

Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

Acceleration of Near Field Computation of MLFMA on a single
GPU by Generating Redundancy in Data

M. Sadeghi*1 and A. Torabi†1
1 School of Engineering Science, College of Engineering, University of Tehran

ABSTRACT ARTICLE INFO
The efficiency of the Multilevel Fast Multipole
Algorithm (MLFMA) on distributed and parallel
systems, especially on GPUs, has been the focus of
extensive researches. While there has been
considerable emphasis on improving far-field
computations within MLFMA, the acceleration of
near-field computations on GPUs has not been as
thoroughly investigated. While some existing
approaches improve GPU memory performance
using common, intuitive ideas without analytical
modelling, this paper aims to leverage analytical
performance models to make more informed
decisions regarding the P2P operator through data
replication. Our model indicates that applying data
redundancy in Global Memory as a form of
restructuring can enhance the algorithm's
performance by nearly 13 times for lower-density
problems, compared to a baseline implementation
that relies on the SoA scheme.

 Article history:
Research paper
Received 16, December 2024
Accepted 28, December 2024
Available online 30, December 2024

Keywords: Multilevel Fast Multi-Pole Algorithm,
Graphics Processors, Performance Evaluation

AMS subject classification: 68T09.
* Corresponding author: A. Torabi, Email:ab.reza.torabi@ut.ac.ir
† sadeghi.morteza@ut.ac.ir

Journal of Algorithms and Computation 56 issue 2, December, PP. 89-112

90 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

1 Introduction

The Fast Multipole Method (FMM) [1] and the Multilevel Fast Multipole Algorithm (MLFMA)
[2] are designed to accelerate matrix-vector multiplication (MVM) in various scientific
simulations, such as telecommunications, physics, mechanics, and chemistry. MLFMA can reduce
the complexity of MVM to O(N) in certain scenarios [3]. While MLFMA is effective on a single
CPU, additional acceleration is required for large-scale problems on supercomputers. Although
far-field computation has been optimized for more than a decade, near-field computation has not
received the same level of attention. Many existing optimizations tend to overlook GPU cache
bottlenecks and rely on basic GPU optimization techniques. This paper proposes the use of data
redundancy and performance modeling to tackle the degradation of GPU cache performance in
near-field computation, aiming to direct future research towards accurate modeling and
optimization of MLFMA operators on a single GPU.

Far-field computation in MLFMA has been thoroughly investigated for large-scale applications
on GPUs and GPU clusters. Initial studies [4][5][6][7] concentrated on enhancing far-field
calculations by effectively distributing computations across cluster nodes and minimizing inter-
node interactions at higher levels of the tree. The hierarchical approach in [4] improved
performance by modifying the algorithm to eliminate network communication at intermediate tree
levels and to better balance the load at higher levels. Similarly, [5] utilized both CPU and GPU
resources simultaneously to address large-scale problems with strong scalability. Additionally, [7]
implemented partitioning strategies to reduce communication within the tree, while [14] took
advantage of the symmetry of the M2L operator to decrease computations and improve
performance.

In contrast, the acceleration of P2P operators has not been as widely studied, as they can be divided
into smaller, independent subtasks that can be processed concurrently with far-field computations
on the CPU. As highlighted in [8], the P2P operator is the second most time-consuming component
in MLFMA, accounting for about 30% of the total execution time. This paper aims to enhance the
performance of the P2P operator. Several studies [9][10][11] have sought to reduce the complexity
of P2P operations on a single GPU. These approaches are particularly significant because they can
be scaled to multiple GPUs, given that P2P problems can be decomposed into smaller, independent
subproblems.

In [9], researchers utilized shared memory and on-the-fly techniques to minimize memory access,
which increased the memory volume and computations on the device while improving overall
speed. For the P2P operator, they transferred data to thread registers, which have low access times
and limited capacity, restricting each thread to managing interactions between 320 point-pairs.
Study [10] enhanced coalesced memory access by categorizing P2P interactions into two groups:
those within a box and those between neighboring boxes. The latter group led to uncoalesced
memory accesses, so separating them allowed the first kernel to execute more quickly, thereby
reducing overall execution time. In [11], researchers achieved a speedup of over 400 by integrating
on-the-fly techniques with interaction separation, which increased device computations and

91 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

decreased memory usage. Additionally, [12] distributed the solution of a single-level FMM for
acoustic problems between the CPU and GPU in a multi-GPU setup, discovering that increasing
the workload for GPU threads and the number of groups each thread processes creates a trade-off
between CPU and GPU execution times. They modeled execution time and applied it in [13] to
identify the optimal group size.

One overlooked aspect of these studies is that their implementation decisions were guided by
intuition and known GPU optimization techniques and validating their effectiveness through
experimental results, rather than modeling. Study [9] performed experiments with various problem
sizes and tree levels but did not investigate how point density influenced performance. In [11],
results from nine experiments with different tree levels and densities indicated that speedup has a
positive correlation with point density at a fixed tree level; however, they did not provide further
details on these findings. In other studies [12][13] researchers employed execution time modeling,
which necessitates hardware-dependent constants that cannot be determined until after system
profiling.

Data replacement or redundancy is a well-established technique in GPU literature that has been
studied. It has been concluded that memory-divergent applications on GPUs experience high
spatial locality, yet GPUs are unable to fully utilize this characteristic [15]. Unlike single core
caches, GPU caches are shared among multiple threads, which can result in cache contention, false
sharing, and elevated miss-rates, particularly in applications with irregular memory access patterns
[16]. Consequently, spatial locality is a crucial factor in modeling the performance of GPU
applications [17]. Near-field computation exhibits a stencil parallel pattern, classifying it as a
memory-divergent application that also faces similar false-sharing and cache-contention
challenges. This issue has been largely overlooked in previous MLFMA research. One study [18]
introduced a novel method to reduce miss-rates and enhance bandwidth for applications with
significant read-only data sharing by adaptively reconfiguring the last-level cache between shared
and private models. However, this approach was aimed at private cache-friendly applications,
which do not apply to the P2P operator in MLFMA.

This paper investigates the use of data replication to alleviate cache contention for the P2P operator
and demonstrates that performance modeling can effectively predict algorithm speedup based on
the employed data structure.

1.1 Our Contribution

As discussed, the main challenge with P2P efficiency arises from divergent memory accesses on
the device. Previous studies have attempted to minimize memory usage by taking advantage of
GPU memory characteristics. This paper proposes a restructuring of data -specifically replicating
data for each thread- to reduce cache contention. Although data redundancy introduces some
overhead, it enhances the speed of GPU kernels by reducing false sharing and cache contention.
The overhead primarily occurs during the data collection phase on the CPU, as replicating data

92 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

increases the amount of data transferred between the GPU and RAM. We aim to find the optimal
point in this tradeoff using a mathematical model. To assess the impact of data restructuring on
overall speedup, analytical models are essential. Although [13] presented a performance model, it
is not applicable in this context, as it concentrated on thread grouping rather than data restructuring.

This paper introduces a performance model that can be applied to any data restructuring technique
for the P2P operator. The model takes into account the complexity of data collection on the CPU,
GPU kernel execution, and MLFMA parameters. Data access locality is proposed as a key factor
in modeling the speedup of GPU implementations, capturing how data restructuring affects data
access speed. Although the model does not yield exact predictions of speedup, it can approximate
the optimal parameters for the algorithm that result in faster execution on a single device.
Additionally, it can estimate the segment size when dividing the entire problem into segments for
parallel execution on a cluster. Our model can find optimal value for box size (i.e., the number of
points per box) to achieve greater speedup, similar to the approach in [13], which optimized group
size for single-level FMM algorithms in heterogeneous environments.

In this paper, A straightforward data restructuring technique is proposed: introducing redundancy
to ensure thread independence, meaning that each data element is accessed by only one thread, and
each thread loads all necessary data with minimal instructions. While this approach increases the
data volume and prolongs the data collection phase, the overhead is accounted for in the
performance model, which helps identify optimal parameters that make redundancy advantageous.

