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ABSTRACT  ARTICLE INFO 
The efficiency of the Multilevel Fast Multipole 
Algorithm (MLFMA) on distributed and parallel 
systems, especially on GPUs, has been the focus of 
extensive researches. While there has been 
considerable emphasis on improving far-field 
computations within MLFMA, the acceleration of 
near-field computations on GPUs has not been as 
thoroughly investigated. While some existing 
approaches improve GPU memory performance 
using common, intuitive ideas without analytical 
modelling, this paper aims to leverage analytical 
performance models to make more informed 
decisions regarding the P2P operator through data 
replication. Our model indicates that applying data 
redundancy in Global Memory as a form of 
restructuring can enhance the algorithm's 
performance by nearly 13 times for lower-density 
problems, compared to a baseline implementation 
that relies on the SoA scheme. 
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1 Introduction 

The Fast Multipole Method (FMM) [1] and the Multilevel Fast Multipole Algorithm (MLFMA) 
[2] are designed to accelerate matrix-vector multiplication (MVM) in various scientific 
simulations, such as telecommunications, physics, mechanics, and chemistry. MLFMA can reduce 
the complexity of MVM to O(N) in certain scenarios [3]. While MLFMA is effective on a single 
CPU, additional acceleration is required for large-scale problems on supercomputers. Although 
far-field computation has been optimized for more than a decade, near-field computation has not 
received the same level of attention. Many existing optimizations tend to overlook GPU cache 
bottlenecks and rely on basic GPU optimization techniques. This paper proposes the use of data 
redundancy and performance modeling to tackle the degradation of GPU cache performance in 
near-field computation, aiming to direct future research towards accurate modeling and 
optimization of MLFMA operators on a single GPU. 

Far-field computation in MLFMA has been thoroughly investigated for large-scale applications 
on GPUs and GPU clusters. Initial studies [4][5][6][7] concentrated on enhancing far-field 
calculations by effectively distributing computations across cluster nodes and minimizing inter-
node interactions at higher levels of the tree. The hierarchical approach in [4] improved 
performance by modifying the algorithm to eliminate network communication at intermediate tree 
levels and to better balance the load at higher levels. Similarly, [5] utilized both CPU and GPU 
resources simultaneously to address large-scale problems with strong scalability. Additionally, [7] 
implemented partitioning strategies to reduce communication within the tree, while [14] took 
advantage of the symmetry of the M2L operator to decrease computations and improve 
performance. 

In contrast, the acceleration of P2P operators has not been as widely studied, as they can be divided 
into smaller, independent subtasks that can be processed concurrently with far-field computations 
on the CPU. As highlighted in [8], the P2P operator is the second most time-consuming component 
in MLFMA, accounting for about 30% of the total execution time. This paper aims to enhance the 
performance of the P2P operator. Several studies [9][10][11] have sought to reduce the complexity 
of P2P operations on a single GPU. These approaches are particularly significant because they can 
be scaled to multiple GPUs, given that P2P problems can be decomposed into smaller, independent 
subproblems. 

In [9], researchers utilized shared memory and on-the-fly techniques to minimize memory access, 
which increased the memory volume and computations on the device while improving overall 
speed. For the P2P operator, they transferred data to thread registers, which have low access times 
and limited capacity, restricting each thread to managing interactions between 320 point-pairs. 
Study [10] enhanced coalesced memory access by categorizing P2P interactions into two groups: 
those within a box and those between neighboring boxes. The latter group led to uncoalesced 
memory accesses, so separating them allowed the first kernel to execute more quickly, thereby 
reducing overall execution time. In [11], researchers achieved a speedup of over 400 by integrating 
on-the-fly techniques with interaction separation, which increased device computations and 
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decreased memory usage. Additionally, [12] distributed the solution of a single-level FMM for 
acoustic problems between the CPU and GPU in a multi-GPU setup, discovering that increasing 
the workload for GPU threads and the number of groups each thread processes creates a trade-off 
between CPU and GPU execution times. They modeled execution time and applied it in [13] to 
identify the optimal group size. 

One overlooked aspect of these studies is that their implementation decisions were guided by 
intuition and known GPU optimization techniques and validating their effectiveness through 
experimental results, rather than modeling. Study [9] performed experiments with various problem 
sizes and tree levels but did not investigate how point density influenced performance. In [11], 
results from nine experiments with different tree levels and densities indicated that speedup has a 
positive correlation with point density at a fixed tree level; however, they did not provide further 
details on these findings. In other studies [12][13] researchers employed execution time modeling, 
which necessitates hardware-dependent constants that cannot be determined until after system 
profiling. 

Data replacement or redundancy is a well-established technique in GPU literature that has been 
studied. It has been concluded that memory-divergent applications on GPUs experience high 
spatial locality, yet GPUs are unable to fully utilize this characteristic [15]. Unlike single core 
caches, GPU caches are shared among multiple threads, which can result in cache contention, false 
sharing, and elevated miss-rates, particularly in applications with irregular memory access patterns 
[16]. Consequently, spatial locality is a crucial factor in modeling the performance of GPU 
applications [17]. Near-field computation exhibits a stencil parallel pattern, classifying it as a 
memory-divergent application that also faces similar false-sharing and cache-contention 
challenges. This issue has been largely overlooked in previous MLFMA research. One study [18] 
introduced a novel method to reduce miss-rates and enhance bandwidth for applications with 
significant read-only data sharing by adaptively reconfiguring the last-level cache between shared 
and private models. However, this approach was aimed at private cache-friendly applications, 
which do not apply to the P2P operator in MLFMA. 

This paper investigates the use of data replication to alleviate cache contention for the P2P operator 
and demonstrates that performance modeling can effectively predict algorithm speedup based on 
the employed data structure. 

 

1.1 Our Contribution 

As discussed, the main challenge with P2P efficiency arises from divergent memory accesses on 
the device. Previous studies have attempted to minimize memory usage by taking advantage of 
GPU memory characteristics. This paper proposes a restructuring of data -specifically replicating 
data for each thread- to reduce cache contention. Although data redundancy introduces some 
overhead, it enhances the speed of GPU kernels by reducing false sharing and cache contention. 
The overhead primarily occurs during the data collection phase on the CPU, as replicating data 
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increases the amount of data transferred between the GPU and RAM. We aim to find the optimal 
point in this tradeoff using a mathematical model. To assess the impact of data restructuring on 
overall speedup, analytical models are essential. Although [13] presented a performance model, it 
is not applicable in this context, as it concentrated on thread grouping rather than data restructuring.  

This paper introduces a performance model that can be applied to any data restructuring technique 
for the P2P operator. The model takes into account the complexity of data collection on the CPU, 
GPU kernel execution, and MLFMA parameters. Data access locality is proposed as a key factor 
in modeling the speedup of GPU implementations, capturing how data restructuring affects data 
access speed. Although the model does not yield exact predictions of speedup, it can approximate 
the optimal parameters for the algorithm that result in faster execution on a single device. 
Additionally, it can estimate the segment size when dividing the entire problem into segments for 
parallel execution on a cluster. Our model can find optimal value for box size (i.e., the number of 
points per box) to achieve greater speedup, similar to the approach in [13], which optimized group 
size for single-level FMM algorithms in heterogeneous environments.  

In this paper, A straightforward data restructuring technique is proposed: introducing redundancy 
to ensure thread independence, meaning that each data element is accessed by only one thread, and 
each thread loads all necessary data with minimal instructions. While this approach increases the 
data volume and prolongs the data collection phase, the overhead is accounted for in the 
performance model, which helps identify optimal parameters that make redundancy advantageous. 

The case study problem used to evaluate this technique is the electrical potential function due to 
its ease of implementation. The potential function is applied to a 2D Perfect Electric Conductor 
(PEC) where the source and target (radiating and receiving) points are randomly distributed across 
the surface. The MLFMA formulation for this problem is derived from [14]. Since MLFMA is 
kernel-independent, changing the kernel is not expected to significantly impact the results. 

