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Abstract 

Automating fault diagnosis of machine components is crucial as it prevents unexpected 

downtime of a system that affects the operation and safety of the users. Deep learning 

architectures such as convolutional neural network (CNN) and long short-term memory 

network (LSTM) have been proven as prominent in training of sequential data due to their 
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robustness in classifying time series sequences and achieving state-of-the-art performance for 

effective fault diagnosis in structural health monitoring (SHM) systems. In this study, hybrid 

CNN-LSTM and U-Net (a CNN-based model arranged in U-shaped architecture), are 

employed to detect different levels of cracks in rubber vibration isolators. Cracks were induced 

at the interface between the steel and rubber to simulate a faulty scenario similar to a 

mechanical failure in industrial practice. The vibration of experimental platform supported by 

rubber isolators was induced by a motor driving an eccentric disk with varying speeds. Results 

revealed that the proposed U-Net architecture could achieve the best overall accuracy with 

decent computational time for training and classification. In addition, influence of data 

segmentation on classification accuracy, often overlooked in literature, was also investigated 

in this work.  Findings showed that cleaner raw signals could be less prone to classification 

accuracy fluctuations.  

 

Keywords: fault diagnosis; rubber vibration isolator; neural network; U-Net; Hybrid CNN-

LSTM 

  

 

1. Introduction 

In recent years, there have been several fatal incidents due to structural damage raising 

alerts of infrastructure safety. Extreme events like terrorist attacks, vehicle impacts, and 

explosions often cause local damage to building structures and pose a serious threat upon one 

or more vertical load-bearing components failure, which results in progressive collapse of the 

major part or the whole structure (Adam et al., 2018). Rubber bearings are the most crucial part 

in a based isolated structure that shields structures from unwanted vibrations with its high 
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damping and stiffness (Zeng et al., 2023). However, the complex viscoelastic behavior of 

rubber poses challenges in precisely defining the dynamic characteristics which leads to 

uncertainties in practical applications (Gil-Negrete et al., 2006). Underestimating and 

overestimating the rubber mount remaining lifespan could lead to avoidable waste and risk of 

fatality injury, respectively. Thus, numerous studies have focused on mechanical aspects 

including fatigue, ultimate tensile strength, and yield strength of the rubber component to gain 

deeper insights into the anti-vibration properties (Belkhiria et al., 2020). Yet, the industry's 

traditional approaches frequently hinge on expensive and heavy experimental procedures. 

Lapčı́k et al. investigated the variation of dynamic stiffness and damping properties of rubber 

through servo-hydraulic systems at specific frequencies (Lapčı́k et al., 2001). Through this 

method, the researchers observed an increment of dynamic stiffness of materials along 

increasing static load and frequency ranged between 0.03 to 1 MPa and 10 to 100Hz 

respectively. With the advancement of artificial intelligence techniques, it is possible to predict 

the operating conditions of rubber materials without measuring their dynamic properties using 

scientific instruments. Hence, this study aims to conduct fault diagnosis in a rubber vibration 

isolator using a machine learning technique that reliant on vibration signals. 

Deep learning, a subset of machine learning, holds significant prominence in structural 

health monitoring (SHM) applications primarily due to its ability to make predictions based on 

past behaviors learned. Numerous published studies have explored machine fault diagnosis 

employing intelligent diagnostic models like support vector machines (Hu et al., 2007), the k-

nearest neighbours algorithm (Moosavian et al., 2013), and genetic algorithms (Tse et al., 

2004). These traditional methods, with their straightforward and shallow structures, remain 

fundamental in fault diagnosis approaches. Nevertheless, these models struggled to effectively 

identify nonlinear relationships within vibration signals, contributing to their shortcomings. 
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Another significant limitation in employing the classical machine learning approach is the need 

to redesign pre-processing methods for distinct fault characteristics (Chen et al., 2021). 

Consequently, the industry strives to discover a universally applicable solution suitable 

for addressing typical machine failures (Guo et al., 2018). Moreover, for effective prevention 

of actual component failures, the SHM system must accurately detect failure symptoms, 

providing users with ample time to troubleshoot or replace the component. Deep learning 

negates the requirement for manual feature engineering, displaying potential in precise 

classification tasks without expert input. Janssens et al. suggest that their convolutional neural 

network (CNN) method for fault detection in rotary machines is notably more straightforward 

than the traditional engineering-based approach, which relies on expertise in vibration analysis 

(Janssens et al., 2016). In that work, CNN and classical machine learning models were trained 

with raw vibration data to detect failure conditions such as outer raceway faults and different 

levels of lubricant degradation. The results justified the proposed method could achieve high 

classification accuracy with less domain expertise compared to classical models. 