The case study problem used to evaluate this technique is the electrical potential function due to
its ease of implementation. The potential function is applied to a 2D Perfect Electric Conductor
(PEC) where the source and target (radiating and receiving) points are randomly distributed across
the surface. The MLFMA formulation for this problem is derived from [14]. Since MLFMA is
kernel-independent, changing the kernel is not expected to significantly impact the results.

Our novelty and contributions can be summarized as follows:

 Data-restructuring is proposed as an optimization technique for the P2P operator of
MLFMA, a concept that has not been previously introduced.

 An analytical performance prediction models is developed to estimate the impact of data
restructuring on the speedup of the P2P operator, replacing earlier practical approaches.

 Data locality is introduced as a significant factor in modeling the speedup of algorithms on
GPUs and a method is proposed to quantify it.

Although the innovation presented in this article has not, to our knowledge, been addressed in prior
works, it does have limitations and drawbacks, including:

 It does not model the speedup of data transfer, making it reliant on empirical data.

 The simplicity of the analytical modeling makes the proposed technique infrastructure-
dependent; the performance model relies on coefficients that describe unknown hardware
parameters, which also makes it dependent on empirical data.

93 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

 The proposed method is not automatic and requires researchers to invest effort in accurately
modeling performance.

 The application of the proposed methodology to larger problems using pipelining and
across multiple GPUs is not addressed in this article.

 While the potential function used in this paper is straightforward to analyze and model,
other kernels may encounter thread divergence or utilize shared memory which are not
considered in this study.

Considering these pros and cons, this research can serve as a foundation for future work on
MLFMA that aims to control the speed of algorithms based on device properties, data structure,
and MLFMA parameters.

In the next section of this article, we present a simple implementation along with its analytical
modeling, followed by a similar approach for the improved version. Section 3 examines the
accuracy of the models using empirical data. Based on these models, we then test the efficiency of
the proposed technique on problems with varying densities while running on a single GeForce
1050. Finally, sections 4 and 5 provide brief conclusions and suggestions for future work.

2 Methodology

In this paper, a performance model is developed to evaluate the speedup of the GPU kernel for the
P2P operator based on data restructuring. The speedup is approximated by comparing the
complexities of two algorithms: the baseline algorithm and the redundant one. This complexity
encompasses the data structure, data collection algorithm, GPU kernel algorithm, and MLFMA
parameters.

Initially, a simple implementation of the P2P operator is chosen as the baseline implementation
which uses SoA data structure, followed by another implementation with data redundancy. The
first implementation is referred to as the indexing method, while the second is called the repetition
method. These two typical approaches are selected to validate the effectiveness of the performance
modeling. To simplify the analytical models, no conventional GPU optimization techniques -such
as overlapping, pre-fetching, exploiting shared memory, or dynamic parallelism- were utilized.

The work of [14], which addresses solution of 2D Coulombic problems, serves as the foundation
for the presented implementation. According to this study, a MLFMA tree is defined by three main
parameters: 𝑁 (the number of samples), 𝐶𝑇 (the clustering threshold), and L (the tree height). The
clustering threshold ensures that the number of samples (points) per box remains below a specified
limit. If a box contains more samples than 𝐶𝑇 during the tree-building process, the tree level

increases by one and all boxes split into four smaller boxes which contain
஼்

ସ
 samples. The

maximum number of samples in all boxes after fixing tree level is denoted as 𝑡 in this paper. The
value of 𝑡 is calculated after generating the 2D mesh and is used in determining the complexity of
the algorithms.

94 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

Each method is described in three phases: data collection, data transfer, and GPU kernel execution.
The behavior of the two methods presented is contrasting; the indexing method is expected to
perform faster during data collection and transfer but slower during GPU kernel execution,
whereas the repetition method is anticipated to demonstrate the opposite behavior.

2.1. Indexing Method

In this method, data is not replicated for each thread, and all threads access non-adjacent memory
banks. The data structure for this method is compressed, which results in faster data collection and
data transfer phases.

2.1.1 Data Collection

In the Indexing method, data is organized into seven arrays. Two of these arrays are used to store
the coordinates of all source and target points, while one array holds the potential values of the
source points. The remaining arrays maintain indexes that reference these arrays. The fourth array
contains the indices of target points within each box, with the indices of source points being
appended to this array as the boxes are traversed in Morton order. The fifth array records the
starting index of each box in the previous array, referred to as the second-order index. The sixth
array includes the indices of the source points that are neighbors of each box, arranged in
consecutive Morton order. Finally, the seventh array contains the second-order indices from the
previous array.

Algorithm (1) in the appendix illustrates the execution order for the data collection phase of the
Indexing method. The execution time for data collection on the CPU can be expressed by equation
(1), where 𝑁 represents the problem size, 𝑚௜௡ௗ௘௫௜௡௚ denotes the time for a single read or write
operation in RAM, and 𝐵 is the number of boxes. The number 9 in equation (1) corresponds to the
count of adjacent neighboring boxes in the 2D problems. The total number of boxes is 4௅ିଵ, where
4 is the branching factor of the tree and 𝐿 is number of levels of the tree.

𝑇௜௧௘௥௔௧௘ ௔௡ௗ ௖௢௟௟௘௖௧ _ ௜௡ௗ௘௫௜௡௚ = 𝑁൫7𝑚ூ௡ௗ௘௫௜௡௚൯ + 4௅ିଵ(𝑚ூ௡ௗ௘௫௜௡௚(11 + 19𝑡) + 3) (1)

2.1.2 Data Transfer

The total memory allocated for this technique, measured in bytes, is defined in equation (2). The
point coordinates and potential values are stored as doubles, while the index values are stored as
integers. This data is transferred to GPU memory after the data collection phase and prior to the
execution of the GPU kernel.

𝑀𝑒𝑚𝑜𝑟𝑦ூ௡ௗ௘௫௜௡௚ = 5𝑁𝐷𝑜𝑢𝑏𝑙𝑒 + 4௅ିଵ(2 + 𝑡 + 9𝑡)𝐼𝑛𝑡𝑒𝑔𝑒𝑟 = 40𝑁 + 4௅(2 + 10𝑡) (2)

95 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

2.1.3 GPU Kernel

In the indexing method, each GPU thread is tasked with calculating the near field for all target
points within a box. Each thread begins by extracting the second-order index of the target points
associated with its corresponding box, followed by an iterative loop to retrieve the indices of the
target points. During each iteration, the thread extracts the second-order index of the source points
relevant to its box and iterates through them in an inner loop. It then retrieves their coordinates
and potential values, ultimately applying the electric potential function to a pair of target and
source points. Algorithm (2) in the appendix outlines the execution order in the GPU kernel for
the Repetition method.

However, since each thread accesses data located in non-consecutive memory banks (seven arrays
stored in different memory locations), memory requests result in significant cache misses, leading
to poor performance.

The execution time for each GPU thread is expressed in equation (3), where 𝑂ଵି௖௢௠௣௨௧௔௧௜
represents the time taken by the potential function applied between two pairs of points. In equation
(3), the term t is used instead of 𝐶𝑇, as the maximum number of points in each box is less than or
equal to 𝑡. The term 𝑡 is a random variable and may vary across different runs of MLFMA, but it
is guaranteed to be less than or equal to 𝐶𝑇.

𝑇௄௘௥௡௘௟ _ ூ௡ௗ௘௫௜௡௚

= 4𝑚ூ௡ௗ௘௫௜௡௚

+ 𝑡൫3𝑚ூ௡ௗ௘௫௜௡௚ + 9𝑡൫5𝑚ூ௡ௗ௘௫௜௡௚ + 𝑂ଵି௖௢௠௣௨௧௔௧௜௢௡൯ + 𝑚ூ௡ௗ௘௫௜௡௚൯

(3)

 = 4𝑚௜௡ௗ × (11.25𝑡ଶ + 𝑡 + 1) + 9𝑡ଶ𝑂ଵି௖௢௠௣௨௧௔௧௜௢௡

2.2 Repetition Method

In this method, each thread computes the interaction between a target point and its neighboring
source points. The source points surrounding the targets within a box are replicated 𝑡 times, with
each replication corresponding to a target point. While the time required to collect and transfer
data to the GPU is expected to be longer than in the Indexing method, the GPU kernel is anticipated
to execute faster due to serial memory requests, thereby offsetting the additional time spent in the
collection and transfer phases.