Our novelty and contributions can be summarized as follows: 

 Data-restructuring is proposed as an optimization technique for the P2P operator of 
MLFMA, a concept that has not been previously introduced. 

 An analytical performance prediction models is developed to estimate the impact of data 
restructuring on the speedup of the P2P operator, replacing earlier practical approaches. 

 Data locality is introduced as a significant factor in modeling the speedup of algorithms on 
GPUs and a method is proposed to quantify it. 

Although the innovation presented in this article has not, to our knowledge, been addressed in prior 
works, it does have limitations and drawbacks, including: 

 It does not model the speedup of data transfer, making it reliant on empirical data. 

 The simplicity of the analytical modeling makes the proposed technique infrastructure-
dependent; the performance model relies on coefficients that describe unknown hardware 
parameters, which also makes it dependent on empirical data. 
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 The proposed method is not automatic and requires researchers to invest effort in accurately 
modeling performance. 

 The application of the proposed methodology to larger problems using pipelining and 
across multiple GPUs is not addressed in this article. 

 While the potential function used in this paper is straightforward to analyze and model, 
other kernels may encounter thread divergence or utilize shared memory which are not 
considered in this study. 

Considering these pros and cons, this research can serve as a foundation for future work on 
MLFMA that aims to control the speed of algorithms based on device properties, data structure, 
and MLFMA parameters. 

In the next section of this article, we present a simple implementation along with its analytical 
modeling, followed by a similar approach for the improved version. Section 3 examines the 
accuracy of the models using empirical data. Based on these models, we then test the efficiency of 
the proposed technique on problems with varying densities while running on a single GeForce 
1050. Finally, sections 4 and 5 provide brief conclusions and suggestions for future work. 

 

2 Methodology 

In this paper, a performance model is developed to evaluate the speedup of the GPU kernel for the 
P2P operator based on data restructuring. The speedup is approximated by comparing the 
complexities of two algorithms: the baseline algorithm and the redundant one. This complexity 
encompasses the data structure, data collection algorithm, GPU kernel algorithm, and MLFMA 
parameters. 

Initially, a simple implementation of the P2P operator is chosen as the baseline implementation 
which uses SoA data structure, followed by another implementation with data redundancy. The 
first implementation is referred to as the indexing method, while the second is called the repetition 
method. These two typical approaches are selected to validate the effectiveness of the performance 
modeling. To simplify the analytical models, no conventional GPU optimization techniques -such 
as overlapping, pre-fetching, exploiting shared memory, or dynamic parallelism- were utilized. 

The work of [14], which addresses solution of 2D Coulombic problems, serves as the foundation 
for the presented implementation. According to this study, a MLFMA tree is defined by three main 
parameters: 𝑁 (the number of samples), 𝐶𝑇 (the clustering threshold), and L (the tree height). The 
clustering threshold ensures that the number of samples (points) per box remains below a specified 
limit. If a box contains more samples than 𝐶𝑇 during the tree-building process, the tree level 

increases by one and all boxes split into four smaller boxes which contain 
஼்

ସ
 samples. The 

maximum number of samples in all boxes after fixing tree level is denoted as 𝑡 in this paper. The 
value of 𝑡 is calculated after generating the 2D mesh and is used in determining the complexity of 
the algorithms. 
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Each method is described in three phases: data collection, data transfer, and GPU kernel execution. 
The behavior of the two methods presented is contrasting; the indexing method is expected to 
perform faster during data collection and transfer but slower during GPU kernel execution, 
whereas the repetition method is anticipated to demonstrate the opposite behavior. 

 

2.1. Indexing Method 

In this method, data is not replicated for each thread, and all threads access non-adjacent memory 
banks. The data structure for this method is compressed, which results in faster data collection and 
data transfer phases. 

2.1.1 Data Collection 

In the Indexing method, data is organized into seven arrays. Two of these arrays are used to store 
the coordinates of all source and target points, while one array holds the potential values of the 
source points. The remaining arrays maintain indexes that reference these arrays. The fourth array 
contains the indices of target points within each box, with the indices of source points being 
appended to this array as the boxes are traversed in Morton order. The fifth array records the 
starting index of each box in the previous array, referred to as the second-order index. The sixth 
array includes the indices of the source points that are neighbors of each box, arranged in 
consecutive Morton order. Finally, the seventh array contains the second-order indices from the 
previous array. 

Algorithm (1) in the appendix illustrates the execution order for the data collection phase of the 
Indexing method. The execution time for data collection on the CPU can be expressed by equation 
(1), where 𝑁 represents the problem size, 𝑚௜௡ௗ௘௫௜௡௚ denotes the time for a single read or write 
operation in RAM, and 𝐵 is the number of boxes. The number 9 in equation (1) corresponds to the 
count of adjacent neighboring boxes in the 2D problems. The total number of boxes is 4௅ିଵ, where 
4 is the branching factor of the tree and 𝐿 is number of levels of the tree. 

𝑇௜௧௘௥௔௧௘ ௔௡ௗ ௖௢௟௟௘௖௧ _ ௜௡ௗ௘௫௜௡௚ = 𝑁൫7𝑚ூ௡ௗ௘௫௜௡௚൯ +  4௅ିଵ(𝑚ூ௡ௗ௘௫௜௡௚(11 + 19𝑡) +  3) (1) 

2.1.2 Data Transfer 

The total memory allocated for this technique, measured in bytes, is defined in equation (2). The 
point coordinates and potential values are stored as doubles, while the index values are stored as 
integers. This data is transferred to GPU memory after the data collection phase and prior to the 
execution of the GPU kernel. 

𝑀𝑒𝑚𝑜𝑟𝑦ூ௡ௗ௘௫௜௡௚ = 5𝑁𝐷𝑜𝑢𝑏𝑙𝑒 + 4௅ିଵ(2 + 𝑡 + 9𝑡)𝐼𝑛𝑡𝑒𝑔𝑒𝑟 = 40𝑁 + 4௅(2 + 10𝑡) (2) 
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2.1.3 GPU Kernel 

In the indexing method, each GPU thread is tasked with calculating the near field for all target 
points within a box. Each thread begins by extracting the second-order index of the target points 
associated with its corresponding box, followed by an iterative loop to retrieve the indices of the 
target points. During each iteration, the thread extracts the second-order index of the source points 
relevant to its box and iterates through them in an inner loop. It then retrieves their coordinates 
and potential values, ultimately applying the electric potential function to a pair of target and 
source points. Algorithm (2) in the appendix outlines the execution order in the GPU kernel for 
the Repetition method. 

However, since each thread accesses data located in non-consecutive memory banks (seven arrays 
stored in different memory locations), memory requests result in significant cache misses, leading 
to poor performance. 

The execution time for each GPU thread is expressed in equation (3), where 𝑂ଵି௖௢௠௣௨௧௔௧௜  
represents the time taken by the potential function applied between two pairs of points. In equation 
(3), the term t is used instead of 𝐶𝑇, as the maximum number of points in each box is less than or 
equal to 𝑡. The term 𝑡 is a random variable and may vary across different runs of MLFMA, but it 
is guaranteed to be less than or equal to 𝐶𝑇. 

𝑇௄௘௥௡௘௟ _ ூ௡ௗ௘௫௜௡௚

= 4𝑚ூ௡ௗ௘௫௜௡௚

+ 𝑡൫3𝑚ூ௡ௗ௘௫௜௡௚ + 9𝑡൫5𝑚ூ௡ௗ௘௫௜௡௚ + 𝑂ଵି௖௢௠௣௨௧௔௧௜௢௡൯ + 𝑚ூ௡ௗ௘௫௜௡௚൯ 

(3) 

 

                        = 4𝑚௜௡ௗ × (11.25𝑡ଶ + 𝑡 + 1) + 9𝑡ଶ𝑂ଵି௖௢௠௣௨௧௔௧௜௢௡  

2.2 Repetition Method 

In this method, each thread computes the interaction between a target point and its neighboring 
source points. The source points surrounding the targets within a box are replicated 𝑡 times, with 
each replication corresponding to a target point. While the time required to collect and transfer 
data to the GPU is expected to be longer than in the Indexing method, the GPU kernel is anticipated 
to execute faster due to serial memory requests, thereby offsetting the additional time spent in the 
collection and transfer phases. 