Meanwhile, Zhou et al. proposed a CNN model for the prediction of remaining useful 

life (RUL) and fault diagnosis of bearings in rotating machinery (Zhou et al., 2020). The CNN 

model was trained by time and frequency features of vibration signals extracted through Short-

time Fourier Transform (STFT). Classification results using CNN were compared with other 

classical machine learning methods. It was concluded the proposed method could achieve 

accuracy of 99.45% in rolling bearing remaining useful life prediction. It could also better 

identify different failure modes with higher accuracy compared to conventional approaches. 

Furthermore, Hoang et al. in their multi-model for concrete properties prediction study reported 

that machine learning capability was limited only for the trained dataset only, which cannot be 

applied comprehensively in various applications (Hoang et al., 2024). 
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On the other hand, long short-term memory (LSTM) network is known for training 

sequential data, which is ideal for time-based vibration signals. Guo et al. proposed a pyramid 

LSTM network for machine tool condition monitoring (Guo et al., 2022). The network is 

constructed based on multi-layer frequency spectrum of cutting signals and it could achieve 

good results under unknown tools and milling parameters. Meanwhile, Ma and Mao proposed 

a convolution-based long short-term memory network (CLSTM) for RUL prediction on 

bearings (Ma and Mao, 2021).  The proposed model performs convolution operation in input-

to-state and state-to-state transitions of LSTM layers and learns both time-frequency as well as 

temporal information of signals. Results showed that the model outperformed other deep 

learning algorithms in the field. Other studies also suggested hybrid CNN-LSTM models could 

perform well on time series data, as seen in LSTM-FCN networks (fully convolutional neural 

network) (Karim et al., 2017; Karim et al., 2019; Karim et al., 2019), 2D CNN-LSTM network 

(Wang et al., 2023) and CNN-LSTM with skip connections (Wahid et al., 20). 

U-Net architecture, originally developed for image segmentation by Ronneberger et al. 

(Ronneberger et al., 2015) based on the fully convolutional network proposed by Long et al. 

(Long et al., 2015), is expanding its field of applications to analogue signal processing and 

classification. Due to small training set and high segmentation accuracy offered, there is a 

booming development of U-Net research works for various applications in signal and vibration 

analysis. For example, Zhang et al. developed a method called Threshold Acquisition U-Net 

(TA-UNet), enhancing feature extraction which learns adaptive thresholds effectively to 

mitigate noise interference and improve multi-scale extraction (Zhang et al., 2023). In early 

fault diagnosis, TA-UNet is used in a two-step process involving model training with noise-

added vibration signals and utilizing the trained model to extract fault features for diagnosis of 

rolling bearings. The efficacy of TA-UNet's feature extraction capability was demonstrated via 

denoising simulated rolling bearing signals with successful early fault diagnosis using open-
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source datasets. In another work, U-net++ was proposed for gearbox fault diagnosis using 

vibration signals in time-frequency domain (Zhang and Chen, 2023). Variants of U-Net 

architecture have been proposed for denoising applications as well, such as elevator vibration 

signals (Xie et al., 2024), seismic (Zhao et al., 2023; Wu and Stewart, 2023) and structural 

vibration data (Shen et al., 2023).  

Furthermore, Koszewski et al. introduces a music mixing technique that automatically 

blends distinct raw recordings with high-quality outcomes across various music genres, 

showcasing a novel deep model rooted in 1D Wave-U-Net autoencoders and trained on a 

customized database, subsequently demonstrating that mixes generated through this approach 

are comparable in quality to professionally prepared mixes through objective evaluations and 

listener tests (Koszewski et al., 2023). Despite the capability of convolutional encoder-decoder 

architectures to capture overall patterns in the context of separating singing voices, there are 

several challenges related to the uncertainty about the loss of local details during compression 

and the requirement of using large substantial training datasets (Jansson et al., 2017). Time-

series data employed U-Net (which is called U-Time) has been proven as a better alternative 

than the prominent technique combining the convolutional and recurrent neural network 

(Perslev et al., 2019). The major strength of feed-forward system owned by U-Time has 

overcome tuning and optimization difficulty issues of recurrent model. Without the need to 

optimize the hyperparameter or architecture, this model is more robust in the training process. 

In this work, two deep learning models were proposed, namely hybrid CNN-LSTM 

network (with sequential and parallel connections) and U-Net model, that feed different 

segmentations of raw vibration data to train the models to detect cracks in rubber vibration 

isolators. U-Net architecture is considered in this study due to its capability of configuring 

deeper feature extraction layers. Meanwhile, hybrid CNN-LSTM network utilizes the strength 

of CNN to extract features of the input and consequently LSTM layer could study the patterns 
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more efficiently (Li et al., 2019). The network architectures are described in Section 2. In 

Section 3, a series of experiments were conducted with different fault modes and the results 

were analyzed by varying signal segmentation length. In section 4, the results were discussed 

where it was justified that the proposed methodology could achieve a high classification 

accuracy with less domain expertise in terms of configuring the neural network and 

hyperparameter tuning. Section 5 concludes this work which highlights that it is possible to 

adopt a deep learning approach to identify the severity of crack level in rubber isolators. 