Each target point can have a maximum of 9 neighboring boxes, and each box can contain up to 𝐶𝑇
source points. Consequently, the maximum number of array elements allocated to each target point
is equal to (2 + 1 + 9 × 3 × 𝑡) Double elements. The first two variables represent the coordinates
of the target point, the next number accounts for the number of nearby sources, and the subsequent
9 × 3 elements correspond to the 27 neighbors, which include two coordinates and one potential
value. All this data is stored in Double format, but the second digit is parsed as an integer.

96 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

The execution order for the data collection phase of the Repetition method is outlined in Algorithm
(3) in the appednix. During the data collection phase, for each box and each target point within it,
all neighboring source points are extracted and appended to the data array.

The execution time for the collection phase is expressed in equation (4). Based on assumptions
similar to those made for the Indexing method, this relationship can be summarized in equation
(5).

𝑇ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧ೃ೐೛೐೟೔೟೔೚೙

= 𝐵(3𝑟 + 𝑡(1𝑟 + 2𝑤 + 𝑓𝑖𝑛𝑑_𝑛𝑒𝑖() + 1𝑤

+ 9൫1𝑟 + 𝑡(1𝑟 + 2𝑤 + 1𝑟 + 1𝑤)൯ + 1𝑤

(4)

𝑇ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧ೃ೐೛೐೟೔೟೔೚೙

= 4௅ିଵ(𝑚ோ௘௣௘௧௜௧௜௢௡ + 11𝑡𝑚ோ௘௣௘௧௜௧௜௢௡ + 45𝑚ோ௘௣௘௧௜௧௜௢௡𝑡ଶ + 𝑡

∗ 𝑓𝑖𝑛𝑑_𝑛𝑒𝑖())

(5)

2.2.2 GPU Kernel

Each GPU thread is tasked with computing interactions between a target point and other source
points in its immediate neighborhood. Each thread requires the coordinates of the target and source
points, the number of source points in the nearby area, and the potential values of the neighboring
source points. These elements are collected and stored consecutively for each thread, and the data
from all threads are combined to form a single long array. The execution order for this kernel is
illustrated in Algorithm (4) in the appendix.

In this Array of Structures (AoS) approach to storing data items, each thread requests data from
one or several adjacent memory banks. In contrast, the Indexing method employs a Structure of
Arrays (SoA) format, where seven arrays are stacked, and each thread accesses seven non-adjacent
memory locations. Therefore, it is anticipated that the Repetition method will experience fewer
cache misses compared to the Indexing method.

The execution time for each GPU thread can be expressed in equation (6). Here, 𝑚ோ௘௣௘௧௜௧௜௢௡
represents the time for a single memory access in the Repetition method. The term 𝑡 is used instead
of 𝐶𝑇, as each thread primarily accesses data from up to t neighboring source points.

𝑇௄௘௥௡௘௟ _ ோ௘௣௘௧௜௧௜௢௡ = 3𝑚ோ௘௣௘௧௜௧௜௢௡ + 9𝑡൫4𝑚ோ௘௣௘௧௜௧௜௢௡ + 𝑂ଵି௖௢௠௣௨௧௔௧௜௢௡൯ (6)

3 Modelling the Speedup

The speed of execution resulting from the application of the repetition method is derived from
equation (7). Due to the presence of factors related to memory access time in this relationship,
along with the highly variable nature of execution time, it is challenging to calculate these
expressions with precision. However, equation (7) can be approximated as the sum of individual

97 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

speedups, as shown in equation (8), where the values of 𝛼, 𝛽, and 𝛾 are coefficients that can be
determined based on the specific hardware and operating system.

By considering that these parameters converge to a constant value as the problem size increases,
the estimation of these coefficients can be performed using the least squares method.

𝑋ோ௘௣௘௧௜௧௜௢௡ =
𝑇ூ௡ௗ௘௫௜௡௚

𝑇ோ௘௣௘௧௜௧௜௢௡

=
𝑇஼௢௟௟௘௖௧௜௢௡_ூ௡ௗ௘௫௜௡௚ + 𝑇்௥௔௡௦௙௘௥_ூ௡ௗ௘௫௜௡௚ + 𝑇௄௘௥௡௘௟_ூ௡ௗ௘௫௜௡௚

𝑇஼௢௟௟௘௖௧௜௢௡ೃ೐೛೐೟೔೟೔೚೙
+ 𝑇்௥௔௡௦௙௘௥_ோ௘௣௘௧௜௧௜௢௡ + 𝑇௄௘௥௡௘௟_ோ௘௣௘௧௜௧௜௢௡

(7)

𝑋ோ௘௣௘௧௜௧௜௢௡ = 𝛼𝑋஼௢௟௟௘௖௖௧௜௢௡_ோ௘௣௘௧௜௧௜௢௡ + 𝛾𝑋்௥௔௡௦௙௘௥_ோ௘௣௘௧௜௧௜௢௡ + 𝛽𝑋௄௘௥௡௘௟_ோ௘௣௥௧௜௧௜௢௡ (8)

3.1 Modelling the Speedup of Data Collection

The size of the data generated and sent to the GPU, measured in bytes, is represented in equation
(9). In this context, the term 𝐶𝑇 is used instead of 𝑡 because a 𝐶𝑇 array element is reserved for
each thread, allowing each thread to know its starting index.

𝑀𝑒𝑚𝑜𝑟𝑦ோ௘௣௘௧௜௧௜௢௡ = 𝑁(3 + 27 𝐶𝑇)𝐷𝑜𝑢𝑏𝑙𝑒 = 8𝑁(3 + 27𝐶𝑇) (9)

Using equations (1) and (5), the data collection speedup in the Repetition method can be
approximated by considering larger terms, as expressed in equations (10) and (11).

𝑇ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧಺೙೏೐ೣ೔೙೒

𝑇ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘ ೃ೐೛೐೟೔೟೔೚೙

=
𝑁൫7𝑚ூ௡ௗ௘௫௜௡௚൯ + 4௅ିଵ(𝑚ூ௡ௗ௘௫௜௡௚(11 + 19𝑡) + 3 + 𝑓𝑖𝑛𝑑_𝑛𝑒𝑖())

4௅ିଵ(3𝑚ோ௘௣௘௧௜௧௜௢௡ + 11𝑡𝑚ோ௘௣௘௧௜௧௜௢௡ + 45𝑚ோ௘௣௘௧௜௧௜௢ 𝑡ଶ + 𝑡 ∗ 𝑓𝑖𝑛𝑑_𝑛𝑒𝑖())

(10)

𝑇ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧_ூ௡ௗ௘௫௜௡௚

𝑇ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧ೃ೐೛೐೟೔೟೔೚೙

≈
𝑚ூ௡ௗ௘௫௜௡௚

𝑚ோ௘௣௘௧௜௧௜௢௡

×
1

𝑡
= 𝑋௠ ∗

1

𝑡

(11)

In this context, the speed of accessing RAM using the Repetition method compared to the Indexing
method is denoted as 𝑋௠. This value is estimated as the inverse ratio of the volume of the data in
memory, as shown in equation (12).

𝑋௠ ≈ 𝜆ோ஺ெ
ெ௘௠௢௥௬಺೙೏೐ೣ೔೙೒ାெ௘௠௢௥௬ೝ೐ೞೠ೗೟

ெ௘௠௢௥௬ೃ೐೛೐೟೔೟೔೚೙ାெ௘௠௢௥௬ೝ೐ೞೠ೗೟
 ≈ 𝜆ோ஺ெ

ସ଴ேାସಽ(ଶାଵ଴௧)ା଼ே

଼ே(ଷାଶ଻஼்)ା଼ே
 (12)

In equation (12), the term 𝜆ோ஺ெ is a coefficient that depends on the RAM and indicates the effect
of data volume on memory access time. Equation (12) can be simplified into equation (13). Here,

98 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

𝐷 represents the average number of points in a box, which is calculated by dividing the total
number of points 𝑁 by the number of boxes 𝐿.

