مدل‌سازی منطقه‌ای شتاب تقل در طول خطوط ترازیابی دقیق به منظور کاهش مشاهده نتل مطالعه خاص: مدل‌سازی میدان تقل در طول خطوط ترازیابی دقیق ایران

علي‌رضا ازموه‌اردلان
دانشیار گروه مهندسی نقشه‌برداری - دانشگاه فنی - دانشگاه تهران
روح الله کرمی
دانشجوی دکتری مهندسی نقشه‌برداری - دانشگاه فنی - دانشگاه تهران

(تاریخ دریافت 2/12/1382، تاریخ تصویب 1382/4/27)

چکیده
در این مقاله مدل‌سازی میدان تقل در طول خطوط ترازیابی دقیق مورد بررسی قرار گرفته است. از این بررسی مشاهدات تقل خروجی ترازیابی در جهت ۱ ایران به عنوان مطالعه خاصی به کار رفته و مدل‌های مختلف برای مدل‌سازی منطقه‌ای میدان تقل در طول لوله‌ای ترازیابی مورد بررسی قرار گرفته است. مدل‌های ریاضی از نوع چندجمله‌ای به شکلی بنویسند.در نهایت، بر اساس این نتایج، مدل‌سازی میدان تقل در اتاق خطوط ترازیابی به عنوان مناسب ترین مدل انتخاب گردیده است. چند جمله انتخاب ۴ پارامتری بر اساس تحلیل داده‌های مدل‌های میدان تقل در اتاق خطوط ترازیابی دقیق می‌باشد. با بکارگیری مناسب‌ترین مدل توام با کاهش تعداد مشاهدات تقل در اتاق خطوط ترازیابی دقیق موجب صرفه‌جویی در وقت و هزینه می‌گردد.

واژه‌های کلیدی: مدل‌سازی میدان تقل، مدل چندجمله‌ای، ترازیابی دقیق، عدد زنوتونسیل

مقدمه
شاب تقل زمین کیه از مشخص‌های زمین‌پایان، که اثر بسیاری بر شکل آن دارد، پدید. خاطر مطالعه شکل زمین و تغییرات آن بدون رجوع به میدان تقل کاملاً تأثیر غیرقابل‌توجه یافتن می‌کند. شاب تقل زمین همانند شخصیت‌هایی از زمین و حاوی اطلاعاتی که دیگر از زیرکنار دوری آن می‌باشد. مدل‌سازی میدان تقل برای فضای آزادی زمین، مناسب‌ترین آگاهی از دانشی و نواحی نابی‌گان تغییرات دانشی به درون زمین است. با این وجود از طریق مشاهده تقل زمین در فضای بیرونی می‌توان به مدل‌سازی شتاب تقل برای فضای خارجی زمین پرداخت. مدل تقل زمین درای کاربردهای زیادی در علم و فنون می‌باشد که به عنوان نمونه می‌توان به این موارد اشاره کرد: اکتشاف معدن‌های زیرزمینی، نمایش و محاصره مدار ماهواره ها، تعیین ارتفاع زلزله، آثاره گری جزر و میل بررسی حکمرانی دیجیتال، پیش‌بینی زمین‌تربیت، تعیین تغییرات زمین‌شناسی، طبیعت نیوینگ، پیش‌بینی زلزله، تعیین تغییرات

شکل فیزیکی زمین (تغییرات توسعه دانشی) و تصحح شیب‌های ترازیابی.
مدل‌سازی میدان تقل زمین دارای کاربردهای بسیار است که مدل زمین‌پایان آن به‌عنوان یک ابزار برای رسیدن به نقاط تقل، در هر دو مسیر بوده که با استفاده از مدل‌های تقلیل‌می‌شود. شاب در تحقیقات جغرافیایی مورد استفاده قرار گرفته است. در این مقاله بیش از هر چهار دانشجوی، کاهش عمليات زمین‌پایان و جهت سنجی‌های منظمی از نقاط تقلدی از شتاب‌های گیره شتاب تقل در نقاط با پراگنتکی نام‌گذاری شده.
تمین دقت مورد نیاز برای مشاهدات نقلی
قبل از اقدام به مدل‌سازی میدان نقل، لازم است از طریق قانون انتشار خطأ به تعیین دقت مورد نیاز مشاهدات نقلي برای حصول اختلافات با تئوری در دقت شبکه های ترازابی درجه 1 بپردازیم. بخش ضمیمه در بر گیرنده این محاسبات است. تنظیم محاسبات در بخش ضمیمه یافته (7) می‌باشد که در این میزان بر حسب مقادیر مختلف خطای اختلاف انتقال دهه و دهه ترازابی هندسی بین دو مکان‌ها که تغییرات ارتفاعی در حد 200 متر است می‌باشد. اگر میزان ارتفاعی از مدل‌های سطحی و فاصله متوسط بین بنج مارک‌های متوالی ترازابی دقیق را 2 کیلومتر فرض نماییم، در این مناطق تغییرات ارتفاعی نسبی بین 64 میلی‌گال بوده و بنابراین لازم است این ارتفاعات نسبی بین 64 میلی‌گال بین دو بنج مارک متساوی کم باشد با توجه به رابطه (2) می‌توان دقت مورد نیاز در مشاهده نقلي را به دست آورد و با توجه به توابع منطقه مشخص ساخت که آیا مشاهده نقلی بر روی کلیه بنج مارک‌ها ضروری است یا خیر. اگر ایمن بررسی یکی از این داده‌گیری مشاهده نقلی می‌تواند در کاهش مشاهدات نقلي و افزایش سرعت جمع‌آوری مشاهدات شتاب در شبکه‌های ترازابی دقیق تاثیر بسزایی داشته باشد، بعد از برآوردی که برای ارائه دقت مورد نیاز مشاهدات نقلي ضروری می‌باشد، مدل‌سازی شتاب نقلي برداخت.

