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ABSTRACT  ARTICLE INFO 
As organizations increasingly depend on large-
scale data for strategic decision-making, managing 
data warehouses has become a complex and 
resource-intensive challenge. This paper introduces 
DataBay, a unified platform designed to automate 
the entire data warehouse lifecycle, from data 
ingestion and transformation to real-time 
processing. The platform designed optimally to 
ensure faster implementation, more efficient data 
management high-performance data processing, 
real-time monitoring, storage efficiency, reliability, 
accuracy and scalablity. Through its seamless 
integration and flexibility, DataBay helps 
businesses make timely, data-driven decisions and 
enables continuous optimization of data workflows. 
This paper discusses the platform’s architecture, its 
implementation in real-world industry settings and 
the significant business value it delivers. 
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1 Introduction 
In today’s data-rich environment, data-driven decision-making (DDDM) is vital for large 
companies' success. Transforming data through business intelligence (BI) and analytics turns it 
into a strategic asset that informs decisions at all levels. Comprehensive reports consolidate key 
data, enabling executives to make accurate and timely choices that shape a company’s strategy and 
performance [1]. 

A data-driven culture allows businesses to swiftly respond to market changes, enhance efficiency, 
and improve customer experiences. Integrating analytics into decision-making leads to higher 
profitability, risk mitigation, and innovation [2]. Operational reports aid in supply chain 
management and cost optimization, while financial reports offer insights into economic health [3]. 

As companies increasingly rely on data to fuel their strategies, there is a growing demand for 
systems that can automate the collection, processing, and storage of this data. In particular, Change 
Data Capture (CDC) technologies, such as Kafka and Debezium, play a crucial role in ensuring 
that data is consistently and accurately moved from transactional systems to analytical 
environments in real-time. 

This article explores the importance of data-driven decision-making, discusses the role of CDC in 
automating data workflows, and highlights the need for modern data architectures that can handle 
the demands of big data. We will also discuss how distributed systems and microservices are 
critical in overcoming the limitations of traditional data architectures, addressing the challenges of 
scaling and reliability. 

2 The Evolution of Data Management Architectures 
With the advent of the internet, websites transitioned from being static and newspaper-like to 
becoming dynamic, allowing user interactions to shape the data they produced. This shift marked 
a significant change in the architecture of web applications, as they not only collected data 
explicitly entered by users (such as usernames and passwords) but also gathered data from user 
interactions. This dynamic interaction data became crucial for organizations to make informed, 
data-driven decisions [4]. 

As internet usage expanded, the concept of "big data" emerged. This term refers to large volumes 
of user-generated data that exhibit certain characteristics, collectively known as the 6Vs of Big 
Data: Volume, Velocity, Variety, Veracity, Value, and Variability. These characteristics highlight 
the challenges organizations face in managing, processing, and extracting value from massive, 
fast-moving, and diverse datasets [5]. 

The increase in data volume posed significant challenges for traditional data architectures, 
especially when it came to scaling up. Single-node systems, with their inherent hardware 
limitations, were not designed to handle the exponential growth in data. This is where Moore’s 
Law, which suggests that computing power doubles approximately every two years, comes into 
play. While Moore’s Law has spurred growth in processing capabilities, the sheer scale of data 
demands architectures that go beyond single-node systems. The need for distributed systems and 
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microservices to manage this data became clear, enabling more efficient and flexible handling of 
vast data flows [6]. 

Big Data and the Need for Modern Data Storage Technologies 
As businesses began to grapple with big data, they needed new technologies to store and process 
this information. Traditional OLTP (Online Transaction Processing) databases were primarily used 
to handle transactional data but were not optimized for complex analytical queries. In dynamic 
environments, these databases served their purpose well for transactions but fell short when it came 
to providing insights from vast data sets that demanded extensive analysis [7]. 

In 1990, William Inmon introduced the concept of the data warehouse, designed to provide a 
centralized repository that stored historical data from multiple transactional systems. The data 
warehouse became a foundational element of business intelligence (BI) systems, offering a single 
source of truth that organizations could rely on for their analytical needs [8]. 

As the volume and complexity of data continued to grow, other models emerged to address the need 
for more scalable and flexible data architectures. These include Data Lakes, Data Lakehouses, and 
Data Mesh, each offering a unique approach to managing data depending on its structure and use 
case. This article focuses primarily on the Relational Data Warehouse and Modern Data Warehouse 
models, which serve as critical components of today’s data infrastructure [9][15]. 