𝐷 =
𝑁

4௅ିଵ
→ 𝑋௠ ≈

1

2
×

1

𝐷
×

10 ×
1
4

𝐶𝑇

27𝐶𝑇
 =

1

21.6𝐷

(13)

By combining equations (13) and (11), the acceleration of data collection is derived using equation
(14). According to this relationship, the average density of points within the boxes negatively
impacts the efficiency of the Repetition method during the data collection phase.

𝑋ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧_ோ௘௣௘௧௜௧௜௢௡ ≈ 𝜆ோ஺ெ

1

21.6𝑡𝐷

(14)

3.2 Modelling the Speedup of GPU Kernel

In the Repetition method, a greater number of threads are utilized compared to the Indexing
method, approximately 𝑡 times. The overhead incurred by using more threads than the number of
device cores is considered in the speedup formulation.

The speedup of the Repetition method during GPU kernel execution is expressed in equation (15).
By substituting equations (3) and (6) into equation (15) and applying simplifications, the kernel
speedup is approximated in equation (16).

𝑋௞௘௥௡௘௟_ோ௘௣௘௧௜௧௜௢௡ =
𝑇௄௘௥௡௘௟_ூ௡ௗ௘௫௜௡௚

𝑇௄௘௥௡௘௟_ோ௘௣௘௧௜௧௜௢௡
×

𝑁𝑢𝑚 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 𝐼𝑛𝑑𝑒𝑥𝑖𝑛𝑔
𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑣𝑖𝑐𝑒 𝐶𝑜𝑟𝑒𝑠

𝑁𝑢𝑚 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛
𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑣𝑖𝑐𝑒 𝐶𝑜𝑟𝑒𝑠

=
𝑇௄௘௥௡௘௟_ூ௡ௗ௘௫௜௡௚

𝑇௄௘௥௡௘௟_ோ௘௣௘௧௜௧௜௢௡
×

4௅ିଵ

𝑁

(15)

𝑋௞௘௥௡௘௟ೃ೐೛೐೟೔೟೔೚೙
=

𝑇௄௘௥௡௘௟಺೙೏೐ೣ೔೙೒

𝑇௄௘௥ ೃ೐೛೐೟೔೟೔೚೙

 =
4𝑚ூ௡ௗ௘௫௜௡௚(11.25𝑡ଶ + 𝑡 + 1) + 9𝑡ଶ𝑂ଵି௖௢௠௣௨௧௔௧௜௢௡

𝑚ோ௘௣௘௧௜௧௜௢௡(9𝑡 + 3) + 9𝑡𝑂ଵି௖௢௠௣௨௧௔௧௜௢௡

≤
4𝑚ூ௡ௗ௘௫௜௡௚

3𝑚ோ௘௣௘௧௜௧௜௢௡
𝑡 =

4

3
𝑋௠௘௠_௥௘௣௘௧௜௧௜௢௡ × 𝑡

(16)

The ratio of memory access time is considered constant for both the Repetition and Indexing
methods. While accurately measuring memory access time can be challenging, its speedup can be
approximated. In this paper, it is assumed that the primary factor influencing memory access
speedup is the memory miss ratio. Although the memory miss ratio can be obtained from device
counters, this approach is not advantageous for our implementation, as the presented method does
not involve runtime optimization. Instead, the miss-rate is estimated based on memory access
locality. This implies that the closer the data is located in memory, the higher the cache hit rate,
resulting in faster access times to memory.

99 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

𝑋௠௘௠_ோ௘௣௘௧௜௧௜௢௡ ≈ 𝜆ீ௉௎

𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑖𝑜ோ௘௣௘௧௜௧௜௢௡

𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑖𝑜ூ௡ௗ௘௫௜௡௚
≈ 𝜆ீ௉௎

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ோ௘௣௘௧௜௧௜௢௡

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ூ௡ௗ௘௫௜௡௚

(17)

In equation (17), 𝜆ீ௉௎ is a coefficient that depends on the GPU hardware and represents the
performance of the cache. The term 𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑖𝑜ோ௘௣௘௧௜௧௜௢௡ is an estimation of the cache miss-rate,
specifically the number of accesses to non-neighboring memory banks by each thread. The
𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦 is correlated with miss ration. The 𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦 or cache miss-rate for a thread is defined as
the ratio of the number of memory banks accessed by that thread to the total number of memory
banks accessed by all threads, as expressed in equation (18).

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ூ௡ௗ௘௫௜௡௚ =
𝑜𝑓 𝑛𝑜𝑛 − 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑚𝑒𝑚𝑜𝑟𝑦 𝑏𝑎𝑛𝑘𝑠 𝑒𝑎𝑐ℎ 𝑡ℎ𝑟𝑒𝑎𝑑 𝑎𝑐𝑐𝑒𝑠𝑠

𝑡𝑜𝑡𝑎𝑙 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑚𝑒𝑚𝑜𝑟𝑦 𝑏𝑎𝑛𝑘𝑠

(18)

In equation (18), if all the data accessed by a thread is located in fewer memory banks, the thread
will experience fewer cache misses. In the Indexing method, memory bank accesses are distributed
across non-adjacent memory banks due to the use of a Structure of Arrays (SoA) data scheme.
Each thread in the Indexing method reads values from seven arrays, which means that each thread
incurs at least 7 cache misses when 𝑁 and 𝑡 are sufficiently large. Valuer for 𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦 for the
Indexing method is calculated in equation (19), where 𝑏 represents the number of bytes stored in
a memory bank.

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ூ௡ௗ௘௫௜௡௚ =
#𝑀𝑒𝑚𝑜𝑟𝑦𝐵𝑎𝑛𝑘𝑠

඄
40𝑁 + 4௅(2 + 10𝑡)

𝑏
ඈ

#𝑀𝑒𝑚𝑜𝑟𝑦𝐵𝑎𝑛𝑘𝑠

= ඄
1𝐼𝑛𝑡𝑒𝑔𝑒𝑟

𝑏
ඈ + ඄

1𝐼𝑛𝑡𝑒𝑔𝑒𝑟

𝑏
ඈ + ඄

𝑡 ∗ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

𝑏
ඈ + ඄

9𝑡 ∗ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

𝑏
ඈ

+ ඄
𝑡 ∗ 2 ∗ 𝐷𝑜𝑢𝑏𝑙𝑒

𝑏
ඈ + ඄

9𝑡 ∗ 3 ∗ 𝐷𝑜𝑢𝑏𝑙𝑒

𝑏
ඈ

(19)

(20)

In equation (20), the terms include 2 indices that are stored in two different memory banks, 𝑡
indices of target points, 9𝑡 indices of source points, 2𝑡 coordinates of target points, and 27𝑡
coordinates and potential values of source points. All of these elements are stored in separate
memory banks. By taking the value of 𝑏 as 512 bytes for the GTX 1050 device, equation (20) is
simplified to equation (21).

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ூ௡ௗ௘௫௜௡௚ ≈
272𝑡

40𝑁 + 4௅(2 + 10𝑡)

(21)

This 𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦 is applicable to all other threads, so the value in equation (21) must be multiplied
by the number of threads used in the Indexing method. This multiplication accounts for the
cumulative effect of cache misses across all threads, providing a more comprehensive estimate of
the overall cache miss-rate for the method.

100 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ூ௡ௗ௘௫௜௡௚ ≈
272𝑡

40𝑁 + 4௅(2 + 10𝑡)
× 4௅ିଵ

(22)

In the Repetition method, all GPU threads read the same amount of data from the entire data array,
and all of this data is stored in contiguous memory banks. As a result, the probability of a cache
miss is significantly reduced because of better data access locality. 𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦 for Repetition method
si defined in equation (23).

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ோ௘௣௘௧௜௧௜௢௡ =
1

𝑁

(23)

By substituting equations (22) and (23) into the ratio expressed in equation (19), the ratio of cache
misses between the two methods is given by equation (24). In this relation, 𝑡 can be excluded due
to its relatively small value. Considering that number of boxes are smaller than number of points
or 4௅ିଵ <= 𝑁, the miss ratio is of the order 𝑂(𝑁ିଵ).

𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦ோ௘௣௘௧௜௧௜௢௡

𝑙𝑜𝑐𝑎𝑙𝑖𝑡𝑦ூ௡ௗ௘௫௜௡௚
=

1

𝑁
÷ (

272𝑡 × 4௅ିଵ

40𝑁 + 4௅(2 + 10𝑡)
) =

40𝑁 + 4௅

𝑁 × 4௅ିଵ
≈

40

4௅ିଵ
+

4

𝑁
≥

44

𝑁

(24)

By substituting equation (24) into equation (17), an approximation of memory access speedup is
obtained in equation (25). Furthermore, by incorporating equations (25) and (16), the kernel
acceleration of the Repetition method can be calculated as shown in equation (26).

𝑋௠௘௠_ோ௘௣௘௧௜௧௜௢௡ ≈ 𝜆ீ௉௎ ×
44

𝑁

(25)

𝑋௞௘௥௡௘௟ೃ೐೛೐೟೔೟೔೚೙
=

ସ

ଷ
𝑋௠௘௠ೃ೐೛೐೟೔೟೔೚೙

× 𝑡 ×
ସಽషభ

ே

 ≈
4

3
𝜆ீ௉௎ ×

44

𝑁
× 𝑡 ×

4௅ିଵ

𝑁
≈ 55.3𝜆ீ௉௎ × 𝑡 ×

1

𝑁𝐷

(26)

It can be argued that the speedup of the GPU kernel in the Repetition method decreases as the size
of the problem increases. Since the value of 𝑡 is greater than 𝐷, increasing the point density in
equation (26) positively impacts the GPU kernel speed and can mitigate the negative effects
associated with 𝑡.

3.3 Modelling Data Transfer Speedup

The time required for data transfer is affected by various factors, including hardware and the
operating system; however, it typically correlates with the amount of data. The data volume ratio,
as calculated in (13), indicates that an increase in the density of points within the boxes leads to a
reduction in the speed of the Repetition method.

101 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

3.4 Analysis of Model

The overall speedup is determined using (8) and incorporates the relationships from (14), (16), and
(25), which is outlined in equation (27). The variable 𝑡 has opposing effects on the acceleration of
data collection and the GPU kernel. This implies that the Repetition method is not always more

efficient than the Indexing method. Additionally, the term
ଵ

஽
 can be factored out of the entire

equation. It can be concluded that increasing the number of boxes while keeping 𝑁 constant (and
thus reducing 𝐷) results in the Repetition method being generally faster than the Indexing method.

𝑋ோ௘௣௘௧௜௧௜௢௡ = 𝛼𝜆ோ஺ெ

1

21.6𝐷𝑡
+ 𝛾

1

21.6𝐷
+ 𝛽(55.3𝜆ீ௉௎ × 𝑡 ×

1

𝑁𝐷
)

(27)

To identify an optimal balance between the two methods, it is essential to know the values of 𝜆ோ஺ெ,
𝜆ீ௉௎, and the coefficients 𝛼 and 𝛽. According to the proposed analytical model, it is recommended
that to maximize the acceleration of the Repetition method, the number of boxes should be
increased while maintaining a constant 𝑁, and the number of sample points within them should be
decreased. In other words, this method is more advantageous than the Indexing method for
scenarios where the density of sample points is low.

4 Evaluation of Model

4.1. Evaluation of Model Error

This section compares the basic CPU implementation derived from [14] with the Indexing method
and the Repetition method. In the CPU implementation, the boxes are processed in Morton's
indexing order. For each target point within a box, neighboring source points are initially extracted,
and for each source point in the 𝐸ଵ neighborhood, the potential function is executed once, with its
value being summed with the far-field induced potential.

4.1.1. Evaluation of Data Collection Performance Model

Due to the data collection being conducted on the CPU and the experimental nature of the setup,
the techniques presented are compared using small-sized problems. The tests begin with a problem
size of 𝑁 = 5,000 and increase to 100,000 points in increments of 5,000. Subsequently, the
problem size is raised to 350,000 points, with increments of 50,000 points. The default value for
𝐶𝑇 is set to 15, as the techniques are more effective for sparse problems. The tree height 𝐿 starts
at a default value of 3 and increases based on 𝑁 and 𝐶𝑇. Each test is repeated 20 times on a similar
tree, and the running times are averaged over these 20 runs.

The initial speedup for each method is calculated by dividing its running time by the running time
of the baseline model. The speedup of the Repetition method is then determined by dividing its
speedup by that of the Indexing method. Figure 1 illustrates the speedup of the Repetition method.
Additionally, the speedup is approximately calculated in (27) based on the values of 𝑡 and 𝐷. The
measured speedup is represented by a solid black line in Fig.1. The vertical axis on the left

102 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

indicates the speedup amount relative to the problem size 𝑁, while the orange dashed line
represents the estimated speedup using (14), with the vertical axis on the right showing the
corresponding speedup calculated using (26). In both plots, the performance models presented
align with the trend observed in the empirical data. To achieve a more accurate fit, it is necessary
to determine the values of 𝜆 for both (14) and (26). In this paper, these values are calculated by
dividing the experimental running time by the performance model and then averaging the results
across all experiments. The value of 𝜆 for formula (14) ranges between 75 and 180, with an average
value of 108.

Figure 1 – The speedup of the Repetition method during the data collection phase is shown by the
black line on the left vertical axis, while the estimated value using (14) is represented by the orange
line on the right vertical axis. The estimated value exhibits a similar trend to the measured speedup.

The oscillation observed in Fig.1 is attributed to the density D. As indicated in (13), the data
volume is inversely related to D. The volume of data influenced by the value of D significantly
impacts the execution speed of data collection. Considering this relationship and (14), the
theoretical maximum execution speedup is expressed in (28).

𝑋ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖_ோ௘௣௘௧௜௧௜௢௡ ≈ 𝜆
1

21.6𝑡𝐷
≥ 1

𝐶𝑇

4
~4 ≤ 𝑡, 1 ≤ 𝐷 → 𝑋ூ௧௘௥௔௧௘஺௡ௗ஼௢௟௟௘௖௧_ோ௘௣௘௧௜௧௜௢௡ ≤ 1.25

(28)

4.1.2. Evaluation of GPU Kernel Performance Model

Since the execution of the GPU kernel is significantly faster than data collection on the CPU, this
section focuses on experiments involving larger problems. In these tests, 𝑁 is increased by 1,000
at each step, starting from 1,000 points up to 100,000 points, and then increased by 50,000 points

103 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

per step until reaching 1,000,000 points. The values of 𝐶𝑇 and 𝐿 remain constant throughout all
tests.

Fig.2 displays the calculated speedup of the GPU kernel for the Repetition method in comparison
to the Indexing method, represented by a solid black line. The left axis uses a logarithmic scale for
speedup to mitigate the impact of jumps in the value of 𝑁 on the graph's resolution. The orange
dashed line indicates the predicted value based on (26). While this predicted value generally
follows a similar overall trend to the measured speedup, it does not align perfectly during certain
fluctuations. One reason for this discrepancy is that the running time on the GPU very variable.

The maximum value of 𝑁 for which the Repetition method remains faster than or equal to the
Indexing method, based on (26) and assuming that 𝑡 ≤ 𝐶𝑇, is calculated in (29).

