Even 

minor changes in a decision tree's structure can result in significant performance improvements. 

Decision trees are practical, fast, and simple algorithms that are susceptible to overfitting. 

Therefore, RF generates numerous decision trees randomly to mitigate the overfitting issue 

while maintaining the simplicity, speed, and practicality of decision trees. RF modeling starts 

by randomly dividing the data into a training group (the in-bag) and a validation group (the out-

of-bag). Then, multiple decision trees are created using bootstrap sampling from the dataset. In 

regression problems, the final prediction is obtained by averaging predictions from all trees. In 

classification problems, the final prediction is achieved by voting between all trees (Khorrami 

et al., 2022). Reducing the correlation among trees, enhancing the performance of each tree, 

and considering computational constraints are three primary factors that affect RF performance 

(Farhangi et al., 2021). 

2.3.1.2. Support vector machine (SVM) algorithm 

SVM is a robust supervised machine learning method that effectively addresses regression and 

classification problems. SVMs have the ability to handle high-dimensional data and nonlinear 

relationships. Given n features, the SVM constructs an n-dimensional space, mapping samples 

onto it with the aid of a kernel function (Farhangi, 2022). The transformed samples are then 

separated by a hyperplane. The objective is to maximize the margin between the closest samples 

of different classes using the best hyperplane, which minimizes the classification error. In 

addition, SVMs are extensively employed in various fields and they can perform well even with 

limited training data (Farhangi et al., 2022).  

2.3.2. Land use/land cover (LULC) simulation 

2.3.2.1. Markov model 

Markov is an effective model for predicting trends in LULC changes. It calculates the 

probability of transition from one state to another by using a transition probability matrix. 

However, the Markov chain only accounts for the transition probability within two-time steps, 

without considering the impact of neighboring cells on LULC predictions (Siddiqui et al., 

2018). 

The Markov model performs the prediction as follows (Mondal et al., 2016): 

𝑆(𝑡 + 1) =  𝑃𝑖,𝑗 × 𝑆(𝑡) (1) 

where S(t+1) and S(t) are the LULC status at the time of t and t+1, respectively. 𝑃𝑖,𝑗 is the 
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transition probability matrix calculated by Eq. 2 (Mondal et al., 2016). 

𝑃𝑖,𝑗 = [

𝑃1,1 𝑃1,2 ⋯ 𝑃1,𝑛

𝑃2,1 𝑃2,2 ⋯ 𝑃2,𝑛

⋯ ⋯ ⋯ ⋯
𝑃𝑛,1 𝑃𝑛,2 ⋯ 𝑃𝑛,𝑛

],          ∑ 𝑃𝑖,𝑗
𝑛
𝑗=1 = 1 (2) 

 

2.3.2.2. Cellular automata (CA)-Markov model 

CA is a prominent spatial modeling technique for examining proximity, a crucial spatial 

element showcasing LULC change dynamics. CA posits that an area has a greater propensity 

to change to a LULC class if its adjoining areas belong to that class. This technique partitions 

the study area into a grid of cells, with each cell denoting a section of the study area. It 

subsequently computes the subsequent state of each cell founded on its four primary 

components: cellular space and cell, neighboring cells, cell state, and transition rules 

(Gharaibeh et al., 2020): 

𝑆(𝑡, 𝑡 + 1) =  𝑓(𝑆(𝑡), 𝑁) (3) 

where S is a set of discrete and limited cell states, N is the neighboring cells, t illustrates 

time, and f is the transition rule of cell states in the local space. 

The CA-Markov model is introduced by applying derived transition rules from the Markov 

model. This model is regularly utilized for simulating LULC, and considers both spatial and 

temporal changes. The CA-Markov model utilizes a combination of the CA filter and Markov 

chain procedure to predict changes in LULC over time (Kang et al., 2019).  

2.3.3. Classification validation 

In this study, accuracy and F1 score were selected to validate the performance of the RF model. 

Accuracy generally depicts the classifier's performance across all LULC classes, making it 

useful when all classes have equal importance (Basheer et al., 2022). The F1 score represents 

the harmonic mean of precision and recall, considering both measures simultaneously. 