Each target point can have a maximum of 9 neighboring boxes, and each box can contain up to 𝐶𝑇 
source points. Consequently, the maximum number of array elements allocated to each target point 
is equal to (2 + 1 + 9 × 3 × 𝑡) Double elements. The first two variables represent the coordinates 
of the target point, the next number accounts for the number of nearby sources, and the subsequent 
9 × 3 elements correspond to the 27 neighbors, which include two coordinates and one potential 
value. All this data is stored in Double format, but the second digit is parsed as an integer. 
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The execution order for the data collection phase of the Repetition method is outlined in Algorithm 
(3) in the appednix. During the data collection phase, for each box and each target point within it, 
all neighboring source points are extracted and appended to the data array.  

The execution time for the collection phase is expressed in equation (4). Based on assumptions 
similar to those made for the Indexing method, this relationship can be summarized in equation 
(5). 

𝑇ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧ೃ೐೛೐೟೔೟೔೚೙

= 𝐵(3𝑟 + 𝑡(1𝑟 + 2𝑤 + 𝑓𝑖𝑛𝑑_𝑛𝑒𝑖() + 1𝑤

+ 9൫1𝑟 + 𝑡(1𝑟 + 2𝑤 + 1𝑟 + 1𝑤)൯ + 1𝑤 

(4) 

 

𝑇ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧ೃ೐೛೐೟೔೟೔೚೙

= 4௅ିଵ(𝑚ோ௘௣௘௧௜௧௜௢௡ + 11𝑡𝑚ோ௘௣௘௧௜௧௜௢௡ + 45𝑚ோ௘௣௘௧௜௧௜௢௡𝑡ଶ + 𝑡

∗ 𝑓𝑖𝑛𝑑_𝑛𝑒𝑖()) 

(5) 

 

2.2.2 GPU Kernel 

Each GPU thread is tasked with computing interactions between a target point and other source 
points in its immediate neighborhood. Each thread requires the coordinates of the target and source 
points, the number of source points in the nearby area, and the potential values of the neighboring 
source points. These elements are collected and stored consecutively for each thread, and the data 
from all threads are combined to form a single long array. The execution order for this kernel is 
illustrated in Algorithm (4) in the appendix. 

In this Array of Structures (AoS) approach to storing data items, each thread requests data from 
one or several adjacent memory banks. In contrast, the Indexing method employs a Structure of 
Arrays (SoA) format, where seven arrays are stacked, and each thread accesses seven non-adjacent 
memory locations. Therefore, it is anticipated that the Repetition method will experience fewer 
cache misses compared to the Indexing method. 

The execution time for each GPU thread can be expressed in equation (6). Here, 𝑚ோ௘௣௘௧௜௧௜௢௡ 
represents the time for a single memory access in the Repetition method. The term 𝑡 is used instead 
of 𝐶𝑇, as each thread primarily accesses data from up to t neighboring source points. 

𝑇௄௘௥௡௘௟ _ ோ௘௣௘௧௜௧௜௢௡ = 3𝑚ோ௘௣௘௧௜௧௜௢௡ + 9𝑡൫4𝑚ோ௘௣௘௧௜௧௜௢௡ + 𝑂ଵି௖௢௠௣௨௧௔௧௜௢௡൯ (6) 

3 Modelling the Speedup 

The speed of execution resulting from the application of the repetition method is derived from 
equation (7). Due to the presence of factors related to memory access time in this relationship, 
along with the highly variable nature of execution time, it is challenging to calculate these 
expressions with precision. However, equation (7) can be approximated as the sum of individual 
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speedups, as shown in equation (8), where the values of 𝛼, 𝛽, and 𝛾 are coefficients that can be 
determined based on the specific hardware and operating system. 

By considering that these parameters converge to a constant value as the problem size increases, 
the estimation of these coefficients can be performed using the least squares method. 

𝑋ோ௘௣௘௧௜௧௜௢௡ =
𝑇ூ௡ௗ௘௫௜௡௚

𝑇ோ௘௣௘௧௜௧௜௢௡

=
𝑇஼௢௟௟௘௖௧௜௢௡_ூ௡ௗ௘௫௜௡௚ + 𝑇்௥௔௡௦௙௘௥_ூ௡ௗ௘௫௜௡௚ +  𝑇௄௘௥௡௘௟_ூ௡ௗ௘௫௜௡௚

𝑇஼௢௟௟௘௖௧௜௢௡ೃ೐೛೐೟೔೟೔೚೙
+ 𝑇்௥௔௡௦௙௘௥_ோ௘௣௘௧௜௧௜௢௡ + 𝑇௄௘௥௡௘௟_ோ௘௣௘௧௜௧௜௢௡

 

(7) 

 

𝑋ோ௘௣௘௧௜௧௜௢௡ = 𝛼𝑋஼௢௟௟௘௖௖௧௜௢௡_ோ௘௣௘௧௜௧௜௢௡ + 𝛾𝑋்௥௔௡௦௙௘௥_ோ௘௣௘௧௜௧௜௢௡ + 𝛽𝑋௄௘௥௡௘௟_ோ௘௣௥௧௜௧௜௢௡  (8) 

 

3.1 Modelling the Speedup of Data Collection 

The size of the data generated and sent to the GPU, measured in bytes, is represented in equation 
(9). In this context, the term 𝐶𝑇 is used instead of 𝑡 because a 𝐶𝑇 array element is reserved for 
each thread, allowing each thread to know its starting index. 

𝑀𝑒𝑚𝑜𝑟𝑦ோ௘௣௘௧௜௧௜௢௡ = 𝑁(3 + 27 𝐶𝑇)𝐷𝑜𝑢𝑏𝑙𝑒 = 8𝑁(3 + 27𝐶𝑇) (9) 

 

Using equations (1) and (5), the data collection speedup in the Repetition method can be 
approximated by considering larger terms, as expressed in equations (10) and (11). 

𝑇ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧಺೙೏೐ೣ೔೙೒

𝑇ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘ ೃ೐೛೐೟೔೟೔೚೙

=
𝑁൫7𝑚ூ௡ௗ௘௫௜௡௚൯ + 4௅ିଵ(𝑚ூ௡ௗ௘௫௜௡௚(11 + 19𝑡) +  3 + 𝑓𝑖𝑛𝑑_𝑛𝑒𝑖())

4௅ିଵ(3𝑚ோ௘௣௘௧௜௧௜௢௡ + 11𝑡𝑚ோ௘௣௘௧௜௧௜௢௡ + 45𝑚ோ௘௣௘௧௜௧௜௢ 𝑡ଶ + 𝑡 ∗ 𝑓𝑖𝑛𝑑_𝑛𝑒𝑖())
 

 

(10) 

 

𝑇ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧_ூ௡ௗ௘௫௜௡௚

𝑇ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧ೃ೐೛೐೟೔೟೔೚೙

≈
𝑚ூ௡ௗ௘௫௜௡௚

𝑚ோ௘௣௘௧௜௧௜௢௡

×
1

𝑡
=  𝑋௠ ∗

1

𝑡
 

(11) 

 

In this context, the speed of accessing RAM using the Repetition method compared to the Indexing 
method is denoted as 𝑋௠. This value is estimated as the inverse ratio of the volume of the data in 
memory, as shown in equation (12). 