Moore’s Law and the Shift to Distributed Data Systems 

While Moore’s Law predicts exponential growth in processing power, it also reveals the limits of 
single-node systems in handling big data. As the need for scalability and reliability increased, 
businesses started adopting distributed systems and microservices architectures. These approaches 
enable companies to distribute the processing and storage of data across multiple nodes, allowing 
for more efficient handling of large-scale data sets while maintaining high availability and 
minimizing the risk of failure from a single point [10][19]. 

Distributed architectures have become essential in the world of big data. They provide the flexibility 
needed to scale as data volumes grow, and they offer fault tolerance by ensuring that the system 
remains operational even if one or more components fail. This has allowed businesses to handle 
real-time streaming data at scale, which is crucial for supporting data-driven decision-making in 
fast-paced business environments [11]. 

The Role of CDC and Data Integration 

As data became more complex and voluminous, the need for real-time data integration grew. 
Change Data Capture (CDC) technologies, such as Kafka and Debezium, provide a scalable 
solution for streaming data changes from transactional systems to data warehouses in real time. By 
capturing changes directly from the transaction logs of databases, CDC ensures that updates, 
deletes, and inserts are immediately reflected in downstream systems, maintaining the consistency 
and accuracy of data. 

The integration of CDC technologies with distributed systems allows for seamless data flow across 
multiple platforms, enabling businesses to make timely and informed decisions based on the most 
current data. These technologies also ensure that the data is synchronized across systems, 
eliminating discrepancies that could arise from outdated or inconsistent information. This level of 
integration has proven essential for businesses operating in data-intensive environments, such as e-
commerce, where logistical decisions need to be made based on real-time data [12][13]. 
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3 Data Quality and Its Pillars in Real-Time Systems 
The quality of data is critical in ensuring that business decisions are based on accurate and 
actionable information. Data quality can be assessed using six key pillars: accuracy, completeness, 
consistency, timeliness, validity, and uniqueness. These pillars are essential for maintaining the 
integrity of data, especially in environments where real-time processing is a necessity [14]. 

Debezium plays a crucial role in maintaining data quality in real-time systems. By capturing 
database changes directly from the transaction logs, it ensures that all updates, deletions, and inserts 
are immediately reflected in downstream systems. This minimizes the risk of errors or 
inconsistencies and ensures that businesses can rely on up-to-date and accurate data for decision-
making [17]. 

In addition, CDC technologies like Debezium ensure that data is synchronized across systems in 
real time, helping to maintain data consistency and reducing the risk of discrepancies. Real-time 
synchronization also helps to preserve the validity of data by ensuring that all changes comply with 
defined business rules and data constraints [13]. 

Data Warehouse Architectures: From OLTP to OLAP 

To process large volumes of data efficiently, businesses transitioned to OLAP (Online Analytical 
Processing) databases, which are specifically designed for read-heavy analytical workloads. Unlike 
OLTP databases, which are optimized for transactional processes, OLAP databases use columnar 
storage and pre-aggregated data to support complex queries on large datasets [18]. 

The architecture of OLAP databases is more suited for analytical purposes because it allows for 
faster querying of historical data. This is particularly useful for data marts, which are subsets of 
data warehouses that focus on specific business areas such as sales, finance, or marketing. The 
combination of OLAP databases and data marts enables businesses to perform deep analytical 
queries without compromising the performance of operational systems [18]. 

Key Requirements for a Data Warehouse/BI System 

Incorporating real-time data integration through tools like CDC with Debezium offers numerous 
advantages, including reduced latency, improved data consistency, and scalability. However, to 
ensure the success of a DW/BI system that integrates real-time data, businesses must adhere to 
several fundamental requirements. Kimball and Ross (2022) outline these key requirements, which 
remain critical for a successful data architecture [12]. 

Simplicity and Speed: A DW/BI system must make information easily accessible. The contents of 
the system should be understandable to business users, not just developers. The data structures and 
labels must mirror the users' thought processes and terminology. Business users need to manipulate 
data in endless combinations to derive insights. Therefore, the business intelligence tools that access 
this data must be simple to use and return query results quickly. This requirement can be 
summarized as "simple and fast." If users can access actionable insights in real-time with minimal 
complexity, they will be more likely to adopt and trust the system [12]. 