Another contribution of this study is the investigation of the performance of the proposed 

neural network model by varying the segmentation length of the vibration signals.  

 

2. Neural networks architectures 

2.1 Convolutional versus recurrent neural networks 

2.1.1 Convolutional Neural Network (CNN) 

A convolutional neural network (CNN) is a feedforward deep learning model that is 

popular for its diagnostic and predictive technique of processing time-series data and image 

data. The mathematical theory behind is a linear operation known as convolution. A 

convolutional network convolves its input by general matrix multiplication in its layer and 

outputs it to the next layer. CNN has 2 unique benefits compared to other neural networks. The 

first one is the sparsity in the connection, it could reduce the number of parameters and training 

time by connecting each kernel with its local patch of previous features. The second feature is 

weight sharing among the hidden layers, this further reduces the learnable parameters and the 

complexity of the network. In contrast to the common 2D CNN, 1D CNN convolves over the 

time dimension instead of the spatial dimension. 

2.1.2 Long Short-Term Memory (LSTM) 
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A Recurrent Neural Network (RNN) is one of the earliest feedback neural networks 

where its simplest design is having recurrent connections between hidden units to produce an 

output at each time step. It has an internal state (memory) to process variable-length sequences 

of inputs. Following more research studies, a Long Short-term Memory Neural Network 

(LSTM) is created which is also known as the “gated recurrent neural network” because it has 

similar architecture compared to RNN. RNN might encounter gradient vanishing and 

exploding issues in a complex scenario or it requires longer training time due to the matrix 

multiplication mechanism. Hence, gated units such as input, forget and output gate functions 

are introduced to create a self-loop condition to avoid very large or zero gradients (Hochreiter 

and Schmidhuber, 1997). The LSTM layer has introduced an intermediate feature known as 

cell state to make a self-loop condition. This feature allows the backpropagation to perform 

element-wise multiplication instead of matrix multiplication. The cell state is regulated by the 

Tanh function to decide whether it should be carried to the next memory cell. These features 

greatly reduce the learning time of the neural network and prevent the gradients from vanishing 

and exploding. 

2.1.3 Hybrid CNN and LSTM network 

By incorporating a hybrid CNN-LSTM network, the CNN module could enhance 

LSTM performance by extracting time-in-variant features of the input. Meanwhile, the LSTM 

module could accurately capture the long-term dependency of the signal by studying the 

patterns in the past (Li et al., 2019). The hybrid network architecture could connect in a series 

or parallel manner. In a sequential setup, the LSTM layer is connected to the last layer of the 

CNN architecture before passing through the fully connected layer. In a parallel setup, the 

LSTM architecture is connected to the CNN architecture via a concatenation layer to combine 

the inputs into a mixed output. 
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Bidirectional LSTM (BiLSTM) is used to ensure the layer could capture the temporal 

dependencies between two directions instead of the conventional approach which is only the 

positive direction. This approach allows the network to learn from the complete time series at 

each time step. For the output layers, the fully connected layer combines all the features learned 

by every neuron in the previous layer to classify the signals. Hence, the output of this layer is 

equal to the number of classes of the data set. The softmax layer computes a probability 

distribution by using the softmax transfer function, it will then pass through the cross-entropy 

loss function in the classification layer to identify the training accuracy of the classifier by 

predicting the correct classes using current weights and biases. 

Rectified Linear Unit (ReLU) function is used in CNN where it allows the model to 

perform better and easier optimization that uses gradient-based methods. It applies a threshold 

operation to each element of the input and set any value less than zero to zero, which means it 

will not saturate even if the input values are large. CNN also use global average pooling for 1D 

data, unlike the maximum and minimum pooling average pooling performs down-sampling by 

outputting the average time series data. This is to avoid discarding the peak amplitudes in the 

vibration signal. 

Figure 1 shows the proposed hybrid architecture of 1D CNN and LSTM used for time 

series classification. The sequence input layer is created in the first layer where the signal data 

is input into the network and then separated into multiple segments based on the particular 

sizes. At this stage, for the sequential setup (indicated by pink arrows), the input is transferred 

into convolution 1d layer followed by biLSTM layer before finalized to fully connected layer. 

Meanwhile, the parallel setup (indicated by blue arrows) transfers the input data to both 1D 

CNN and biLSTM layers simultaneously which then concatenates the outputs form both layers 

before classification. During training progress, errors due to the wrong classification is 

common in the first ten epochs. The optimizer will then evaluate a gradient using the entire 
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training set and minimize the loss function via backpropagation. Thus, the weights and biases 

are updated to compute a better classification. The same process is repeated until the training 

accuracy is converged. 