𝑋௠ ≈ 𝜆ோ஺ெ
ெ௘௠௢௥௬಺೙೏೐ೣ೔೙೒ାெ௘௠௢௥௬ೝ೐ೞೠ೗೟

ெ௘௠௢௥௬ೃ೐೛೐೟೔೟೔೚೙ାெ௘௠௢௥௬ೝ೐ೞೠ೗೟
  ≈ 𝜆ோ஺ெ

ସ଴ேାସಽ(ଶାଵ଴௧)ା଼ே

଼ே(ଷାଶ଻஼்)ା଼ே
 (12) 

 

In equation (12), the term 𝜆ோ஺ெ is a coefficient that depends on the RAM and indicates the effect 
of data volume on memory access time. Equation (12) can be simplified into equation (13). Here, 
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𝐷 represents the average number of points in a box, which is calculated by dividing the total 
number of points 𝑁 by the number of boxes 𝐿. 

𝐷 =
𝑁

4௅ିଵ
→  𝑋௠ ≈

1

2
×

1

𝐷
×

10 ×
1
4

𝐶𝑇

27𝐶𝑇
 =

1

21.6𝐷
 

(13) 

 

By combining equations (13) and (11), the acceleration of data collection is derived using equation 
(14). According to this relationship, the average density of points within the boxes negatively 
impacts the efficiency of the Repetition method during the data collection phase. 

𝑋ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧_ோ௘௣௘௧௜௧௜௢௡ ≈ 𝜆ோ஺ெ

1

21.6𝑡𝐷
 

(14) 

 

3.2 Modelling the Speedup of GPU Kernel 

In the Repetition method, a greater number of threads are utilized compared to the Indexing 
method, approximately 𝑡 times. The overhead incurred by using more threads than the number of 
device cores is considered in the speedup formulation. 

The speedup of the Repetition method during GPU kernel execution is expressed in equation (15). 
By substituting equations (3) and (6) into equation (15) and applying simplifications, the kernel 
speedup is approximated in equation (16). 

𝑋௞௘௥௡௘௟_ோ௘௣௘௧௜௧௜௢௡ =
𝑇௄௘௥௡௘௟_ூ௡ௗ௘௫௜௡௚

𝑇௄௘௥௡௘௟_ோ௘௣௘௧௜௧௜௢௡
×

𝑁𝑢𝑚 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 𝐼𝑛𝑑𝑒𝑥𝑖𝑛𝑔
𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑣𝑖𝑐𝑒 𝐶𝑜𝑟𝑒𝑠

𝑁𝑢𝑚 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛
𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑣𝑖𝑐𝑒 𝐶𝑜𝑟𝑒𝑠

=
𝑇௄௘௥௡௘௟_ூ௡ௗ௘௫௜௡௚

𝑇௄௘௥௡௘௟_ோ௘௣௘௧௜௧௜௢௡
×

4௅ିଵ

𝑁
 

(15) 

 

𝑋௞௘௥௡௘௟ೃ೐೛೐೟೔೟೔೚೙
=

𝑇௄௘௥௡௘௟಺೙೏೐ೣ೔೙೒

𝑇௄௘௥ ೃ೐೛೐೟೔೟೔೚೙

 =
4𝑚ூ௡ௗ௘௫௜௡௚(11.25𝑡ଶ + 𝑡 + 1) + 9𝑡ଶ𝑂ଵି௖௢௠௣௨௧௔௧௜௢௡

𝑚ோ௘௣௘௧௜௧௜௢௡(9𝑡 + 3) + 9𝑡𝑂ଵି௖௢௠௣௨௧௔௧௜௢௡
 

≤
4𝑚ூ௡ௗ௘௫௜௡௚

3𝑚ோ௘௣௘௧௜௧௜௢௡
𝑡 =  

4

3
𝑋௠௘௠_௥௘௣௘௧௜௧௜௢௡ × 𝑡  

(16) 

The ratio of memory access time is considered constant for both the Repetition and Indexing 
methods. While accurately measuring memory access time can be challenging, its speedup can be 
approximated. In this paper, it is assumed that the primary factor influencing memory access 
speedup is the memory miss ratio. Although the memory miss ratio can be obtained from device 
counters, this approach is not advantageous for our implementation, as the presented method does 
not involve runtime optimization. Instead, the miss-rate is estimated based on memory access 
locality. This implies that the closer the data is located in memory, the higher the cache hit rate, 
resulting in faster access times to memory. 
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𝑋௠௘௠_ோ௘௣௘௧௜௧௜௢௡  ≈ 𝜆ீ௉௎

𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑖𝑜ோ௘௣௘௧௜௧௜௢௡

𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑖𝑜ூ௡ௗ௘௫௜௡௚
≈ 𝜆ீ௉௎

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ோ௘௣௘௧௜௧௜௢௡

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ூ௡ௗ௘௫௜௡௚
 

(17) 

 

In equation (17), 𝜆ீ௉௎ is a coefficient that depends on the GPU hardware and represents the 
performance of the cache. The term 𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑖𝑜ோ௘௣௘௧௜௧௜௢௡ is an estimation of the cache miss-rate, 
specifically the number of accesses to non-neighboring memory banks by each thread. The 
𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦 is correlated with miss ration. The 𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦 or cache miss-rate for a thread is defined as 
the ratio of the number of memory banks accessed by that thread to the total number of memory 
banks accessed by all threads, as expressed in equation (18). 

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ூ௡ௗ௘௫௜௡௚ =   
# 𝑜𝑓 𝑛𝑜𝑛 − 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑚𝑒𝑚𝑜𝑟𝑦 𝑏𝑎𝑛𝑘𝑠 𝑒𝑎𝑐ℎ 𝑡ℎ𝑟𝑒𝑎𝑑 𝑎𝑐𝑐𝑒𝑠𝑠

𝑡𝑜𝑡𝑎𝑙 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑚𝑒𝑚𝑜𝑟𝑦 𝑏𝑎𝑛𝑘𝑠
 

(18) 

 

In equation (18), if all the data accessed by a thread is located in fewer memory banks, the thread 
will experience fewer cache misses. In the Indexing method, memory bank accesses are distributed 
across non-adjacent memory banks due to the use of a Structure of Arrays (SoA) data scheme. 
Each thread in the Indexing method reads values from seven arrays, which means that each thread 
incurs at least 7 cache misses when 𝑁 and 𝑡 are sufficiently large. Valuer for 𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦 for the 
Indexing method is calculated in equation (19), where 𝑏 represents the number of bytes stored in 
a memory bank. 

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ூ௡ௗ௘௫௜௡௚ =
#𝑀𝑒𝑚𝑜𝑟𝑦𝐵𝑎𝑛𝑘𝑠

඄
40𝑁 + 4௅(2 + 10𝑡)

𝑏
ඈ

 

#𝑀𝑒𝑚𝑜𝑟𝑦𝐵𝑎𝑛𝑘𝑠

= ඄
1𝐼𝑛𝑡𝑒𝑔𝑒𝑟

𝑏
ඈ + ඄

1𝐼𝑛𝑡𝑒𝑔𝑒𝑟

𝑏
ඈ + ඄

𝑡 ∗ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

𝑏
ඈ + ඄

9𝑡 ∗ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

𝑏
ඈ

+ ඄
𝑡 ∗ 2 ∗ 𝐷𝑜𝑢𝑏𝑙𝑒

𝑏
ඈ + ඄

9𝑡 ∗ 3 ∗ 𝐷𝑜𝑢𝑏𝑙𝑒

𝑏
ඈ 

(19) 

 

(20) 

In equation (20), the terms include 2 indices that are stored in two different memory banks, 𝑡 
indices of target points, 9𝑡 indices of source points, 2𝑡 coordinates of target points, and 27𝑡 
coordinates and potential values of source points. All of these elements are stored in separate 
memory banks. By taking the value of 𝑏 as 512 bytes for the GTX 1050 device, equation (20) is 
simplified to equation (21). 