𝑋௞௘௥௡௘௟_ோ௘௣௘௧௜௧௜௢௡ ≈ 55.3𝜆 × 𝑡 ×
1

𝑁𝐷
≥ 1 → 𝑁 ≤ 55.3𝜆 ×

𝑡

𝐷

𝑡 ≤ 𝐶𝑇 = 15 → 𝑁 ≤ 829.5𝜆 ×
1

𝐷

(29)

Figure 2 – Modeling GPU Kernel SpeedUp.
The measured GPU kernel speedup of the Repetition method is represented by the black line on the left
vertical axis, based on the Indexing method, while the estimated value using relation (26) is shown by the
orange line on the right vertical axis. Both axes are displayed on a logarithmic scale, illustrating the trend

The precise value of this relation necessitates the determination of 𝐷 and 𝜆. The value of 𝜆 is
calculated by dividing the empirical data by the approximated data for each experiment and then
averaging the results. Based on experimentation, the value of 𝜆 for GPU memory is approximately
640, indicating that for each unit of improvement in locality, the P2P kernel operates about 640
times faster. According to the empirical data, the value of 𝐷 varied between 1 and 5. Using the

104 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

maximum value for 𝐷, the optimal value of 𝑁 (assuming that t is consistently 15) can be calculated
based on (26), as expressed in (30).

106,000 ≤ 𝑁ை௣௧௜௠௔௟ ≤ 530,000 (30)

According to Fig.2, this value may not be entirely accurate; however, it is sufficiently precise for
selecting the segment size to distribute the entire problem across multiple GPUs.

4.1.3. Estimation of Model Coefficients

In (27), the calculation of the coefficients 𝛼, 𝛽, and 𝛾 enables the estimation of the total
acceleration time. These coefficients are derived from the data obtained during the tests conducted
for both the data collection and GPU kernel execution phases, and they are expressed in (31).

𝛼 ≈ 0.82, 𝛽 ≈ 0.09, 𝛾 ≈ 0.18 (31)

In Fig.3, the total execution time -which encompasses the total time for data collection, data
transfer, and kernel execution- is displayed alongside the predicted value based on the coefficients
in (31). In this figure, the predicted values have been multiplied by the measured speedups rather
than the theoretical values, as (27) is not accurate for transfer time. Instead, the formulation in (27)
is useful for gaining insights into the impact of algorithm design and the choice of granularity on
overall speedup. Fig.3 supports the concept of separating speedups as presented in (8); however,
it is not entirely accurate since the transfer time is not modeled accurately.

The overall trends in Fig.3 closely resemble those in Fig.1, indicating that data collection time is
the bottleneck of the presented method for the specified values of 𝑁 and 𝐶𝑇. This conclusion is
also supported by the coefficients in (31). The speedup from the GPU kernel contributes the least
to the overall speedup. Based on Fig.2 and 3, the Repetition method is marginally faster than the
Indexing method when 𝑡 and 𝐷 are not directly manipulated but instead increase with the values
of 𝑁 and 𝐶𝑇.

4.2. maximizing Total Speedup

Based on the results from the previous section and the analytical relations summarized in (27), it
is recommended to reduce the values of 𝐷 and 𝑡 while keeping 𝑁 constant to effectively utilize the
Repetition method for a specific problem. One straightforward approach to achieve this is to
increase the height of the tree by at least one unit after constructing it according to 𝐶𝑇. This
adjustment would increase the number of boxes by a factor of 4 (based on the tree's branching
factor) and reduce 𝐷 and 𝑡 to a quarter of their original values.

105 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

Figure 3 – Modeling Total SpeedUp.

The total speedup of the Repetition method is represented by the black line, while the estimated values
based on empirical data and (31) are shown by the orange line.

By increasing the height of the tree by 𝑖 units, and assuming that the coefficients remain constant,
the resulting acceleration can be expressed as:

𝐿ᇱ = 𝐿 + 𝑖 → 𝑡ᇱ =
𝑡

4௜
, 𝐷ᇱ =

𝐷

4௜

𝑋ᇱ
ோ௘௣௘௧௜௧௜௢௡ = 𝛼𝜆ோ஺ெ

4ଶ௜

21.6𝐷𝑡
+ 𝛾

4௜

21.6𝐷
+ 𝛽 ൬55.3𝜆ீ௉௎ × 𝑡 ×

1

𝑁𝐷
൰

 ≈ 4ଶ௜ × 0.82 + 0.18 × 4௜ + 0.09

(32)

(33)

This indicates that the speed of data collection, and consequently the speedup in data transfer,
significantly increases, while the speed of the GPU kernel remains unchanged. Equation (33)
demonstrates that increasing the tree height by one unit results in the Repetition method becoming
more than 13 times faster. However, these figures are merely indicative, and the actual acceleration
times during runtime may not necessarily match these values.

To assess the impact of varying tree height and box density, another experiment is conducted. For
the values in (34), different trees are generated with 𝐶𝑇 set to 15. After constructing the tree, 𝐿 is
adjusted based on the value of 𝑖. For larger values of 𝑖, the boxes become smaller, leading to a
decrease in 𝑡. Conversely, for smaller values of 𝑖, both t and density increase. The value of 𝑁 in
these problems is defined as 4௅ିଵ, where 𝐿 is taken as its initial value. The baseline CPU
implementation used in this experiment is the same as the baseline model referenced in the
previous section.

106 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

𝑖 ∈ {−3, −2, −1,0,1,2,3}

𝐿 ∈ {4,5,6,7,8,9,10,11}

(34)

This indicates that the speed of data collection, and consequently the speedup in data transfer,
significantly increases, while the speed of the GPU kernel remains unchanged. Equation (33)
demonstrates that increasing the tree height by one unit results in the Repetition method becoming
more than 13 times faster. However, these figures are merely indicative, and the actual acceleration
times during runtime may not necessarily match these values.

To assess the impact of varying tree height and box density, another experiment is conducted. For
the values in (34), different trees are generated with 𝐶𝑇 set to 15. After constructing the tree, 𝐿 is
adjusted based on the value of 𝑖. For larger values of 𝑖, the boxes become smaller, leading to a
decrease in 𝑡. Conversely, for smaller values of 𝑖, both t and density increase. The value of 𝑁 in
these problems is defined as 4௅ିଵ, where 𝐿 is taken as its initial value. The baseline CPU
implementation used in this experiment is the same as the baseline model referenced in the
previous section.

According to Fig.6, the Repetition method outperforms the Indexing method in two distinct
regions. The first region is characterized by high density, with the problem size 𝑁 being smaller
than 4096. In this region, as indicated by (26), the smaller value of 𝑁 allows the GPU kernel to
execute faster for the Repetition method, while the denser boxes further enhance the GPU kernel's
performance. Additionally, it can be argued that due to the small problem size and the redundancy
inherent in the Repetition method, the data from several consecutive threads fits into a single cache
line. This reduces the cache miss-rate and subsequently increases the kernel speed.

Figure 4 – Speedup of the Indexing method
relative to the baseline model.

Figure 5 – Speedup of the Repetition
method relative to the baseline model.

107 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

Figure 6 – Speedup of the Repetition method compared to the Indexing method.

The second region occurs when the tree density decreases while the problem size increases,
specifically when 𝑁 ≥ 16,384 and 𝑖 ≥ 2. In this scenario, although the GPU kernel runs slower
due to the value of 𝑁, the data transfer and data collection processes become faster because of their
inverse relationship with 𝐷 and 𝑡.

In this work, two GPU implementations of the P2P operator using different data structures were
examined: one with compressed data and the other with redundancy in data. Since any alteration
in data restructuring impacts the data collection time on the CPU, analytical performance models
have been developed to track the effects of changes in algorithm design on the speedup of the
algorithm and to identify the optimal values for the problem parameters.

5 Conclusion

The accuracy of the models was assessed by examining their overall trend lines. While they were
not precise and were influenced by the system setup, they provided valuable insights for improving
algorithm design. The optimization of the MLFMA tree by managing 𝑡 and 𝐷 was proposed
through analytical models, and the results were empirically tested. According to the empirical data,
the proposed modification of the algorithm achieves nearly 13 times speedup compared to the
unmodified algorithm for problems involving more than 200,000 source and target points, with 2-
4 points per box. This result aligns well with the findings from the analytical modeling.

108 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

6 Future Works

It is recommended to apply this modeling technique to other P2P methods or additional operators
within the MLFMA framework in future research. Furthermore, it is advisable to predict the values
of 𝜆 based on the specific features of the hardware. This approach would bridge the gap between
algorithm design and hardware specifications, facilitating the efficient distribution of the entire
problem across multiple GPUs.