Consistency: A DW/BI system must present information consistently. The data it houses must be 
credible, meaning that it must be assembled from various sources, cleaned, and quality-assured 
before being made available for analysis. Furthermore, consistency also implies that common labels 
and definitions are used across different data sources. If two performance metrics share the same 
name, they must represent the same thing; if they differ, they must be distinctly labeled. This 
approach ensures that the data remains consistent across the system and that users can trust the 
results of their analyses [12]. 
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Adaptability: A DW/BI system must be designed to adapt to change. This includes changes in user 
needs, business conditions, and technology. Since user requirements and business environments 
evolve, the system must be flexible enough to incorporate new data and adjust to changes without 
invalidating existing data or disrupting current operations.  If modifications to the descriptive data 
in the system are required, these should be transparently managed, ensuring the changes do not 
disrupt the workflow or data accuracy [12]. 

Timeliness: As the DW/BI system is used more intensively for operational decisions, raw data must 
be converted into actionable insights quickly. Businesses need to have realistic expectations 
regarding how fast they can process data. This is particularly important for real-time applications 
where data needs to be analyzed within hours, minutes, or even seconds, enabling rapid decision-
making. Therefore, real-time data integration, such as through CDC, is crucial for providing timely, 
reliable insights [12]. 

Security: The DW/BI system must act as a secure bastion to protect organizational data. Since these 
systems store critical business information, such as sales data, pricing information, and customer 
data, it is crucial to control access effectively. Unauthorized access to this data can lead to severe 
consequences for businesses, making data security a top priority [12]. 

Trustworthy Foundation for Decision-Making: The DW/BI system must serve as the authoritative 
source for decision-making. This system must house reliable data that supports the decisions of key 
stakeholders. Ultimately, the value of a DW/BI system is measured by its ability to inform decisions 
that drive business success. The data warehouse becomes the backbone of a decision support system 
when it provides accurate and up-to-date information for strategic choices [12]. 

User Acceptance: Finally, for a DW/BI system to be deemed successful, it must be accepted and 
used by the business community. Unlike operational systems, where employees have no choice but 
to use the system, the adoption of a DW/BI system is often optional. To gain acceptance, the system 
must offer business users a simple and fast way to access actionable insights. If the system meets 
the needs of users and delivers tangible value, it will gain traction across the organization [12]. 

4 Methodology 

Creating, designing, and maintaining data warehouses in organizations is a costly process both in 
terms of time and technical complexity, especially considering the variety of available tools. As 
data engineering teams operate between critical teams such as software engineering (upstream) and 
data analytics, data science, and business intelligence teams (downstream), effective 
communication and collaboration with other teams is essential to implement business requirements. 
Given that communication is inherently time-consuming, one of the primary requirements we 
addressed in this paper was to provide data engineers with a platform that abstracts the technical 
complexity of the system as much as possible. We developed a pluggable platform that not only 
does not impose technical limitations on data engineers but also enables them to meet their needs—
creating, designing, and maintaining data warehouses—more efficiently with fewer specialists 
involved. 

Data Warehouse Construction as a Single Source of Truth 
To build a data warehouse as a single source of truth, it is necessary to gather all data from various 
data sources and prepare it for use. The data model must be designed in a way that allows 
downstream users to easily access the data with high performance. Furthermore, depending on the 
business requirements, data must be stored with specified granularity in a historical format. 
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(Note: One of the primary differences between a data warehouse and an operational data store is 
that in an operational data store, data is used in a transactional manner, while in a data warehouse, 
data is stored in a historical format.) 

The first step in creating a data warehouse is reading data from different data sources. From a time 
perspective, data can be obtained in two ways: in real-time or in batches. A major issue with batch 
processing is that if any changes occur in the data in an OLTP database, these changes may be lost 
due to the delay between reading different chunks of data, thus making historical data inaccessible. 

On the other hand, one of the key challenges in production databases is ensuring that the process of 
reading data does not negatively impact database performance. One effective solution to detect 
changes in databases is the concept of Change Data Capture (CDC). Various tools have been 
developed for CDC, with Debezium being one of the most well-known. Debezium is an open-
source tool that helps us capture data from data sources and stream it to Kafka without affecting the 
performance of production databases. Debezium supports reading data from most OLTP databases 
such as PostgreSQL, MySQL, SQL Server, and others. 

In our platform, we use Debezium to capture data from OLTP databases, stream it into Kafka, and 
store it temporarily based on the retention period defined for the Kafka topic. Debezium detects 
row-level changes, where each CRUD operation results in sending corresponding records to Kafka. 
Additionally, using Single Message Transformation (SMT), we apply transformations such as 
flattening on each record before sending it to Kafka. 