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ூ௡ௗ௘௫௜௡௚ ≈
272𝑡

40𝑁 + 4௅(2 + 10𝑡)
 

(21) 

 

This 𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦 is applicable to all other threads, so the value in equation (21) must be multiplied 
by the number of threads used in the Indexing method. This multiplication accounts for the 
cumulative effect of cache misses across all threads, providing a more comprehensive estimate of 
the overall cache miss-rate for the method. 



100 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112 

 

 

 

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ூ௡ௗ௘௫௜௡௚ ≈
272𝑡

40𝑁 + 4௅(2 + 10𝑡)
× 4௅ିଵ 

(22) 

 

In the Repetition method, all GPU threads read the same amount of data from the entire data array, 
and all of this data is stored in contiguous memory banks. As a result, the probability of a cache 
miss is significantly reduced because of better data access locality. 𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦 for Repetition method 
si defined in equation (23). 

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ோ௘௣௘௧௜௧௜௢௡ =
1

𝑁
 

(23) 

 

By substituting equations (22) and (23) into the ratio expressed in equation (19), the ratio of cache 
misses between the two methods is given by equation (24). In this relation, 𝑡 can be excluded due 
to its relatively small value. Considering that number of boxes are smaller than number of points 
or 4௅ିଵ <=  𝑁, the miss ratio is of the order 𝑂(𝑁ିଵ). 

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ோ௘௣௘௧௜௧௜௢௡

𝑙𝑜𝑐𝑎𝑙𝑖𝑡𝑦ூ௡ௗ௘௫௜௡௚
=

1

𝑁
÷ (

272𝑡 × 4௅ିଵ

40𝑁 + 4௅(2 + 10𝑡)
) =

40𝑁 + 4௅

𝑁 × 4௅ିଵ
≈

40

4௅ିଵ
+

4

𝑁
≥

44

𝑁
 

(24) 

 

By substituting equation (24) into equation (17), an approximation of memory access speedup is 
obtained in equation (25). Furthermore, by incorporating equations (25) and (16), the kernel 
acceleration of the Repetition method can be calculated as shown in equation (26). 

𝑋௠௘௠_ோ௘௣௘௧௜௧௜௢௡  ≈ 𝜆ீ௉௎ ×
44

𝑁
  

(25) 

 

𝑋௞௘௥௡௘௟ೃ೐೛೐೟೔೟೔೚೙
=

ସ

ଷ
𝑋௠௘௠ೃ೐೛೐೟೔೟೔೚೙

× 𝑡 ×
ସಽషభ

ே
      

 ≈
4

3
𝜆ீ௉௎ ×

44

𝑁
× 𝑡 ×

4௅ିଵ

𝑁
≈ 55.3𝜆ீ௉௎  × 𝑡 ×

1

𝑁𝐷
 

 

(26) 

 

It can be argued that the speedup of the GPU kernel in the Repetition method decreases as the size 
of the problem increases. Since the value of 𝑡 is greater than 𝐷, increasing the point density in 
equation (26) positively impacts the GPU kernel speed and can mitigate the negative effects 
associated with 𝑡. 

3.3 Modelling Data Transfer Speedup 

The time required for data transfer is affected by various factors, including hardware and the 
operating system; however, it typically correlates with the amount of data. The data volume ratio, 
as calculated in (13), indicates that an increase in the density of points within the boxes leads to a 
reduction in the speed of the Repetition method. 
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3.4 Analysis of Model 

The overall speedup is determined using (8) and incorporates the relationships from (14), (16), and 
(25), which is outlined in equation (27). The variable 𝑡 has opposing effects on the acceleration of 
data collection and the GPU kernel. This implies that the Repetition method is not always more 

efficient than the Indexing method. Additionally, the term 
ଵ

஽
 can be factored out of the entire 

equation. It can be concluded that increasing the number of boxes while keeping 𝑁 constant (and 
thus reducing 𝐷) results in the Repetition method being generally faster than the Indexing method.  

𝑋ோ௘௣௘௧௜௧௜௢௡ = 𝛼𝜆ோ஺ெ

1

21.6𝐷𝑡
+ 𝛾

1

21.6𝐷
+ 𝛽(55.3𝜆ீ௉௎  × 𝑡 ×

1

𝑁𝐷
) 

(27) 

 

To identify an optimal balance between the two methods, it is essential to know the values of 𝜆ோ஺ெ, 
𝜆ீ௉௎, and the coefficients 𝛼 and 𝛽. According to the proposed analytical model, it is recommended 
that to maximize the acceleration of the Repetition method, the number of boxes should be 
increased while maintaining a constant 𝑁, and the number of sample points within them should be 
decreased. In other words, this method is more advantageous than the Indexing method for 
scenarios where the density of sample points is low. 

4 Evaluation of Model 

4.1. Evaluation of Model Error 

This section compares the basic CPU implementation derived from [14] with the Indexing method 
and the Repetition method. In the CPU implementation, the boxes are processed in Morton's 
indexing order. For each target point within a box, neighboring source points are initially extracted, 
and for each source point in the 𝐸ଵ neighborhood, the potential function is executed once, with its 
value being summed with the far-field induced potential. 

4.1.1. Evaluation of Data Collection Performance Model 

Due to the data collection being conducted on the CPU and the experimental nature of the setup, 
the techniques presented are compared using small-sized problems. The tests begin with a problem 
size of 𝑁 = 5,000 and increase to 100,000 points in increments of 5,000. Subsequently, the 
problem size is raised to 350,000 points, with increments of 50,000 points. The default value for 
𝐶𝑇 is set to 15, as the techniques are more effective for sparse problems. The tree height 𝐿 starts 
at a default value of 3 and increases based on 𝑁 and 𝐶𝑇. Each test is repeated 20 times on a similar 
tree, and the running times are averaged over these 20 runs. 

The initial speedup for each method is calculated by dividing its running time by the running time 
of the baseline model. The speedup of the Repetition method is then determined by dividing its 
speedup by that of the Indexing method. Figure 1 illustrates the speedup of the Repetition method. 
Additionally, the speedup is approximately calculated in (27) based on the values of 𝑡 and 𝐷. The 
measured speedup is represented by a solid black line in Fig.1. The vertical axis on the left 
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indicates the speedup amount relative to the problem size 𝑁, while the orange dashed line 
represents the estimated speedup using (14), with the vertical axis on the right showing the 
corresponding speedup calculated using (26). In both plots, the performance models presented 
align with the trend observed in the empirical data. To achieve a more accurate fit, it is necessary 
to determine the values of 𝜆 for both (14) and (26). In this paper, these values are calculated by 
dividing the experimental running time by the performance model and then averaging the results 
across all experiments. The value of 𝜆 for formula (14) ranges between 75 and 180, with an average 
value of 108. 

 

Figure 1 – The speedup of the Repetition method during the data collection phase is shown by the 
black line on the left vertical axis, while the estimated value using (14) is represented by the orange 
line on the right vertical axis. The estimated value exhibits a similar trend to the measured speedup. 

The oscillation observed in Fig.1 is attributed to the density D. As indicated in (13), the data 
volume is inversely related to D. The volume of data influenced by the value of D significantly 
impacts the execution speed of data collection. Considering this relationship and (14), the 
theoretical maximum execution speedup is expressed in (28). 

𝑋ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖_ோ௘௣௘௧௜௧௜௢௡ ≈ 𝜆
1

21.6𝑡𝐷
≥ 1 

𝐶𝑇

4
~4 ≤ 𝑡, 1 ≤ 𝐷 →  𝑋ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧_ோ௘௣௘௧௜௧௜௢௡ ≤  1.25  

(28) 

 

 

4.1.2. Evaluation of GPU Kernel Performance Model 

Since the execution of the GPU kernel is significantly faster than data collection on the CPU, this 
section focuses on experiments involving larger problems. In these tests, 𝑁 is increased by 1,000 
at each step, starting from 1,000 points up to 100,000 points, and then increased by 50,000 points 
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per step until reaching 1,000,000 points. The values of 𝐶𝑇 and 𝐿 remain constant throughout all 
tests. 