Precision indicates the proportion of the samples that are correctly classified within the samples 

predicted positive, and recall represents the proportion of correct classifieds in all really true 

samples (Francini et al., 2022). Both accuracy and F1 score are computed using true positive 

(TP), true negative (TN), false positive (FP), and false negative (FN) values. TP represents the 

positive samples predicted as positive, TN is the number of negative samples predicted as 

negative, FP is negative samples predicted as positive, and FN is positive samples predicted as 

negative. Accuracy and F1 score are computed as follows (Al-Taei et al., 2023): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

𝐹1 =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
 (5) 

 

2.4. Methodology 

The research procedure is shown in Figure 2. It includes seven main steps as follows: 

1. Data preparation: Three data sets including Landsat 7 SR Tier 1, Landsat 8 SR Tier 1, 

and NASA-DEM (2000) were collected and processed. 

2. Feature Extraction: Six spectral bands, four spectral indices, and 18 textural features 

were extracted from Landsat images. The gray-level co-occurrence matrix (GLCM) 
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method utilized for textural features. NASADEM digital elevation model was processed 

to calculate aspect, elevation, hill-shade, and slope. 

3. Feature selection: To improve classification, the Gini index evaluated the features 

importance and 16 features with the lowest weights were removed. 

4. Sample Labeling: Fifty-thousand sample points within the study area were randomly 

selected and visually inspected for labeling. 

5. Classification LULC: 75% of the provided samples were utilized to train two RF and 

SVM, while the remaining 25% of samples were used for classifier validation. 

6. Detection of LULC changes: Initially, we created multitemporal LULC maps using the 

RF, which proved most accurate. Subsequently, these maps were compared with each 

other to detect any significant changes in the LULC. 

7. Simulation of LULC Change: The transition matrix of the Markov chain was computed 

initially, incorporating the LULC changes taking place between 2018 and 2023. 

Subsequently, a CA-Markov model applied to simulate the 2028 map. 

 

Figure 2. Research methodology 

 

3. Results and Discussion 

3.1. Land use/land cover (LULC) classification 

RF and SVM maps were generated using Google Earth Engine. The classification process 

utilized 32 features derived from Landsat 7, Landsat 8, and NASADEM, with LULC classes 

serving as the dependent variable. Prior to training the classifiers, a thorough feature selection 

was performed using the Gini index. Table 1 presents the Gini index results, which ranked the 

features based on their importance. Subsequently, the top 50% of features with the highest 

importance weights were retained for classification, resulting in the exclusion of 16 less relevant 

features. 

On average, the most significant variables influencing LULC classification were 

morphological features, spectral indices, spectral bands, and textural features. The high 
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importance of morphological features can be explained by the varied topography of TRB, which 

is partly mountainous (Issa et al., 2014). The diverse geomorphology of the basin, characterized 

by mountainous regions and valleys, highlights the importance of elevation and slope in 

differentiating land cover types (Issa et al., 2014). Spectral indices, such as NDVI and NDBI, 

also ranked highly due to their ability to enhance classification accuracy by emphasizing 

biophysical properties like vegetation health and urbanization (Al-Taei et al., 2023). Lastly, 

The limited significance of textural features in this analysis can likely be attributed to the spatial 

resolution of the imagery, which may not adequately capture the fine-scale patterns required to 

differentiate certain land cover types (Feng et al., 2015). 