A possible variant of the sequential hybrid CNN-LSTM network is to connect the 

LSTM block ahead of the CNN module (i.e. LSTM-CNN). However, such setup recorded 

poorer performance than the CNN-LSTM configuration in terms of both accuracy and training 

period (Aksan et al., 2023). This is because of the nature of CNN that offers faster computations 

as it is performed in parallel compared to LSTM that processed input sequentially. So, the 

LSTM-CNN network pathway requires the entire input signal to be analyzed by LSTM first 

instead of CNN, which negatively affects computational processing efficiency (Alshingiti et 

al., 2023). 
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Figure 1: Neural network architecture of the proposed hybrid CNN-LSTM model. 

   

2.2 U-Net architecture 

In a U-Net, utilizing a fully convolutional neural network, a series of encoder layers is 

used to reduce the signal size by half while doubling the number of channels, creating a 

compact representation. In a deconvolutional network, a stack of convolutional layers where 

each layer halves the size of the signal but doubles the number of channels, encodes the signal 

into a small and deep representation. That encoding is then decoded to the original signal size 

by a stack of up-sampling layers (Jansson et al., 2017). This compressed version is then 

expanded back to the original signal size using decoder layers. As in U-Net with 4 layers (U-

Net4) illustrated in Figure 2, the encoder contains a total of three downsampling stages. Each 

stage consists of two 1D-convolution operations (kernel size = 3, strides = 1, and same padding) 

and a max-pooling operation (pool size = 2). The output of each stage in the encoder is sent to 

the corresponding decoder layer for further convolutional operations. 
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Figure 2: The proposed 1D U-Net4 architecture. 

To better characterize the input data with different resolutions, the output of the lower 

layer of the decoder concatenates with the output of the upper-level layer in the encoder after 

an up-sampling process which recovers the feature map size. This concatenation process 

enables the model to perceive low-level and high-level features and prevents loss of spatial 

information. In some cases, the larger size of output from convolution at the encoder part will 

be central cropped to match the size of the same level at the decoder part (Ronneberger et al., 

2015). However, this phenomenon is not observed in this work with the use of padding after 

every single convolution process, which maintains the signal data size to be equivalent before 

and after convoluted. These concatenated signals are then proceeded with convolution process 

followed by transposed convolution for up-sampling process. Lastly, the data were sent to the 

fully connected layer and the output classes are obtained with their own prediction accuracy.  

Inspired by this network, U-Net was adopted as the backbone of deep neural network 

for the classification task. The original U-Net architecture has been modified to cater for 1D 

vibration signal instead of 2D image data by replacing the 2D convolution operations with 1D 

convolution, as expressed in Equation (1):   



 

13 
 

 

𝑦(𝑛) = 𝑥(𝑛) ∗ 𝑤(𝑛) =  ∑ 𝑥(

𝑚

𝑘=−𝑚

𝑘) ∗ 𝑤(𝑛 − 𝑘) (1) 

                

where 𝑥 is the input data sequence, 𝑦 is the output of the convolution and 𝑤 is the convolution 

kernel of size 𝑚. This kernel 𝑤 slides over and integrates with the signal 𝑥 to obtain feature 

maps. In this work, the U-Net is configured with 2 and 4 layers separately and named as U-Net 

2 and U-Net 4. Same as the original U-Net network structure, encoder and decoder are the main 

components of the U-Net2 and U-Net4, where the encoder is designed to extract high-

resolution features of the input data. 

3. Methodology 

3.1 Vibration platform setup 

 Figure 3 (a) shows the experimental setup with an enlarged view of the accelerometer 

(3 axis ADXL335) mounted on a lower wooden platform. Figure 3 (b) shows the schematic 

diagram of the experimental setup. The accelerometer is placed close to the faulty rubber 

vibration isolator. 

 As shown in Figure 3(a), the experimental setup consists of two wooden platforms 

stacked on top of each other with four rubber vibration isolators located at the four corners of 

the intermediate layer. A 12V DC motor (RS PRO 321-3192), eccentric mass and encoder 

(KÜBLER 8.KIS40.1362.1024) are assembled (Figure 3(c)) and surrounded by the acrylic 

plates at the sides and aluminium plate on the top for safety precaution. Encoder (Rotary 

Encoder 500 PPR) was mounted on the shaft to measure the rotational speed of the motor. Two 

motor speeds of 880rpm and 1160rpm were investigated in this study. The signals were 
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recorded by the accelerometer and then transferred to a local desktop via Raspberry Pi 4 board 

(R.Pi) model B. 

 

Figure 3: (a) The vibration test rig with the enlarged view of the accelerometer; (b) the 

schematic diagram of the test rig and (c) the DC motor, motor couplings and eccentric disc. 