While the modeling of data transfer between the GPU and RAM was not conducted with precision
in this paper, developing a more accurate model in this area could enhance the overall framework
of analytical modeling.

References

[1] Rokhlin, Vladimir. "Rapid solution of integral equations of scattering theory in two dimensions."
Journal of Computational physics 86.2 (1990): 414-439.

[2] Song, Jiming, Cai-Cheng Lu, and Weng Cho Chew. "Multilevel fast multipole algorithm for
electromagnetic scattering by large complex objects." IEEE transactions on antennas and propagation 45.10
(1997): 1488-1493.

[3] Gumerov, Nail A. and Ramani Duraiswami. “Fast Multipole Methods for the Helmholtz Equation in
Three Dimensions.” (2005).

[4] Gurel, Levent, and Özgür Ergul. "Hierarchical parallelization of the multilevel fast multipole algorithm
(MLFMA)." Proceedings of the IEEE 101.2 (2012): 332-341.

[5] Dang, Vinh, Nghia Tran, and Ozlem Kilic. "Scalable fast multipole method for large-scale
electromagnetic scattering problems on heterogeneous CPU-GPU clusters." IEEE Antennas and Wireless
Propagation Letters 15 (2016): 1807-1810.

[6] Yang, Ming-Lin, et al. "A ternary parallelization approach of MLFMA for solving electromagnetic
scattering problems with over 10 billion unknowns." IEEE transactions on antennas and propagation 67.11
(2019): 6965-6978.

[7] Kohnke, Bartosz, Carsten Kutzner, and Helmut Grubmuller. "A CUDA fast multipole method with
highly efficient M2L far field evaluation." Biophysical Journal 120.3 (2021): 176a.

[8] Agullo, Emmanuel, et al. "Task-based FMM for multicore architectures." SIAM Journal on Scientific
Computing 36.1 (2014): C66-C93.

[9] Cwikla, M., J. Aronsson, and V. Okhmatovski. "Low-frequency MLFMA on graphics processors."
IEEE Antennas and Wireless Propagation Letters 9 (2010): 8-11.

[10] Guan, Jian, Su Yan, and Jian-Ming Jin. "An OpenMP-CUDA implementation of multilevel fast
multipole algorithm for electromagnetic simulation on multi-GPU computing systems." IEEE transactions
on antennas and propagation 61.7 (2013): 3607-3616.

109 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

[11] Li, Shaojing, et al. "Fast electromagnetic integral-equation solvers on graphics processing units." IEEE
Antennas and Propagation Magazine 54.5 (2012): 71-87.

[12] López-Portugués, Miguel, et al. "Acoustic scattering solver based on single level FMM for multi-GPU
systems." Journal of Parallel and Distributed Computing 72.9 (2012): 1057-1064.

[13] López-Fernández, Jesús Alberto, Miguel López-Portugués, and José Ranilla. "Improving the FMM
performance using optimal group size on heterogeneous system architectures." The Journal of
Supercomputing 73 (2017): 291-301.

[14] Wang, Yang. The fast multipole method for two-dimensional coulombic problems: Analysis,
implementation and visualization. University of Maryland, College Park, 2005.

[15] Lal, Sohan, and Ben Juurlink. "A quantitative study of locality in GPU caches." Embedded Computer
Systems: Architectures, Modeling, and Simulation: 20th International Conference, SAMOS 2020, Samos,
Greece, July 5–9, 2020, Proceedings 20. Springer International Publishing, 2020.

[16] Lal, Sohan, Bogaraju Sharatchandra Varma, and Ben Juurlink. "A quantitative study of locality in GPU
caches for memory-divergent workloads." International journal of parallel programming 50.2 (2022): 189-
216.

[17] Wang, Lu, et al. "MDM: The GPU memory divergence model." 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2020.

[18] Zhao, Xia, et al. "Adaptive memory-side last-level GPU caching." Proceedings of the 46th international
symposium on computer architecture. 2019.

Appendix: Algorithms

Algorithm (1): Data Collection in Indexing Method

1: 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑃2𝑃_𝐷𝑎𝑡𝑎_𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝐼𝑛𝑑𝑒𝑥𝑖𝑛𝑔

2: 𝐼𝑛𝑝𝑢𝑡 𝑡𝑟𝑒𝑒 𝑡

3: 𝑂𝑢𝑡𝑝𝑢𝑡 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠, 𝑠𝑜𝑢𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑠, 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠
 𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠, 𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠𝐼𝑛𝑑𝑒𝑥
 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠, 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠𝐼𝑛𝑑𝑒𝑥
4: 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠 ← 𝑡. 𝐺𝑒𝑡𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠()
5: 𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑠 ← 𝑡. 𝐺𝑒𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑠()
6: 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠 = 𝑡. 𝑔𝑒𝑡𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠()
7: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟1 ← 0
8: 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐵𝑜𝑥 𝑏 ∈ 𝑡[𝑙𝑎𝑠𝑡𝑒𝐿𝑒𝑣𝑒𝑙]. 𝐵𝑜𝑥𝑒𝑠 𝑑𝑜
9: 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃𝑜𝑖𝑛𝑡 𝑝 ∈ 𝑏. 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠 𝑑𝑜:
10: 𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠. 𝐴𝑝𝑝𝑒𝑛𝑑(𝑝. 𝑖𝑛𝑑𝑒𝑥)
11: 𝑒𝑛𝑑 𝑓𝑜𝑟
12: 𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠𝐼𝑛𝑑𝑒𝑥[𝑏] = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟1
13: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟2 ← 0

110 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

14: 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐵𝑜𝑥 𝑏𝑗 ∈ 𝑏. 𝐺𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠()𝑑𝑜

15: 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑜𝑢𝑟𝑒𝑐 𝑝𝑜𝑖𝑛𝑡 𝑠 ∈ 𝑏𝑗. 𝑠𝑜𝑢𝑒𝑐𝑃𝑜𝑖𝑛𝑡𝑠 𝑑𝑜
16: 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠𝐼𝑛𝑑𝑒𝑥. 𝐴𝑝𝑝𝑒𝑛𝑑(𝑠. 𝑖𝑛𝑑𝑒𝑥)

17: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟2 + +

18: 𝑒𝑛𝑑 𝑓𝑜𝑟

19: 𝑒𝑛𝑑 𝑓𝑜𝑟
20: 𝑆𝑜𝐴. 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠𝐼𝑛𝐵𝑜𝑥. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑜𝑢𝑛𝑡𝑒𝑟2)
21: 𝑒𝑛𝑑 𝑓𝑜𝑟

22: 𝑒𝑛𝑑 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

Algorithm (2): GPU Kernel in Indexing Method
__
1: 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑃2𝑃_𝐺𝑃𝑈_𝐾𝑒𝑟𝑛𝑒𝑙_𝐼𝑛𝑑𝑒𝑥𝑖𝑛𝑔

2: 𝐼𝑛𝑝𝑢𝑡 𝑏𝑢𝑛𝐵𝑜𝑥𝑒𝑠
 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠, 𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑠, 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠
 𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠, 𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠𝐼𝑛𝑑𝑒𝑥
 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠, 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠𝐼𝑛𝑑𝑒𝑥
3: 𝑂𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑎𝑟𝐹𝑖𝑒𝑙𝑑
4: 𝑡𝑖𝑑 ← 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑖𝑛𝑑𝑒𝑥
5: 𝑖𝑓 𝑡𝑖𝑑 < 𝑛𝑢𝑚𝐵𝑜𝑥𝑒𝑠 𝑑𝑜
6: 𝑠𝑡𝑎𝑟𝑡𝑇𝑎𝑟𝑔𝑒𝑡 ← 𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠𝐼𝑛𝑑𝑒𝑥[𝑡𝑖]
7: 𝑒𝑛𝑑𝑇𝑎𝑟𝑔𝑒𝑡 ← 𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠𝐼𝑛𝑑𝑒𝑥[𝑡𝑖 + 1]
8: 𝑠𝑡𝑎𝑟𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟 ← 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠𝐼𝑛𝑑𝑒𝑥[𝑡𝑖]
9: 𝑒𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟 ← 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠𝐼𝑛𝑑𝑒𝑥[𝑡𝑖 + 1]
10: 𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑠𝑡𝑎𝑟𝑡𝑇𝑎𝑟𝑔𝑒𝑡: 𝑒𝑛𝑑𝑇𝑎𝑟𝑔𝑒𝑡 − 1 𝑑𝑜:
11: 𝑛𝑒𝑎𝑟𝑓𝑖𝑒𝑙𝑑[𝑡𝑖] ← 0