Data Serialization: Avro vs. JSON 
In our platform, we utilize Avro as the primary serialization format for streaming data through 
Kafka. While Debezium supports both JSON and Avro, we chose Avro primarily due to its superior 
performance with large-scale datasets. JSON is human-readable and flexible but is less efficient 
when dealing with real-time, high-volume data processing environments. 

We conducted performance benchmarks comparing Avro and JSON in terms of data size, 
throughput, and serialization/deserialization speeds. These benchmarks were performed using two 
dedicated servers with the following configuration: 

 CPU: Two Intel E5-2660 v2 10-core CPUs at 2.20 GHz 

 RAM: 256GB ECC Memory (16x 16 GB DDR4 1600MT/s dual rank RDIMMs) 

 NIC: Dual-port Intel 10Gbe NIC (PCIe v3.0, 8 lanes) 

The TPCH Benchmark, specifically the "orders" table, was used for all experiments. The results of 
these benchmarks strongly favored Avro due to its binary format and schema-based serialization 
[20]. 

5 Experiment 1: Data Transfer Comparison 

In the first experiment, we transferred specific data volumes across a network between two 
separate nodes. Avro achieved significantly smaller data sizes, as it uses a binary format compared 
to the text-based JSON format. Avro reduced the data transferred by up to one-third compared to 
JSON. This reduction in data size directly resulted in higher throughput, with Avro achieving up 
to three times greater throughput than JSON. However, as the number of rows increased, the 
throughput started to plateau due to network link capacity, with the throughput ratio between Avro 
and JSON stabilizing around 2.5:1. 
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Figure 1 Data Size Comparison: Avro reduced the data transferred by up to one-third compared to JSON 
[21] 

 

Figure 2 Data Throughput Comparison: Avro achieved throughput up to three times higher than JSON, 
but the ratio approached 2.5 as the row count increased [21] 

 

6 Experiment 2: Serialization/Deserialization Performance Comparison 
In the second experiment, we compared the serialization and deserialization performance of Avro 
and JSON using the fastest C++ libraries for both. We used RapidJson and Avro's official library 
for C++  in implementation. The results indicated that Avro outperforms JSON significantly in both 
serialization and deserialization. Avro was able to serialize up to 400,000 rows per second, while 



82 M. Ghadimi/ JAC 56 issue 2, December 2024, PP. 75-88 

 

 
 

JSON could serialize only 80,000 rows per second. In deserialization, Avro achieved an impressive 
450,000 rows per second, whereas JSON reached only 26,000 rows per second. 

 
Figure 3 Serialization Performance Comparison: Avro processes 400,000 rows per second, 

significantly faster than JSON, which processes only 80,000 rows per second [21]. 

 
Figure 4 Data Throughput Comparison: Avro achieved throughput up to three times higher than JSON, 
but the ratio approached 2.5 as the row count increased. Deserialization Performance Comparison: Avro 

deserializes 450,000 rows per second, while JSON handle 

This benchmark data strongly influenced our decision to use Avro as the default format for data 
serialization in our platform. It provided significant advantages in terms of data transfer efficiency, 
throughput, and serialization/deserialization performance, all of which are critical for real-time, 
high-volume data integration. 

Code Automation for Efficient Connector and Transformation Management 
The process of building connectors, converting data types to formats compatible with the sink 
database, and creating tables can be highly time-consuming. In this platform, we have developed a 
code that automatically generates connectors, reads data types from the source database, adjusts 
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them according to the sink database's data type support, and automatically manages the 
implementation. This tool prevents errors like conflicts that may arise from recreating connectors. 
If any issues occur during parsing messages by a connector worker, the problematic messages are 
sent to a Dead Letter Queue (DLQ) for review. 

One of the significant advantages of using Debezium and Kafka is that they leverage the Log 
Sequence Number (LSN) to track the data changes. In case of a failure in a connector, the system 
can resume data processing from the point of failure when the connector is reactivated. 

Kafka's Publisher-Subscriber architecture (also known as Producer-Consumer) helps decouple 
system components, making maintenance easier. Additionally, Kafka uses the Raft consensus 
algorithm as per KIP-595, eliminating the need for additional tools like Zookeeper for cluster and 
metadata management. This architecture also makes Kafka highly scalable and fault-tolerant, 
allowing for the creation of highly available broker clusters. 