Table 1. Gini index outputs for feature selection 

Feature Feature type Average importance weight Status 

Elevation Morphological feature 0.049 Selected 

MNDWI Spectral index 0.044 Selected 

Slope Morphological feature 0.043 Selected 

SWIR 2 Spectral band 0.041 Selected 

NDVI Spectral index 0.041 Selected 

BSI Spectral index 0.040 Selected 

NDBI Spectral index 0.040 Selected 

SWIR 1 Spectral band 0.039 Selected 

NIR Spectral band 0.039 Selected 

Texture_ savg Textural feature 0.039 Selected 

G Spectral band 0.038 Selected 

R Spectral band 0.038 Selected 

B Spectral band 0.038 Selected 

Texture_shade Textural feature 0.037 Selected 

Texture_corr Textural feature 0.037 Selected 

Texture_dvar Textural feature 0.036 Selected 

Texture_idm Textural feature 0.035 Removed 

Aspect Morphological feature 0.033 Removed 

Texture_prom Textural feature 0.033 Removed 

Texture_diss Textural feature 0.033 Removed 

Texture_svar Textural feature 0.033 Removed 

Texture_contrast Textural feature 0.033 Removed 

Texture_inertia Textural feature 0.033 Removed 

Texture_var Textural feature 0.032 Removed 

Hill shade Morphological feature 0.026 Removed 

Texture_imcorr1 Textural feature 0.020 Removed 

Texture_dent Textural feature 0.011 Removed 

Texture_ent Textural feature 0.011 Removed 

Texture_imcorr2 Textural feature 0.010 Removed 

Texture_asm Textural feature 0.010 Removed 

Texture_sent Textural feature 0.009 Removed 

Texture_maxcorr Textural feature 0.000 Removed 

 

The results for validating LULC classification are presented in Table 2. The RF model 
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demonstrated superior performance, with an average accuracy of 0.843 and an average F1 score 

of 0.835, as compared to the SVM model, which had an average accuracy of 0.798 and an 

average F1 score of 0.789. This aligns with findings from previous studies, where RF 

demonstrated superior performance (Loukika et al., 2021; Talukdar et al., 2020). However, 

contrasting results have also been reported, with some studies finding SVM more effective 

under specific conditions (Abdi, 2020). These variations underscore the significant influence 

of training sample quality, spatial heterogeneity, and regional characteristics on the 

performance of supervised LULC classification models. 

In this study, sample points for training the algorithms were generated through visual 

inspection, which introduces a potential risk of errors in the training data. However, the RF 

algorithm's unique structure enables it to be resilient to noisy data by minimizing its influence 

during training, thereby improving overall classification accuracy (Al-Taei et al., 2023). Also, 

it is noteworthy that RF exhibited superior performance in adequately fitting the training data 

(accuracy: 0.995, F1: 0.989). This makes it a highly effective LULC classifier, especially when 

the training data is diverse, accurate, and plentiful. Based on the above, in keeping with earlier 

research (Pan et al., 2022; Roy, 2021; Zhong et al., 2021), we observed that the RF algorithm 

is appropriate for LULC classification via satellite imagery. Thus, it was selected for LULC 

mapping and further analysis. 

Table 2. Validation results of machine learning models. Standard deviation (SD) 

Model 

Train data Test data 

Accuracy F1 Accuracy F1 

Mean SD Mean SD Mean SD Mean SD 

RF 0.995 0.000 0.989 0.001 0.843 0.021 0.835 0.025 

SVM 0.915 0.023 0.901 0.022 0.798 0.125 0.789 0.130 

 

3.2. Land use/land cover (LULC) change simulation 

3.2.1. Transition suitability maps 

Before applying the CA-Markov simulation, to improve the LULC transitions, we reviewed 

relevant literature and identified key factors influencing these changes. Numerous studies have 

highlighted that factors such as elevation, slope, distance to roads, and soil type are significant 

drivers of LULC changes (Geist and Lambin, 2002; Lambin et al., 2001; Veldkamp and 

Lambin, 2001). The impact of the selected factors on LULC transitions were then quantified by 

experts. We employed the Analytic Hierarchy Process (AHP) using the Super Decision 

software and assigned a relative weigh to each driver factor. This helped to systematically 

evaluate the relative importance of factors for each LULC transition, as summarized in Table 

3. 

Once the driving factors and their respective weights were defined, the next step involved 

normalizing the factors to ensure comparability. Each factor was normalized to a scale of 0 to 

1 using standard normalization techniques, where 0 represented the least suitability and 1 

represented the highest suitability for land use/cover transition. Following normalization, the 

factors were combined using a linear weighted formula. This formula applied the predefined 

weights to each normalized factor, reflecting their relative importance, and calculated the 

overall transition suitability value for each point. The resulting transition suitability maps are 

presented in Figure 3. 
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Table 3. Key factors influencing LULC transitions and their relative importance weight 