Rubber vibration isolators were used as the damper in this vibration system. A paper 

cutter is used to induce cracks at the interface between the steel plate and rubber material at a 

depth of 30mm. This method was intended to mimic a mechanical failure similar to the 

industrial practice. The location of crack initiation and propagation closely matches the 

findings from Luo based on finite element analysis and experimental cyclical fatigue test (Luo, 

2021).   

4 scenarios of vibration signals were acquired. In the faulty scenarios, only one rubber 

isolator will be replaced in the vibration platform. 1) Healthy scenario (H): contain undamaged 

rubbers. 2) Faulty scenario (F): contains rubber with one cut. 3) Faulty mildly destroyed 
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scenario (FM): contains rubber with one cut at the top and another at the bottom interface. 4) 

Faulty destroyed (FD): contains rubber with multiple severe deep cuts. Steady-state vibration 

signals were recorded. Figure 4 shows photographs of various crack scenarios. The same setup 

was run ten times, each trial containing 1 minute, with a sampling rate of 1kHz. Thus, there are 

80 vibration signals (4 scenarios x 10 dataset x 2 motor speeds) each of them has a signal length 

of 60k. 

 

Figure 4: (from the left) Healthy, Faulty, Faulty mildly destroyed, Faulty destroyed, the 

enlarged views of the faulty scenarios. The cracks are highlighted in the yellow boxes. 

 

3.3 Neural network configurations 

Of all 10 datasets for each setup, 8 datasets are divided into 6 training and 2 validation 

datasets. Another 2 datasets are used for testing. The total signal length for training samples are 

1.44M (4 scenarios x 6 training datasets x 60k signal length per trial). Each training set contains 

a segmented data length of 100. The amount of training data used in this study is comparable 

to some related studies, such as (Chen et al., 2021) and (Zhang et al., 2023). Therefore, there 

are a total of 14400 training sets. A 128 mini-batch size of over the training set of 14400 is 

used. Hence, the number of iterations per epoch is 112. The max epoch used is 60. But the 

training progress is stopped once it is converged up to 0.01 loss threshold, as this stopping 

criterion avoids overfitting which may reduce the classification accuracy. Also, the training 
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progress will be stopped manually if the training accuracy does not show noticeable changes 

within 10 epochs. These tuning settings are summarized in Table 1. 

Table 1: Neural network training hyperparameter 

Hyperparameter Settings 

Optimizer ADAM 

Max epochs 60 

Validation frequency 10 

Mini batch size 128 

Initial learning rate 0.01 

Loss threshold 0.01 

 

In the vibration platform, there might be random noises generated by the system which 

will reduce the classification accuracy as there could be interference in the feature extraction 

inside the neural network. Hence, the optimizer chosen was Adam (adaptive moment 

estimation). It is an optimization algorithm that can adjust the learning rate of each parameter 

by estimating the first moment and the second moment of the gradient. This feature allows it 

to improve the training and convergence speed for vibrational signals.  

In this work, the proposed 1D-UNet contains 1.8 x 10^5 parameters as detailed in Table 

2. The number of parameters are contributed by the number of filters applied that produced an 

equivalent number of channels output through the convolution followed by batch normalization 

processes. For instance, at layer number 4, the first convolution (Conv_1) produced 3 (filter 

size of 3 x 1) x 64 (weight of each channel from the previous layers) x 128 (weight of each 

channel of the current layers) + 128 (bias) + 128 (normalization offset) + 128 (normalization 
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scale). As a result, there are a total of 24960 learnable parameters at this layer, which then 

summed up until the output layer. 

As such, different amount of layers in U-Net gives a huge gap in the total number of 

parameters learned, as U-Net with 2 layers (U-Net 2) produces only 9.7 x 10^3 parameters, 

incredibly smaller that U-Net 4. Furthermore, it is seen from the output dimension that the size 

of the data signal getting reduced by half after interlayer process, which is due to the max-

pooling applied at each layer for the encoding part of the U-Net. Conversely, the compressed 

signal data at layer 4 were doubled back via transposed convolution at each interlayer for 

decoding part.  

Table 2: Learnable parameters and output dimension of the proposed U-Net 4 network 

Layer Name Filter 
Total 

parameter 
Output dimension 

1 

Input - - (14400, 100, 1) 

Conv_1 16 96 (14400, 100, 16) 

Conv_2 16 816 (14400, 100, 16) 

2 
Conv_1 32 1632 (7200, 100, 32) 

Conv_2 32 3168 (7200, 100, 32) 

3 
Conv_1 64 6336 (3600, 100, 64) 

Conv_2 64 12480 (3600, 100, 64) 

4 

Conv_1 128 24960 (1800, 100, 128) 

Conv_2 128 49536 (1800, 100, 128) 

T-Conv_4 64 24640 (3600, 100, 64) 

3 

Conv_1 64 24768 (3600, 100, 64) 

Conv_2 64 12480 (3600, 100, 64) 