Fig.2 displays the calculated speedup of the GPU kernel for the Repetition method in comparison 
to the Indexing method, represented by a solid black line. The left axis uses a logarithmic scale for 
speedup to mitigate the impact of jumps in the value of 𝑁 on the graph's resolution. The orange 
dashed line indicates the predicted value based on (26). While this predicted value generally 
follows a similar overall trend to the measured speedup, it does not align perfectly during certain 
fluctuations. One reason for this discrepancy is that the running time on the GPU very variable.  

The maximum value of 𝑁 for which the Repetition method remains faster than or equal to the 
Indexing method, based on (26) and assuming that 𝑡 ≤  𝐶𝑇, is calculated in (29). 

𝑋௞௘௥௡௘௟_ோ௘௣௘௧௜௧௜௢௡ ≈ 55.3𝜆 × 𝑡 ×
1

𝑁𝐷
≥ 1 →  𝑁 ≤ 55.3𝜆 ×

𝑡

𝐷
 

𝑡 ≤ 𝐶𝑇 = 15 →  𝑁 ≤  829.5𝜆 ×
1

𝐷
   

(29) 

 

 

Figure 2 – Modeling GPU Kernel SpeedUp.  
The measured GPU kernel speedup of the Repetition method is represented by the black line on the left 
vertical axis, based on the Indexing method, while the estimated value using relation (26) is shown by the 
orange line on the right vertical axis. Both axes are displayed on a logarithmic scale, illustrating the trend 

The precise value of this relation necessitates the determination of 𝐷 and 𝜆. The value of 𝜆 is 
calculated by dividing the empirical data by the approximated data for each experiment and then 
averaging the results. Based on experimentation, the value of 𝜆 for GPU memory is approximately 
640, indicating that for each unit of improvement in locality, the P2P kernel operates about 640 
times faster. According to the empirical data, the value of 𝐷 varied between 1 and 5. Using the 
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maximum value for 𝐷, the optimal value of 𝑁 (assuming that t is consistently 15) can be calculated 
based on (26), as expressed in (30). 

106,000 ≤ 𝑁ை௣௧௜௠௔௟ ≤  530,000 (30) 

According to Fig.2, this value may not be entirely accurate; however, it is sufficiently precise for 
selecting the segment size to distribute the entire problem across multiple GPUs. 

4.1.3. Estimation of Model Coefficients  

In (27), the calculation of the coefficients 𝛼, 𝛽, and 𝛾 enables the estimation of the total 
acceleration time. These coefficients are derived from the data obtained during the tests conducted 
for both the data collection and GPU kernel execution phases, and they are expressed in (31).  

𝛼 ≈ 0.82, 𝛽 ≈ 0.09, 𝛾 ≈ 0.18 (31) 

In Fig.3, the total execution time -which encompasses the total time for data collection, data 
transfer, and kernel execution- is displayed alongside the predicted value based on the coefficients 
in (31). In this figure, the predicted values have been multiplied by the measured speedups rather 
than the theoretical values, as (27) is not accurate for transfer time. Instead, the formulation in (27) 
is useful for gaining insights into the impact of algorithm design and the choice of granularity on 
overall speedup. Fig.3 supports the concept of separating speedups as presented in (8); however, 
it is not entirely accurate since the transfer time is not modeled accurately. 

The overall trends in Fig.3 closely resemble those in Fig.1, indicating that data collection time is 
the bottleneck of the presented method for the specified values of 𝑁 and 𝐶𝑇. This conclusion is 
also supported by the coefficients in (31). The speedup from the GPU kernel contributes the least 
to the overall speedup. Based on Fig.2 and 3, the Repetition method is marginally faster than the 
Indexing method when 𝑡 and 𝐷 are not directly manipulated but instead increase with the values 
of 𝑁 and 𝐶𝑇. 

4.2. maximizing Total Speedup 

Based on the results from the previous section and the analytical relations summarized in (27), it 
is recommended to reduce the values of 𝐷 and 𝑡 while keeping 𝑁 constant to effectively utilize the 
Repetition method for a specific problem. One straightforward approach to achieve this is to 
increase the height of the tree by at least one unit after constructing it according to 𝐶𝑇. This 
adjustment would increase the number of boxes by a factor of 4 (based on the tree's branching 
factor) and reduce 𝐷 and 𝑡 to a quarter of their original values. 



105 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112 

 

 

 

 
Figure 3 – Modeling Total SpeedUp. 

The total speedup of the Repetition method is represented by the black line, while the estimated values 
based on empirical data and (31) are shown by the orange line. 

By increasing the height of the tree by 𝑖 units, and assuming that the coefficients remain constant, 
the resulting acceleration can be expressed as: 

𝐿ᇱ = 𝐿 + 𝑖 →  𝑡ᇱ =
𝑡

4௜
, 𝐷ᇱ =

𝐷

4௜
 

𝑋ᇱ
ோ௘௣௘௧௜௧௜௢௡ = 𝛼𝜆ோ஺ெ

4ଶ௜

21.6𝐷𝑡
+ 𝛾

4௜

21.6𝐷
+ 𝛽 ൬55.3𝜆ீ௉௎  × 𝑡 ×

1

𝑁𝐷
൰ 

                       ≈ 4ଶ௜ × 0.82 + 0.18 × 4௜ + 0.09 

(32) 

 

(33) 

This indicates that the speed of data collection, and consequently the speedup in data transfer, 
significantly increases, while the speed of the GPU kernel remains unchanged. Equation (33) 
demonstrates that increasing the tree height by one unit results in the Repetition method becoming 
more than 13 times faster. However, these figures are merely indicative, and the actual acceleration 
times during runtime may not necessarily match these values. 

To assess the impact of varying tree height and box density, another experiment is conducted. For 
the values in (34), different trees are generated with 𝐶𝑇 set to 15. After constructing the tree, 𝐿 is 
adjusted based on the value of 𝑖. For larger values of 𝑖, the boxes become smaller, leading to a 
decrease in 𝑡. Conversely, for smaller values of 𝑖, both t and density increase. The value of 𝑁 in 
these problems is defined as 4௅ିଵ, where 𝐿 is taken as its initial value. The baseline CPU 
implementation used in this experiment is the same as the baseline model referenced in the 
previous section. 
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𝑖 ∈ {−3, −2, −1,0,1,2,3} 

𝐿 ∈ {4,5,6,7,8,9,10,11} 

(34) 

 

This indicates that the speed of data collection, and consequently the speedup in data transfer, 
significantly increases, while the speed of the GPU kernel remains unchanged. Equation (33) 
demonstrates that increasing the tree height by one unit results in the Repetition method becoming 
more than 13 times faster. However, these figures are merely indicative, and the actual acceleration 
times during runtime may not necessarily match these values. 

To assess the impact of varying tree height and box density, another experiment is conducted. For 
the values in (34), different trees are generated with 𝐶𝑇 set to 15. After constructing the tree, 𝐿 is 
adjusted based on the value of 𝑖. For larger values of 𝑖, the boxes become smaller, leading to a 
decrease in 𝑡. Conversely, for smaller values of 𝑖, both t and density increase. The value of 𝑁 in 
these problems is defined as 4௅ିଵ, where 𝐿 is taken as its initial value. The baseline CPU 
implementation used in this experiment is the same as the baseline model referenced in the 
previous section. 