Data Transformation and Masking 
After the data is stored in the staging layer, transformation rules are defined in YAML files. These 
transformations, based on business discussions with product managers and business leaders, can 
vary by industry and domain. To simplify the process and reduce technical complexity for users, 
we write transformations in human-readable YAML files that can be easily modified. 

Transformation logic can be executed using Python libraries such as PySpark, Pandas, or Polars 
depending on the volume of data. In addition to data cleaning, some sensitive data might need to be 
masked. This is handled by configuring the necessary settings in the transformation YAML file. 

Once the data is in the staging layer, heavy transformations are processed using Spark pipelines, 
and the final data is stored in the core layer (data warehouse). The staging layer ideally uses OLTP 
databases, while OLAP databases can be used in the core layer of the data warehouse, depending 
on team needs. 

Data Storage: OLAP and OLTP 
Commonly used data architectures store data in star schema format in OLTP databases and then 
process it into wide or flat tables in OLAP databases. These flat tables do not require joins, making 
them efficient for querying. Columnar databases like ClickHouse are well-suited for this type of 
architecture, as they store columns in Sorted String Tables (SSTables), which are highly efficient 
for scenarios where only a subset of columns is needed in queries. 

Monitoring and Quality Assurance 
Once data is processed, it is essential to monitor the health of the system. We use Prometheus to 

collect and store metrics for every tool in the architecture. For tools like Kafka and Debezium, 
which use Java codebases, we convert JVM metrics into a format compatible with Prometheus. 

For other tools, exporters are used to expose metrics. These metrics are scraped by Prometheus 
at defined intervals and stored in its time-series database. 

We use Grafana for visualizing the metrics and setting up alerts. If any tool's performance 
degrades, alerts are sent through Alert Manager to systems like Slack or Discord for notification. 
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Figure 5 Shows the monitoring stack and key components of our platform, including Debezium, Kafka, 
and Prometheus, along with the flow of data and monitoring metrics. The diagram provides a high-level 

overview of how each component integrates into the platform to ensure performance and data quality [21] 
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For more detailed information and access and access to the source code and diagrams, please 
refer to the GitHub repository. 

Data Quality Evaluation 
Data quality is essential throughout the transformation process, and it is assessed in terms of the 
following six key dimensions: 

 Accuracy: Data must accurately represent the real-world entities or phenomena it models. 

 Completeness: Ensure that all necessary data is present, handling missing or null values 
appropriately. 

 Consistency: Data must be consistent across systems and datasets. 

 Timeliness: Data should be up-to-date and available when needed. 

 Uniqueness: Data should not contain duplicates. 

 Validity: Data must meet defined formats and acceptable ranges. 

 

These checks are automated using Airflow for pipeline orchestration and Spark for processing. If 
any issues arise, alerts are triggered, and the problem is isolated using Kubernetes Pod Operators in 
Airflow to ensure that the pipelines are decoupled and operate independently. 

Finally, after modeling the data using YAML files, setting up the pipelines, and monitoring the 
performance of tools and data quality, the data needs to be stored in a Data Mart to make it suitable 
for downstream use. To achieve this, once the source and destination databases are selected, the 
required tables are automatically defined, along with the appropriate primary keys for sorting 
SSTable blocks in the background and ensuring faster data access. These are all the steps involved 
in the design and implementation of the data platform we have developed. 

7 Conclusion 

In this paper, we presented a unified platform designed to streamline the creation, management, and 
maintenance of data warehouses in modern enterprises. By automating critical processes such as 
data ingestion, transformation, and monitoring, the platform significantly reduces the complexity 
and resource demands typically associated with data warehouse management. Through the 
integration of advanced tools like Debezium for Change Data Capture and Kafka for real-time data 
processing, we ensure high performance and minimal disruption to production environments. 

The decision to use Avro over JSON for data serialization, backed by benchmark comparisons, 
highlights the practical considerations of performance and scalability in real-world applications. 
This choice, coupled with automation in connector management and data transformation, allows 
data engineers to achieve faster implementation and more efficient workflows, even with minimal 
specialized expertise. 

The platform has proven its effectiveness in large-scale, real-world environments, demonstrating 
the potential for modern, automated data infrastructure to drive faster, data-driven decision-making. 
By abstracting technical complexity and optimizing data workflows, the platform offers businesses 
a scalable, flexible solution to manage growing data demands and stay competitive in an 
increasingly data-centric world. 
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