T-Conv_3 32 6176 (7200, 100, 32) 

2 

Conv_1 32 6240 (7200, 100, 32) 

Conv_2 32 3168 (7200, 100, 32) 

T-Conv_2 16 1552 (14400, 100, 16) 

1 

Conv_1 16 1584 (14400, 100, 16) 

Conv_2 16 816 (14400, 100, 16) 

Fully 

Connected 
- 68 (14400, 100, 1) 
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4. Results and discussions 

4.1 Neural network performance 

The overall performance of different types of neural networks training and 

classification for both low and high rpm signal data are presented in Table 3. In terms of 

accuracy, LSTM marks the lowest performance of classification in either 880 rpm (88.4%) or 

1160 rpm (90.8%) although the validation accuracy is adequate among all neural networks 

compared. Meanwhile, CNN shared the worst performance with LSTM at low motor speed 

880 rpm, achieving 88.4% average classification rate among 4 classes. At 1160 rpm, the CNN 

model improved to 94.2%. Comparatively, hybrid CNN-LSTM networks showed better 

consistency in both motor speeds, with parallel CNN-LSTM network performing slightly better 

than sequential CNN-LSTM, achieving 91.1% at 880 rpm and 93.6% at 1160 rpm. This shows 

the effectiveness of hybrid architecture to reliably commit on various scenarios that occur in 

real applications.  

Of all the neural networks tested in this work, U-Net shows the best accuracy 

performance for both motor speeds. Employing convolution technique, this architecture 

performs well even with the simplest 2 layers architecture (U-Net 2) to achieve a similar 

performance with hybrid CNN-LSTM for 880 rpm condition at an average classification 

accuracy of 89.1%. Increasing the U-Net layer looks promising in this context where U-Net 4 

achieved the highest accuracy of 92.9% for 880 rpm motor speed. Nonetheless, although U-

Net 4 achieved slightly better overall accuracy compared to U-Net 2, it sacrifices a lot of 

computational processing time with more than eighteen times longer training period and twelve 

times for classification period than U-Net 2. A higher classification period might be detrimental 

when it comes to applications that require fast real-time processing or monitoring. 

Table 3: Performance comparison of different neural networks for (a) 880rpm; (b) 1160rpm 
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(a) 

Accuracy 

(%) 

Class 

Neural Networks 

CNN LSTM 

Sequential 

CNN-

LSTM 

Parallel 

CNN-

LSTM 

U-Net 

2 

U-Net 

4 

H 90.0 84.6 86.8 83.6 93.7 91.1 

F 80.2 79.0 88.2 88.0 87.8 93.6 

FM 99.7 99.8 100 99.6 100 100 

FD 83.8 90.0 88.7 93.2 75 86.8 

Average accuracy 

(%) 
88.4 88.4 90.9 91.1 89.1 92.9 

Validation 

accuracy (%) 
92.0 96.4 90.4 92.5 97.3 95.9 

Training period (s) 69 1278 2028 1140 115 2096 

Classification 

period (s) 
0.64 8.07 1.61 3.78 2.59 32.71 

 

(b) 

Accuracy 

(%) 

Class 

Neural Networks 

CNN LSTM 

Sequential 

CNN-

LSTM 

Parallel 

CNN-

LSTM 

U-Net 

2 

U-Net 

4 

H 91.2 82.5 90.6 87.8 92.8 91.1 

F 94.3 82.2 95.1 92.3 94.8 96.7 

FM 93.0 99.5 85.8 98.9 99.7 97.8 

FD 99.1 98.8 99.8 95.4 100 99.7 

Average accuracy 

(%) 
94.40 90.75 92.83 93.60 96.83 96.33 

Validation 

accuracy (%) 
98.06 94.69 93.83 97.15 95.67 99.69 

Training period 

(s) 
76 659 114 285 25 280 

Classification 

period (s) 
0.97 9.12 1.23 2.15 4.17 26.69 

 

At higher motor speed of 1160 rpm, both U-Net 2 and U-Net 4 outperformed other 

models with 96.8% and 96.3% average accuracy respectively. This finding indicates that the 

higher excitation frequencies could be more effectively analyzed by simpler architecture of U-

Net. This could be due to training data containing more information as there are more vibration 
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cycles within the same segmentation length compared to lower excitation frequencies. 

Therefore U-Net 2 could be trained as effectively as U-Net 4. It only took 25 seconds to train 

the input data, almost 10 times faster than U-Net 4. In terms of classification speed, U-Net 2 

required an average of 4.17 s compared to 26.29 s for U-Net 4. In this context, it is worth noting 

that the conventional CNN marked the fastest training and classification times among all neural 

networks compared in the low motor speed scenario. As for the high-speed scenario, CNN 

achieved the fastest classification time and ranked second in training time after U-Net 2. This 

shows that CNN model could be a good candidate for applications which require fast 

processing speed, albeit slightly underperformed in terms of accuracy compared to U-Net 

models.  