جدول 1: خلاصه اطلاعات امارات مربوط به اختلاف ارتفاع نقلي ترازابی درجه 1 ایران و اطلاعات مربوط به احتراف معیار مشاهدات ترازابی هندسی در این شبکه

<table>
<thead>
<tr>
<th></th>
<th>MAX</th>
<th>MIN</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta h_c) (m)</td>
<td>236.4394</td>
<td>0.0032</td>
<td>27.1158</td>
</tr>
<tr>
<td>(\sigma_{\delta h_c}) (m)</td>
<td>0.0019</td>
<td>0.0003</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

مدلسازی شتاب نقلي برای تأیین اطلاعات نقلی در شبکه های ترازابی دقیق ایران
مدلهایی که در این مقاله مورد بررسی قرار گرفته‌اند عبارتند از: مدل چند جمله‌ای 4 پارامتری، مدل چند جمله‌ای 3 پارامتری و مدل چند جمله‌ای 2 پارامتری.

همچنین می‌توان به دقت \(\delta_{\phi}\) در رابطه (1) تغییر قابلیت و \(\delta_{\phi}\) در رابطه (2) تغییر قابلیت است. با توجه به این رابطه به ازای 10 کیلومتر تغییر در فاصله، 0.50 میلی‌گال در شتاب نقل تغییر حاصل خواهد گردید.

[2]می‌توان رابطه‌ای برای تغییرات شتاب نقلي از استوا تا قطب ته‌تی به خاطر عرض جغرافیایی آزاد کرد:

\[\delta_{\phi} \equiv 0.5371 \text{magal} \delta h_{km}\]
در کنار صحت مدل‌های محلی بر اورد شده بررسی گردیده است. تعریف این مدل‌ها به شرح ذیل می‌باشد:

- مدل جنگ جمله‌ای 4 بارامتری:
 \[g(\varphi, \lambda, h) = a_0 + a_1 \varphi + a_2 \lambda + a_3 h \]

- مدل جنگ جمله‌ای 8 بارامتری:
 \[g(\varphi, \lambda, h) = a_0 + a_1 \varphi + a_2 \lambda + a_3 h + a_4 \varphi \lambda + a_5 \varphi^2 + a_6 \lambda h + a_7 \varphi h \]

- مدل هارمونیک‌های بیضوی:
 \[W(\varphi, \lambda, u) = \sum_{m=0}^{n_{mm}} \sum_{n=-n_{mm}}^{n_{mm}} \frac{Q_{n}^{m} \left(\frac{u}{\varepsilon} \right)}{Q_{n}^{m} \left(\frac{b}{\varepsilon} \right)} \varepsilon_{nm}(\varphi, \lambda) + \frac{1}{2} \omega^2 (u^2 + \varepsilon^2) \cos^2 \varphi \]

Somigliana-Pizzetti

\[W(\varphi, u) = \frac{g m}{\varepsilon} \arccot g \left(\frac{u}{\varepsilon} \right) + \frac{1}{6} \omega^2 a^2 \left(\frac{3 u^2}{\varepsilon^2} + 1 \right) \arccot g \left(\frac{u}{\varepsilon} \right) - \frac{3a}{\varepsilon} \]

\[\frac{3 b^2}{\varepsilon^2} + 1 \] \arccot g \left(\frac{b}{\varepsilon} \right) \frac{3 \sin^2 \varphi - 1}{3 \varepsilon} \]

\[+ \frac{1}{2} \omega^2 (u^2 + \varepsilon^2) \cos^2 \varphi \]

\[g(\varphi, u) = \text{grad} \left(W(\varphi, u) \right) \]

که در این مدل‌ها ثابت چهار سانتی‌متر زمین، سرعت دوران زمین، \(g m = 3986004.415 \times 10^8 \) و \(a = 7.292115 \times 10^{-5} \) و \(b = 6378136.701 \) می‌باشد. Mean Tide میانه در سیستم Mean Tide نصف قطر بخش بیضوی می‌باشد. \(\varepsilon = 521858.317 \) Tide Mean در سیستم.