According to Fig.6, the Repetition method outperforms the Indexing method in two distinct 
regions. The first region is characterized by high density, with the problem size 𝑁 being smaller 
than 4096. In this region, as indicated by (26), the smaller value of 𝑁 allows the GPU kernel to 
execute faster for the Repetition method, while the denser boxes further enhance the GPU kernel's 
performance. Additionally, it can be argued that due to the small problem size and the redundancy 
inherent in the Repetition method, the data from several consecutive threads fits into a single cache 
line. This reduces the cache miss-rate and subsequently increases the kernel speed. 

  

Figure 4 – Speedup of the Indexing method 
relative to the baseline model. 

Figure 5 – Speedup of the Repetition 
method relative to the baseline model. 
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Figure 6 – Speedup of the Repetition method compared to the Indexing method. 

The second region occurs when the tree density decreases while the problem size increases, 
specifically when 𝑁 ≥  16,384 and 𝑖 ≥  2. In this scenario, although the GPU kernel runs slower 
due to the value of 𝑁, the data transfer and data collection processes become faster because of their 
inverse relationship with 𝐷 and 𝑡. 

In this work, two GPU implementations of the P2P operator using different data structures were 
examined: one with compressed data and the other with redundancy in data. Since any alteration 
in data restructuring impacts the data collection time on the CPU, analytical performance models 
have been developed to track the effects of changes in algorithm design on the speedup of the 
algorithm and to identify the optimal values for the problem parameters. 

5 Conclusion 

The accuracy of the models was assessed by examining their overall trend lines. While they were 
not precise and were influenced by the system setup, they provided valuable insights for improving 
algorithm design. The optimization of the MLFMA tree by managing 𝑡 and 𝐷 was proposed 
through analytical models, and the results were empirically tested. According to the empirical data, 
the proposed modification of the algorithm achieves nearly 13 times speedup compared to the 
unmodified algorithm for problems involving more than 200,000 source and target points, with 2-
4 points per box. This result aligns well with the findings from the analytical modeling. 
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6 Future Works 

It is recommended to apply this modeling technique to other P2P methods or additional operators 
within the MLFMA framework in future research. Furthermore, it is advisable to predict the values 
of 𝜆 based on the specific features of the hardware. This approach would bridge the gap between 
algorithm design and hardware specifications, facilitating the efficient distribution of the entire 
problem across multiple GPUs. 

While the modeling of data transfer between the GPU and RAM was not conducted with precision 
in this paper, developing a more accurate model in this area could enhance the overall framework 
of analytical modeling. 
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Appendix: Algorithms 

Algorithm (1): Data Collection in Indexing Method 

___________________________________________________________________ 
1:   𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑃2𝑃_𝐷𝑎𝑡𝑎_𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝐼𝑛𝑑𝑒𝑥𝑖𝑛𝑔 

2:      𝐼𝑛𝑝𝑢𝑡   𝑡𝑟𝑒𝑒 𝑡 

3:      𝑂𝑢𝑡𝑝𝑢𝑡  𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠, 𝑠𝑜𝑢𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑠, 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠 
           𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠, 𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠𝐼𝑛𝑑𝑒𝑥 
          𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠, 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠𝐼𝑛𝑑𝑒𝑥 
4:      𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠 ← 𝑡. 𝐺𝑒𝑡𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠() 
5:      𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑠 ← 𝑡. 𝐺𝑒𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑠() 
6:      𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠 =  𝑡. 𝑔𝑒𝑡𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠() 
7:      𝑐𝑜𝑢𝑛𝑡𝑒𝑟1 ← 0 
8:      𝑓𝑜𝑟 𝑎𝑙𝑙 𝐵𝑜𝑥 𝑏 ∈  𝑡[𝑙𝑎𝑠𝑡𝑒𝐿𝑒𝑣𝑒𝑙]. 𝐵𝑜𝑥𝑒𝑠 𝑑𝑜 
9:            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃𝑜𝑖𝑛𝑡 𝑝 ∈  𝑏. 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠 𝑑𝑜:             
10:               𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠. 𝐴𝑝𝑝𝑒𝑛𝑑(𝑝. 𝑖𝑛𝑑𝑒𝑥) 
11:         𝑒𝑛𝑑 𝑓𝑜𝑟 
12:          𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠𝐼𝑛𝑑𝑒𝑥[𝑏] = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟1 
13:          𝑐𝑜𝑢𝑛𝑡𝑒𝑟2 ← 0            
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14:          𝑓𝑜𝑟 𝑎𝑙𝑙 𝐵𝑜𝑥 𝑏𝑗 ∈  𝑏. 𝐺𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠()𝑑𝑜 

15:                 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑜𝑢𝑟𝑒𝑐 𝑝𝑜𝑖𝑛𝑡 𝑠 ∈ 𝑏𝑗. 𝑠𝑜𝑢𝑒𝑐𝑃𝑜𝑖𝑛𝑡𝑠 𝑑𝑜 
16:                      𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠𝐼𝑛𝑑𝑒𝑥. 𝐴𝑝𝑝𝑒𝑛𝑑(𝑠. 𝑖𝑛𝑑𝑒𝑥) 

17:                      𝑐𝑜𝑢𝑛𝑡𝑒𝑟2 + + 

18:                 𝑒𝑛𝑑 𝑓𝑜𝑟 

19:          𝑒𝑛𝑑 𝑓𝑜𝑟 
20:          𝑆𝑜𝐴. 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠𝐼𝑛𝐵𝑜𝑥. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑜𝑢𝑛𝑡𝑒𝑟2) 
21:     𝑒𝑛𝑑 𝑓𝑜𝑟 

22:  𝑒𝑛𝑑 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 
___________________________________________________________________ 
 
Algorithm (2): GPU Kernel in Indexing Method 
__________________________________________________________________ 
1:   𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑃2𝑃_𝐺𝑃𝑈_𝐾𝑒𝑟𝑛𝑒𝑙_𝐼𝑛𝑑𝑒𝑥𝑖𝑛𝑔 

2:      𝐼𝑛𝑝𝑢𝑡    𝑏𝑢𝑛𝐵𝑜𝑥𝑒𝑠 
                           𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠, 𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑠, 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠 
            𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠, 𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠𝐼𝑛𝑑𝑒𝑥 
          𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠, 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠𝐼𝑛𝑑𝑒𝑥 
3:      𝑂𝑢𝑡𝑝𝑢𝑡  𝑛𝑒𝑎𝑟𝐹𝑖𝑒𝑙𝑑 
4:      𝑡𝑖𝑑 ← 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑖𝑛𝑑𝑒𝑥 
5:      𝑖𝑓 𝑡𝑖𝑑 < 𝑛𝑢𝑚𝐵𝑜𝑥𝑒𝑠 𝑑𝑜 
6:         𝑠𝑡𝑎𝑟𝑡𝑇𝑎𝑟𝑔𝑒𝑡 ← 𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠𝐼𝑛𝑑𝑒𝑥[𝑡𝑖] 
7:         𝑒𝑛𝑑𝑇𝑎𝑟𝑔𝑒𝑡 ← 𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠𝐼𝑛𝑑𝑒𝑥[𝑡𝑖 +  1] 
8:         𝑠𝑡𝑎𝑟𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟 ← 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠𝐼𝑛𝑑𝑒𝑥[𝑡𝑖] 
9:         𝑒𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟 ← 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠𝐼𝑛𝑑𝑒𝑥[𝑡𝑖 +  1] 
10:       𝑓𝑜𝑟 𝑖 𝑖𝑛  𝑠𝑡𝑎𝑟𝑡𝑇𝑎𝑟𝑔𝑒𝑡: 𝑒𝑛𝑑𝑇𝑎𝑟𝑔𝑒𝑡 − 1 𝑑𝑜: 
11:           𝑛𝑒𝑎𝑟𝑓𝑖𝑒𝑙𝑑[𝑡𝑖]  ←  0           

12:           𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥 ←  𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠[𝑖]             

13:           𝑡𝑎𝑟𝑔𝑒𝑡𝑋 ←  𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠[𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥]. 𝐺𝑒𝑡𝑋() 