Overall, it can be concluded that U-Net 4 achieved the best performance at 880 rpm 

while U-Net 2 is the best at 1160 rpm. In applications where real-time monitoring is needed, 

however, the U-Net 2 and CNN might be considered as well due to the fast performance with 

adequate accuracy offered.  

 

4.2 Analysis of signal segmentation for U-Net models 

As U-Net models demonstrated robust performance, this section further analyzes the 

effects of segmenting input signals on the classification accuracy. Due to deeper data feature 

learning along the multiple U-Net layers, U-Net 4 model was chosen to be evaluated by using 

raw input signal with various segmentation lengths from 200 ms to 2000 ms with an increment 

of 200 ms. Figure 5 presents the overall performance result of low and high motor speed 

vibration signals in terms of accuracy for each class along with training and classification 

periods. 
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Figure 5: U-Net 4 accuracy, training period and classification period by varying signal 

segmentation length 

For the low motor speed scenario (880 rpm), it is apparent that classification accuracy 

is more sensitive to the variation of input signal segmentation length compared to high motor 

speed scenario. This indicates finding optimal segmentation length is crucial in this regard. 

Among all classes, faulty mildly destroyed (FM) class achieved consistently high accuracy 

across all segmentation lengths. The performance of healthy (H) class was similar to that of the 

FM class except for a slight drop of accuracy at the segmentation length of 1800 ms. In the 

faulty (F) class, a larger drop of accuracy at 1000 ms segmentation length was experienced. 

Meanwhile for faulty destroyed (FD) class, the trend shows more fluctuations with the highest 
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accuracy of 88% observed at 1200 ms segmentation length. Overall, this outcome makes 1200 

ms the best segmentation length across all classes for the low 880 rpm motor speed scenario. 

Segmentation length refers to the period in which a signal is divided for processing. In 

the low 880 rpm scenario, the motor's vibrations may have periodic patterns or cyclic behavior, 

especially for the FD class where results showed that the classification accuracy is sensitive to 

the segmentation length. To provide further insights into this phenomenon, the vibration signal 

is analyzed using empirical mode decomposition (EMD). The EMD, also known as a 

component of the Hilbert-Huang transform, was developed based on the simple assumption 

that a signal is composed of a series of intrinsic modes of oscillations or functions (IMF). EMD 

is popular in analyzing non-linear and non-stationary time series signals and eliminates 

unnecessary noises by decomposing them into a pre-determined number of IMFs and a residual 

signal.  

Figure 6 shows the EMD for FD class with 1200 ms segmentation window. The 

mechanical vibration frequency is usually observed in low frequency range, in this case, the 

main vibration frequency was around 17.52 Hz as shown in the frequency spectrum of IMF4.  
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Figure 6: Empirical mode decomposition (EMD) of 880 rpm motor vibration signal 

for FD class 

To provide further insights into the fluctuations in classification accuracy for FD class, 

lower accuracies were recorded beyond the 1200 ms segmentation length, with the decrement 

of 32.4% to the lowest point at 1400 ms followed by a slight increment thereafter. This may be 

attributed to the drawback of U-Net that requires larger dataset for effective model training 

[17]. Also, a larger signal segmentation length causes a lower amount of dataset to be used 

during the training process. In this context, it is essential to note that 880 rpm motor speed is 

equivalent to an excitation frequency of 14.6 Hz and this translates to roughly 68 data points 

acquired for each cycle at a data sampling rate of 1 kHz. Consider a signal segmentation length 

of 10 cycles, equivalent to 680 data points (680 ms), the classification accuracy indeed was not 
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the highest as observed in Figure 5, between the range from 600 ms to 800 ms. This suggests 

that choosing a segmentation length that tallies with the excitation frequency may not yield the 

optimal classification performance. 

In the case of high motor speed scenario (1160 rpm), the average accuracy was rather 

consistent and not sensitive to the segmentation lengths, it also recorded higher overall 

classification accuracy compared to the low motor speed scenario. The reason for this 

phenomenon may be attributed to the noise appearance of the raw signal output from both 

motor speeds as visualised in Figure 7. It is hard to recognize the numbers of complete cycle 

in the 880 rpm vibration signal due to noise contamination. Comparatively, the signal acquired 

from the 1160 rpm showed clearer cycles of vibrations. As a result, noises contained in the 

signal may hinder the neural network learning progress and lead to lower average classification 

accuracy for the case of 880 rpm as shown in Figure 7. This suggests that test conditions could 

affect the neural network performance. Furthermore, it is essential to note that the deeper layers 

of U-Net model with multiple convolutions across the encoder and decoder could capture the 

signal features more efficiently in the high motor speed scenario regardless of the segmentation 

length. 
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Figure 7: Raw vibration signals response of FD class under both 880 and 1160 rpm motor 

speeds. 