Transition 

to 

Influential 

factor 
Explanation 

Influence 

weight 

Water 

Elevation 
Higher areas reduce water buildup and flooding, while 

lower areas increase it. 
0.211 

Slope Flat areas hold more water, helping form water bodies. 0.421 

Soil Type 
Soil type affects water retention and the formation of 

water bodies. 
0.368 

Trees 

Elevation 
Trees grow better at lower elevations due to warmer, 

moister conditions. 
0.261 

Slope 
Gentle slopes retain more moisture and have less 

erosion, which helps trees grow. 
0.297 

Soil type 
Fertile, well-drained soils are best for tree growth; poor 

soils limit tree development. 
0.342 

Wetlands 

Elevation 
Low-lying areas, which accumulate water, are more 

likely to become wetlands. 
0.284 

Slope 
Gentle slopes help water stay in one place, supporting 

wetland formation. 
0.325 

Soil Type 
Hydric soils, which hold water, are essential for 

wetlands and their vegetation. 
0.366 

Croplands 

Distance to 

roads 

Being close to roads helps with transportation of crops, 

machinery, and supplies. 
0.350 

Slope 
Flat or gently sloping areas are ideal for farming; steep 

slopes are harder to farm. 
0.400 

Soil type 
Fertile soils with good drainage are essential for 

productive agriculture and crop yields. 
0.250 

Built-up 

lands 

Distance to 

roads 

Proximity to roads makes urban development easier by 

improving transportation and access to infrastructure. 
0.563 

Slope 
Flat or gently sloping areas are easier to develop; steep 

slopes are harder to urbanize. 
0.437 

Barren 

Elevation Higher elevations often experience more precipitation. 0.281 

Slope 
Steep slopes are prone to erosion, which can lead to 

barren land. 
0.320 

Soil type 
Poor soil quality, such as erosion-prone, saline, or 

compacted soils, leads to barren land. 
0.359 

Rangeland 

Slope 
Gentle to moderately steep slopes reduce erosion and 

help maintain vegetation needed for rangeland. 
0.470 

Soil type 
Soil quality impacts vegetation health and rangeland 

productivity. 
0.530 

 

We utilized the NASA-DEM digital elevation model (Aeronautics and Laboratory, 2020) 

with a spatial resolution of 30 m within the Google Earth Engine platform to generate elevation 

and slope angle maps. The soil texture map, featuring a spatial resolution of 250 m and 

encompassing twelve classes of the TEB, was derived from the OpenLandMap Soil Texture 

Class dataset (USDA System) (Hengl, 2018). Additionally, the road layer was sourced from 

OpenStreetMap on January 3, 2025. 
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Figure 3. Suitability maps for LULC transition 

 

3.2.2. Transition probabilities 

Prior to simulating LULC changes, we enhanced the generalizability of LULC maps by 

applying the majority filter and boundary clean tools. The majority filter effectively edits 

individual pixel values that are dissimilar to their surrounding major neighbors whereas 

boundary clean ensures smoothing of LULC class boundaries. 

Following the above-mentioned preprocessing steps, the Markov chain transition matrix was 

computed by analyzing the LULC changes that transpired during the years 2018 through 2023 

(Table 4). Based on the analysis, for water, trees, wetlands, croplands, built-up lands, barren, 

and rangeland classes, the most probable LULC class in the next state would be water (0.906), 

trees (0.723), wetlands (0.457), croplands (0.806), built-up lands (0.661), barren (0.828), 

rangeland (0.897). 

According to the findings, the three most unstable LULC classes identified are wetlands, trees, 

and built-up lands. Wetlands, with the lowest probability of persistence (0.457), are highly 

vulnerable to hydrological drought and anthropogenic factors such as dam construction, both of 

which disrupt natural water cycles and contribute to habitat degradation, as observed in the study 

area over the past years (Al-Taei et al., 2024). Trees, with a moderate instability score (0.723), 

face threats from deforestation and land-use changes, driven by agricultural expansion and urban 
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development, consistent with trends highlighted in literature (Al-Taei et al., 2023). Built-up lands 

(0.661), despite their high stability, may be influenced by misclassification during LULC 

mapping. This is because built-up areas often exhibit spectral similarities to bare ground, making 

it challenging to distinguish between these classes, particularly in arid and semi-arid regions with 

mixed land-use patterns (Rasul et al., 2018). 