12: 𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥 ← 𝑎𝑙𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑠[𝑖]

13: 𝑡𝑎𝑟𝑔𝑒𝑡𝑋 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠[𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥]. 𝐺𝑒𝑡𝑋()

14: 𝑡𝑎𝑟𝑔𝑒𝑡𝑌 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠[𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥]. 𝐺𝑒𝑡𝑌()

15: 𝑓𝑜𝑟 𝑗 𝑖𝑛 𝑠𝑡𝑎𝑟𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟 ∶ 𝑒𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟 − 1 𝑑𝑜:

16: 𝑠𝑜𝑢𝑟𝑐𝑒𝐼𝑛𝑑𝑒𝑥 ← 𝑎𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠[𝑗]

17: 𝑠𝑜𝑢𝑟𝑐𝑒𝑋 ← 𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑠[𝑠𝑜𝑢𝑟𝑐𝑒𝐼𝑛𝑑𝑒𝑥]. 𝐺𝑒𝑡𝑋()

18: 𝑠𝑜𝑢𝑟𝑐𝑒𝑌 ← 𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑠[𝑠𝑜𝑢𝑟𝑐𝑒𝐼𝑛𝑑𝑒𝑥]. 𝐺𝑒𝑡𝑌()

19: 𝑢 ← 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠[𝑠𝑜𝑢𝑟𝑐𝑒𝐼𝑛𝑑𝑒𝑥]

20: 𝑡𝑋 ← 𝑠𝑜𝑢𝑟𝑐𝑒𝑋 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑋

21: 𝑡𝑌 ← 𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑌

22: 𝑛𝑒𝑎𝑟𝑓𝑖𝑒𝑙𝑑[𝑡𝑖] += 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡𝑋, 𝑡𝑌, 𝑢)

23: 𝑒𝑛𝑑 𝑓𝑜𝑟

24: 𝑒𝑛𝑑 𝑓𝑜𝑟

25: 𝑒𝑛𝑑 𝑖𝑓

111 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

26: 𝑒𝑛𝑑 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒
__

Algorithm (3): Data Collection in Repetition Method
__
1: 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑃2𝑃_𝐷𝑎𝑡𝑎_𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛

2: 𝐼𝑛𝑝𝑢𝑡 𝑡𝑟𝑒𝑒 𝑡

3: 𝑂𝑢𝑡𝑝𝑢𝑡 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦
4: 𝑝𝑎𝑑𝑑𝑖𝑛𝑔𝑆𝑖𝑧𝑒
← 2 + 1 + 9 ∗ 3 ∗ 𝑡. 𝐶𝑇
5: 𝑖𝑛𝑑𝑒𝑥 ← 0
6: 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐵𝑜𝑥 𝑏 ∈ 𝑡[𝑙𝑎𝑠𝑡𝑒𝐿𝑒𝑣𝑒𝑙]. 𝐵𝑜𝑥𝑒𝑠 𝑑𝑜
7: 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃𝑜𝑖𝑛𝑡 𝑝𝑖 ∈ 𝑏. 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑠 𝑑𝑜:
8: 𝑑𝑎𝑡𝑎𝐴𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥] ← 𝑝𝑖. 𝐺𝑒𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛(). 𝑥
9: 𝑑𝑎𝑡𝑎𝐴𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥 + 1] ← 𝑝𝑖. 𝐺𝑒𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛(). 𝑦
10: 𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 = 0
11: 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐵𝑜𝑥 𝑏𝑗 ∈ 𝑏. 𝐺𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠()𝑑𝑜

12: 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑜𝑢𝑟𝑒𝑐 𝑝𝑜𝑖𝑛𝑡 𝑠 ∈ 𝑏𝑗. 𝑠𝑜𝑢𝑒𝑐𝑃𝑜𝑖𝑛𝑡𝑠 𝑑𝑜
13: 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥 + 3 + 𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 ∗ 3] ← 𝑠. 𝐺𝑒𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠(). 𝑥
14: 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥 + 3 + 𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 ∗ 3 + 1] ← 𝑠. 𝐺𝑒𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠(). 𝑦
15: 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥 + 3 + 𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 ∗ 3 + 2] ← 𝑠. 𝐺𝑒𝑡𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙()

16: 𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 + +

17: 𝑒𝑛𝑑 𝑓𝑜𝑟

18: 𝑒𝑛𝑑 𝑓𝑜𝑟
19: 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑖𝑛𝑑𝑒𝑥 + 2] = 𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠
20: 𝑒𝑛𝑑 𝑓𝑜𝑟

21: 𝑒𝑛𝑑 𝑓𝑜𝑟

22: 𝑒𝑛𝑑 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒
__

Algorithm (4): GPU Kernel for Repetition Method
__
1: 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑃2𝑃_𝐺𝑃𝑈_𝐾𝑒𝑟𝑛𝑒𝑙_𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛

2: 𝐼𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔𝑆𝑖𝑧𝑒
 𝑛𝑢𝑚𝑇𝑎𝑟𝑔𝑒𝑡𝑠
3: 𝑂𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑎𝑟𝐹𝑖𝑒𝑙𝑑
4: 𝑡𝑖𝑑 ← 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑖𝑛𝑑𝑒𝑥
5: 𝑖𝑓 𝑡𝑖𝑑 < 𝑛𝑢𝑚𝑇𝑎𝑟𝑔𝑒𝑡𝑠 𝑑𝑜
6: 𝑜𝑓𝑓𝑠𝑒𝑡 ← 𝑡𝑖 ∗ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔𝑆𝑖𝑧𝑒
7: 𝑡𝑎𝑟𝑔𝑒𝑡𝑋 ← 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑜𝑓𝑓𝑠𝑒𝑡]
8: 𝑡𝑎𝑟𝑔𝑒𝑡𝑌 ← 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑜𝑓𝑓𝑠𝑒𝑡 + 1]

112 M. Sadeghi/ JAC 56 issue 2, December 2024, PP. 89-112

9: 𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 ← 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑜𝑓𝑓𝑠𝑒𝑡 + 2]
10: 𝑛𝑒𝑎𝑟𝐹𝑖𝑒𝑙𝑑[𝑡𝑖] = 0
11: 𝑓𝑜𝑟 𝑖 𝑖𝑛 0: 𝑛𝑢𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑢𝑟𝑠 𝑑𝑜:
12: 𝑡𝑎𝑟𝑔𝑒𝑡𝑋 ← 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑜𝑓𝑓𝑠𝑒𝑡 ∗ 3 + 𝑖 ∗ 3]

13: 𝑡𝑎𝑟𝑔𝑒𝑡𝑌 ← 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑜𝑓𝑓𝑠𝑒𝑡 ∗ 3 + 𝑖 ∗ 3 + 1]
14: 𝑢 = 𝑑𝑎𝑡𝑎𝐴𝑟𝑟𝑎𝑦[𝑜𝑓𝑓𝑠𝑒𝑡 ∗ 3 + 𝑖 ∗ 3 + 2]
15: 𝑡𝑋 = 𝑡𝑎𝑟𝑔𝑒𝑡𝑋 – 𝑠𝑜𝑢𝑟𝑐𝑒𝑋
16: 𝑡𝑌 = 𝑡𝑎𝑟𝑔𝑒𝑡𝑌 – 𝑠𝑜𝑢𝑟𝑐𝑒
17: 𝑛𝑒𝑎𝑟𝑓𝑖𝑒𝑙𝑑[𝑡𝑖] += 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡𝑋, 𝑡𝑌, 𝑢)

18: 𝑒𝑛𝑑 𝑓𝑜𝑟

19: 𝑒𝑛𝑑 𝑖𝑓

20: 𝑒𝑛𝑑 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒
__