 

The importance of data segmentation is also reported in other related studies where 

developing segmentation strategies on raw signal could help in achieving better neural network 

performance. Kim and Choi presented a new method for gear fault classification based on the 

idea of segmenting the original signal corresponding to the number of teeth of the gear via 

autocorrelation, after which the CNN is implemented for faults classification (Kim and Choi, 

2018). It was reported that the segmented signal helps the neural networks distinguish different 

types of faults better, hence improving the overall accuracy. In another work, utilizing ECG 

recordings that share similar shapes among different leads to isolating individual heartbeats 

using R-peaks enabled easy extraction of heartbeats for analysis and training by splitting ECG 

signals into segments around each R-peak of ~1 second interval, which aids in accurate 

classification of waveform (Chen et al., 2023). Meanwhile in this study, as discussed 



 

26 
 

previously, choosing segmentation length that tallies with the excitation frequency may not 

yield the best performance. Nevertheless, analyzing the neural network performance by varying 

the signal segmentation length revealed a better performance of 95% average classification 

accuracy at 1200 ms segmentation length compared to 92.9% at default segmentation length of 

100 ms (Table 3) for low motor speed scenario. 

In terms of processing time, results in Figure 5 showed that both training and 

classification consumed less time within the segmentation length of 800 to 1400 ms. 

Specifically, at 1400 ms segmentation length, training the U-Net 4 model required least time 

of only 313 seconds for both low and high motor speed scenarios. Meanwhile, the classification 

time is at the best performance when the data was segmented at 1000 ms. The classification 

time increased thereafter until 1800 ms before it dropped slightly at 2000 ms, which is not 

favorable for an efficient computational processing system. 

Nonetheless, to distinguish the best segmentation in terms of both accuracy and 

processing time, there is a trade-off between these two criteria at segmentation lengths of 1000 

ms and 1200 ms. At 1000 ms, although the average accuracy is considered low among other 

neural networks with 84.4% and 97.9% for low and high motor speed respectively, the time 

taken for classification process is outstanding, which indicates the most reliable system for 

real-time result. In contrast, the best average accuracy in both low and high rpm was achieved 

at 1200 ms with 95% and 100% respectively, despite requiring longer training and 

classification time compared to 1000 ms segmentation length. This finding might be a useful 

reference for which the application of the system is crucial as the requirement on accuracy level 

and processing time may vary. So, tuning the right signal segmentation length is essential in 

order to achieve desirable performance with the proposed U-Net model. The main criteria of 

SHM systems in practical fields are accuracy and detection speed. For instance, if the 

application requires high accuracy, the relative processing time may take longer and vice versa 
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for a system that prioritizes a faster response. Therefore, tuning the right signal segmentation 

length could achieve better accuracy or faster response, depending on the application’s 

requirements. 

5. Conclusions 

In this paper, fault diagnosis has been performed on a vibration platform based on the 

damage severity of the rubber vibration isolators by quantifying the number of induced cracks. 

Based on the results: 

i. U-Net model achieved the best accuracy with the lowest computational time for 

training. LSTM and hybrid CNN-LSTM setup, however, achieved a lower 

classification accuracy for every scenario along with longer computational time. 

ii. Due to the most favorable performance of U-Net 4 architecture, further analysis has 

been conducted by varying the segmentation length of the input signals. The result 

shows that data segmentation potentially improves the model average accuracy as 

well as processing time with peak performance observed at segmentation length of 

1200 ms and 1000 ms respectively, despite the trend fluctuating throughout the 

testing range. 

iii. U-Net performance shows different behaviors on both low and high motor speed 

scenarios considered in this work. As the optimal 1200 ms segmentation length was 

achieved at low-speed scenario with the highest average accuracy for all classes, 

the high-speed scenario recorded a consistently high average accuracy, and it is not 

sensitive towards various segmentations. Contradictory to past research using CNN 

for segmentation test on vibration signals, U-Net 4 in this study shows a better 

performance in capturing significant features of high-speed vibration signal, partly 

due to less embedded noise. 
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iv. However, for both motor speed scenarios, the processing time is more favoured at 

1000 ms despite slightly low classification accuracy. This concludes that there is a 

trade-off between model accuracy and computational speeds that might be at a 

different tier of crucialness in different applications that can act as a guide into 

creating a reliable SHM system.  

v. Future works revolve around investigating the performance of neural network 

models in classifying other failure mechanisms on rubber vibration isolator such as 

thermal degradation effect where rubber materials are exposed to high temperature 

environment in some industrial practical applications. In addition, degradation of 

rubber isolators subjected to other excitation scenarios such as traffic loadings and 

earthquakes could be investigated as well in order to explore the robustness of 

neural network models in identifying those defects.  
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