Table 4. Markov chain transition matrix 

Initial state 

Probability of next state 

Water Trees Wetlands 
Cropland

s 

Built-up 

lands 
Barren 

Rangelan

d 

Water 0.906 0 0.005 0.036 0.007 0.035 0.012 

Trees 0.001 0.723 0.001 0.033 0 0 0.242 

Wetlands 0.093 0.003 0.457 0.377 0.011 0.042 0.016 

Croplands 0.005 0 0.001 0.806 0.009 0.028 0.15 

Built-up lands 0.011 0 0.001 0.19 0.661 0.047 0.09 

Barren 0.001 0 0 0.047 0.002 0.728 0.222 

Rangeland 0.001 0.002 0 0.05 0.002 0.049 0.897 

 

3.2.3. Transition simulation 

Integrating suitability maps with the Markov transition matrix was crucial for accurately 

simulating both the quantity and spatial distribution of land use/cover changes. The Markov 

transition matrix provided transition probabilities between LULC classes, while the suitability 

maps added spatial context by highlighting areas most suitable for each transition based on 

driving factors. These combined inputs were fed into the CA spatial filter, which iteratively 

allocated LULC changes, prioritizing locations with higher suitability values as indicated by 

the suitability maps. 

Accordingly, the CA model was applied to simulate the 2023 and 2028 LULC maps. In this 

study, longer-term predictions were not pursued to minimize uncertainties and ensure more 

dependable modeling outcomes. While TRB is undergoing climate-induced changes (Lu et al., 

2019), shorter-term predictions using Markov models are more reliable, as their assumptions of 

stationary transition probabilities are less applicable over extended periods under changing 

conditions (Chang and Niu, 2023). 

Lastly, the 2023 simulated map underwent validation with the one created by classifying 

Landsat images. Consequently, the proposed approach obtained an average accuracy and F1 of 

0.798 and 0.789, correspondingly (Figure 4). The classified and simulated LULC maps are 

displayed in Figure 5. 

Temporal changes in the LULC area were calculated using prepared LULC maps (Table 5). 

We observed that the tree class has experienced a decline due to urban expansion (Al-Taei et 

al., 2023), reduced water flows in rivers, and drought ( Ozguler and Yildiz 2020). It should be 

emphasized that the loss of trees may increase the risk of climate change, floods, and soil 

erosion (Kafy et al., 2021). Wetlands are another area that has experienced decline. The main 

challenges faced by these areas include controlling the rivers that feed wetlands, managing 

droughts, and reducing water consumption (Qaderi Nasab and Rahnama, 2020). In recent years, 

TRB has struggled with water scarcity (Rateb et al., 2021), which has caused certain parts of 
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the wetlands in this region to dry up. 

 

Figure 4. Validation results of CA-Markov model 
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Figure 5. Classified (2003-2023) and simulated (2023 and 2028) LULC maps of the study area 

Rangeland areas have diminished along with soil degradation (Bolo et al., 2019), loss of 

biodiversity (Li et al., 2020), increased erosion risk (Al-Taei et al., 2023), and reduced 

productivity (Polley et al., 2017) serving as the principal consequences of this concern. Water 

resources in TRB are also in a perilous state. This study has identified a decline in water 

resources, which are facing increased stress from dam construction, reduced precipitation, and 

amplified crop production resulting in augmented water usage (Boloorani et al., 2022; Darvishi 

Boloorani et al., 2021). Along with social and political issues (Glass, 2017), water shortage can 

result in environmental deterioration, such as diminished water purity and higher desertification 

rates. 

We also found an expansion of barren areas and built-up lands in TRB. The impact of drought 

on TRB water resources has decreased availability, causing bare ground to spread. Furthermore, 

the construction of the Ilisu Dam on the Tigris River in Turkey has reduced water flows, 

exacerbating water shortages and resulting in the expansion of bare ground in Iraq (Al-Madhhachi 

et al., 2020). Regarding the expansion of built-up lands, it can be stated that urbanization in TRB 

lacks a clear strategy and proper urban policy (Al-Taei et al., 2023). Therefore, rapid urban 

expansion remains one of the leading environmental problems in this region. 

In summary, our research provides evidence of the unstable landscape of TRB which may 

lead to negative consequences, as observed LULC changes are associated with environmental 

difficulties. Hence, it is essential to implement practical policies and resource management 

strategies to tackle the situation in TRB effectively. 