14:           𝑡𝑎𝑟𝑔𝑒𝑡𝑌 ←  𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠[𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥]. 𝐺𝑒𝑡𝑌() 

15:           𝑓𝑜𝑟 𝑗 𝑖𝑛  𝑠𝑡𝑎𝑟𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟 ∶ 𝑒𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟 − 1 𝑑𝑜: 

16:               𝑠𝑜𝑢𝑟𝑐𝑒𝐼𝑛𝑑𝑒𝑥 ←  𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠[𝑗] 

17:               𝑠𝑜𝑢𝑟𝑐𝑒𝑋 ←  𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑠[𝑠𝑜𝑢𝑟𝑐𝑒𝐼𝑛𝑑𝑒𝑥]. 𝐺𝑒𝑡𝑋() 

18:               𝑠𝑜𝑢𝑟𝑐𝑒𝑌 ←  𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑠[𝑠𝑜𝑢𝑟𝑐𝑒𝐼𝑛𝑑𝑒𝑥]. 𝐺𝑒𝑡𝑌() 

19:               𝑢 ←  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠[𝑠𝑜𝑢𝑟𝑐𝑒𝐼𝑛𝑑𝑒𝑥] 

20:               𝑡𝑋 ←  𝑠𝑜𝑢𝑟𝑐𝑒𝑋 −  𝑡𝑎𝑟𝑔𝑒𝑡𝑋 

21:               𝑡𝑌 ←  𝑠𝑜𝑢𝑟𝑐𝑒 −  𝑡𝑎𝑟𝑔𝑒𝑡𝑌 

22:               𝑛𝑒𝑎𝑟𝑓𝑖𝑒𝑙𝑑[𝑡𝑖] +=  𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡𝑋, 𝑡𝑌, 𝑢) 

23:            𝑒𝑛𝑑 𝑓𝑜𝑟 

24:       𝑒𝑛𝑑 𝑓𝑜𝑟 

25:     𝑒𝑛𝑑 𝑖𝑓 
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26:  𝑒𝑛𝑑 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 
__________________________________________________________________ 
 
Algorithm (3): Data Collection in Repetition Method 
__________________________________________________________________ 
1:   𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑃2𝑃_𝐷𝑎𝑡𝑎_𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 

2:      𝐼𝑛𝑝𝑢𝑡   𝑡𝑟𝑒𝑒 𝑡 

3:      𝑂𝑢𝑡𝑝𝑢𝑡  𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦 
4:      𝑝𝑎𝑑𝑑𝑖𝑛𝑔𝑆𝑖𝑧𝑒  
← 2 + 1 + 9 ∗ 3 ∗ 𝑡. 𝐶𝑇 
5:      𝑖𝑛𝑑𝑒𝑥 ←  0 
6:      𝑓𝑜𝑟 𝑎𝑙𝑙 𝐵𝑜𝑥 𝑏 ∈  𝑡[𝑙𝑎𝑠𝑡𝑒𝐿𝑒𝑣𝑒𝑙]. 𝐵𝑜𝑥𝑒𝑠 𝑑𝑜 
7:           𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃𝑜𝑖𝑛𝑡 𝑝𝑖 ∈  𝑏. 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠 𝑑𝑜:             
8:               𝑑𝑎𝑡𝑎𝐴𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥] ←  𝑝𝑖. 𝐺𝑒𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛(). 𝑥            
9:               𝑑𝑎𝑡𝑎𝐴𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥 + 1] ← 𝑝𝑖. 𝐺𝑒𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛(). 𝑦 
10:               𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 = 0 
11:               𝑓𝑜𝑟 𝑎𝑙𝑙 𝐵𝑜𝑥 𝑏𝑗 ∈  𝑏. 𝐺𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠()𝑑𝑜 

12:                  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑜𝑢𝑟𝑒𝑐 𝑝𝑜𝑖𝑛𝑡 𝑠 ∈ 𝑏𝑗. 𝑠𝑜𝑢𝑒𝑐𝑃𝑜𝑖𝑛𝑡𝑠 𝑑𝑜 
13:                      𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥 +  3 + 𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 ∗ 3] ←  𝑠. 𝐺𝑒𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠(). 𝑥 
14:                      𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥 +  3 + 𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 ∗ 3 + 1] ← 𝑠. 𝐺𝑒𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠(). 𝑦 
15:                      𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥 + 3 +  𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 ∗ 3 + 2] ← 𝑠. 𝐺𝑒𝑡𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙() 

16:                       𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 + + 

17:               𝑒𝑛𝑑 𝑓𝑜𝑟 

18:            𝑒𝑛𝑑 𝑓𝑜𝑟 
19:            𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥 +  2] =  𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 
20:      𝑒𝑛𝑑 𝑓𝑜𝑟 

21:    𝑒𝑛𝑑 𝑓𝑜𝑟 

22:  𝑒𝑛𝑑 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 
__________________________________________________________________ 
 
Algorithm (4): GPU Kernel for Repetition Method 
__________________________________________________________________ 
1:   𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑃2𝑃_𝐺𝑃𝑈_𝐾𝑒𝑟𝑛𝑒𝑙_𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 

2:      𝐼𝑛𝑝𝑢𝑡    𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔𝑆𝑖𝑧𝑒 
                           𝑛𝑢𝑚𝑇𝑎𝑟𝑔𝑒𝑡𝑠 
3:      𝑂𝑢𝑡𝑝𝑢𝑡  𝑛𝑒𝑎𝑟𝐹𝑖𝑒𝑙𝑑 
4:      𝑡𝑖𝑑 ← 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑖𝑛𝑑𝑒𝑥 
5:      𝑖𝑓 𝑡𝑖𝑑 < 𝑛𝑢𝑚𝑇𝑎𝑟𝑔𝑒𝑡𝑠 𝑑𝑜 
6:         𝑜𝑓𝑓𝑠𝑒𝑡 ← 𝑡𝑖 ∗ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔𝑆𝑖𝑧𝑒 
7:         𝑡𝑎𝑟𝑔𝑒𝑡𝑋 ← 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑜𝑓𝑓𝑠𝑒𝑡] 
8:         𝑡𝑎𝑟𝑔𝑒𝑡𝑌 ← 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑜𝑓𝑓𝑠𝑒𝑡 + 1] 
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9:         𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 ← 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑜𝑓𝑓𝑠𝑒𝑡 +  2] 
10:       𝑛𝑒𝑎𝑟𝐹𝑖𝑒𝑙𝑑[𝑡𝑖]  =  0 
11:       𝑓𝑜𝑟 𝑖 𝑖𝑛  0: 𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 𝑑𝑜: 
12:           𝑡𝑎𝑟𝑔𝑒𝑡𝑋 ←  𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑜𝑓𝑓𝑠𝑒𝑡 ∗ 3 + 𝑖 ∗ 3] 

13:            𝑡𝑎𝑟𝑔𝑒𝑡𝑌 ←  𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑜𝑓𝑓𝑠𝑒𝑡 ∗ 3 + 𝑖 ∗ 3 + 1] 
14:            𝑢 =  𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑜𝑓𝑓𝑠𝑒𝑡 ∗  3 +  𝑖 ∗  3 +  2] 
15:            𝑡𝑋 =  𝑡𝑎𝑟𝑔𝑒𝑡𝑋 –  𝑠𝑜𝑢𝑟𝑐𝑒𝑋 
16:            𝑡𝑌 =  𝑡𝑎𝑟𝑔𝑒𝑡𝑌 –  𝑠𝑜𝑢𝑟𝑐𝑒 
17:            𝑛𝑒𝑎𝑟𝑓𝑖𝑒𝑙𝑑[𝑡𝑖] +=  𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡𝑋, 𝑡𝑌, 𝑢) 

18:       𝑒𝑛𝑑 𝑓𝑜𝑟 

19:     𝑒𝑛𝑑 𝑖𝑓 

20:  𝑒𝑛𝑑 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 
__________________________________________________________________ 
 