Table 5. Temporal changes in the area of LULC classes 

 2003 2008 2013 2018 2023 Simulated 2028 

Water 

Area 

(Km2) 
8163 7076 7552 7441 7315 7248 

Change 

(%) 
- -13 7 -1 -2 -1 

Trees 

Area 

(Km2) 
2785 2319 2190 2119 1926 1803 

Change 

(%) 
- -17 -6 -3 -9 -6 

Wetlands 

Area 

(Km2) 
1757 1883 1588 842 523 344 

Change 

(%) 
- 7 -16 -47 -38 -34 

Croplands 

Area 

(Km2) 
72773 62779 69512 66978 64919 63331 

Change 

(%) 
- -14 11 -4 -3 -2 

Built-up lands 

Area 

(Km2) 
1294 1868 2222 2635 2867 3038 

Change 

(%) 
- 44 19 19 9 6 

Barren 

Area 

(Km2) 
31878 37026 34938 34640 36032 36858 

Change 

(%) 
- 16 -6 -1 4 2 

Rangeland 

Area 

(Km2) 
160485 166187 161137 164483 165558 167010 

Change - 4 -3 2 1 1 
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(%) 

3.3. Comprehensive discussion 

The impact of Ilisu dam in Turkey is evident, in accordance with the aforementioned 

observations. While we detected the reduction of wetlands, some evidence suggests that the 

Ilisu dam has also caused a decrease in water levels in the Tigris River, resulting in a decline in 

the water supply to the Hour al-Azim wetland (Zamani and Berelian, 2022). If the Hour al-

Azim wetland dries up, it will become a dust prone source in the region, and dust storm emission 

will have destructive effects on the surrounding countries. In addition to the above-mentioned 

consequences of reducing water resources, the Ilisu Dam may also reduce the water quality of 

the Tigris River and its tributaries and increase the salinity of the Persian Gulf (Zamani and 

Berelian, 2022). Considering the vast and unique ecosystem of the Tigris River, reducing its 

water quality can have unpredictable and harmful consequences (Haghighi et al., 2023), leading 

to endangerment of aquatic life, destruction of agricultural lands, and salinization of a large 

area of the surrounding lands. Also, increasing salt concentration in the Persian Gulf could have 

widespread detrimental socio-environmental effects. These effects include threatening the 

diversity of the Persian Gulf ecosystem, loss of habitat structure, and negative impacts on 

fishery and tourism. Additionally, community shifts may occur. (Paparella et al., 2022; Röthig 

et al., 2023). 

 

4. Conclusion 

In recent years, climate change and human activities have had various adverse effects on TRB, 

making the study of its LULC changes is a crucial endeavor. This study examined TRB's LULC 

changes between 2003 and 2023 through the classification of Landsat images by RF and 

prediction of the 2028 state using the CA-Markov model. We observed that RF was as a highly 

practical supervised model for LULC classification, as it was less sensitive to outlier and 

demonstrated exceptional accuracy in accurately fitting the train data and predicting the new 

samples. However, the literature suggests that LULC classification models' effectiveness varies 

across regions, highlighting the significant impact of conditioning spatial factors on supervised 

algorithms. Additionally, this study found that incorporating morphological features improved 

the results and is recommended for classifying LULC in large regions with diverse topography. 

From an environmental perspective, this study provides evidence of the unstable landscapes 

of TRB and the resulting adverse impacts in the near future. Our forecast indicates a 

considerable reduction in vegetation coverage and water resources. These can lead to 

widespread adverse impacts, including climate change, flooding, increased risk of erosion, 

drying up of wetlands, loss of biodiversity, soil degradation, reduced productivity and 

desertification. Meanwhile, the construction of the Ilisu Dam on the Tigris River in Turkey has 

worsened the situation by exacerbating water shortages, expanding bare ground, harming 

wetlands, reducing water quality, soil salinization, and damaging the aquatic ecosystem. The 

drying wetlands and expanding bare grounds will become potential dust sources in the future, 

and affect surrounding countries. Accordingly, effective policies and resource management 

practices are essential to address the TRB condition efficiently.  
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