جدول 2: برآورد دقت مورد نیاز نقل سنجی در شبکه ترازیابی درجه 1 ایران

<table>
<thead>
<tr>
<th>(\Delta h (m))</th>
<th>(\Delta \alpha (m))</th>
<th>(\sigma_{h} (m^2))</th>
<th>(\sigma_{\alpha} (m^2))</th>
<th>(\sigma (m^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.0010</td>
<td>0.01</td>
<td>10.1960</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.0010</td>
<td>0.02</td>
<td>20.3921</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.0010</td>
<td>0.03</td>
<td>53.5622</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.0010</td>
<td>0.04</td>
<td>41.2790</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.0010</td>
<td>0.05</td>
<td>82.5581</td>
<td></td>
</tr>
</tbody>
</table>

جدول 3: برآورد دقت مورد نیاز نقل سنجی در شبکه ترازیابی درجه 1 ایران با توجه به توان دریافت مربوطه

<table>
<thead>
<tr>
<th>(\Delta h (m))</th>
<th>(\Delta \alpha (m))</th>
<th>(\sigma_{h} (m^2))</th>
<th>(\sigma_{\alpha} (m^2))</th>
<th>(\sigma (m^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>236.4394</td>
<td>0.0019</td>
<td>0.01</td>
<td>5.832</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0003</td>
<td>0.01</td>
<td>4.312</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.01</td>
<td>403939090</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.02</td>
<td>318627427</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.03</td>
<td>11.888</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.04</td>
<td>11.221</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.05</td>
<td>665335617</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.06</td>
<td>878433833</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.07</td>
<td>8291132641</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.08</td>
<td>78.517</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.09</td>
<td>103.666</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.10</td>
<td>97.847</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.11</td>
<td>16.123</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.12</td>
<td>17.894</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.13</td>
<td>17.458</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.14</td>
<td>1191316072</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.15</td>
<td>1322198358</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.16</td>
<td>156.035</td>
<td></td>
</tr>
<tr>
<td>236.4394</td>
<td>0.0010</td>
<td>0.17</td>
<td>152.232</td>
<td></td>
</tr>
</tbody>
</table>

ازموجه‌ای عدّدی مدل‌های انتخابی

در این بخش به ارزیابی دقیق مدل‌های معروف شده در پیش‌بینی نقاط تابعش تابع دقت مدل‌های محلی مورد بررسی قرار گرفت. در این کلیه مدل‌ها نسبت به بیضوی Somigliana-Pizzetti و WGD2000 یک همانند بوده و در این مطالعه برای مدل‌های مشاهده نقل شده در بخش ترازیابی درجه 1 ایران در شاخته‌ای (1) نشنده داده است. ارزیابی از طریق نقاط جک (نقاط با شاید نقاط مشاهده شده که

جمله‌ای 8 بارامتری، بست پیانو با هارمونیک‌های بیضوی، مدل Somigliana-Pizzetti. توصیح آنکه کلیه این مدل‌ها نسبت به بیضوی WGD2000 [1] تعریف این مدل‌ها نسبت به بیضوی WGD2000

شانده‌اند. در مدل‌های دیگر شاهد مدل‌های Mesh 2 مدل‌های مشاهده شده در بخش ترازیابی درجه 1 ایران در شاخته‌ای (3) نشنده داده است. ارزیابی از طریق نقاط جک (نقاط با شاید نقاط مشاهده شده که
جدول ۴: مشخصات لوپهای به کار برده شده در مدل‌سازی شتاب نقل.

<table>
<thead>
<tr>
<th>باجماره پنج اسمی (km)</th>
<th>طول تغییری کل لوپ (km)</th>
<th>تعداد کل نقاط لوپ</th>
<th>تعداد نقاط مشاهده شده</th>
<th>نشانه نقل</th>
<th>نشانه نقل</th>
<th>نشانه نقل</th>
<th>نام لوپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1990</td>
<td>650.8260</td>
<td>296</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>AH</td>
</tr>
<tr>
<td>2.1660</td>
<td>372.5633</td>
<td>172</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>AI</td>
</tr>
<tr>
<td>2.2440</td>
<td>792.1562</td>
<td>353</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>AM</td>
</tr>
<tr>
<td>2.1032</td>
<td>792.9256</td>
<td>377</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td>AN</td>
</tr>
<tr>
<td>1.8111</td>
<td>427.4394</td>
<td>236</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>AR</td>
</tr>
<tr>
<td>2.1400</td>
<td>594.9475</td>
<td>279</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td>AX</td>
</tr>
<tr>
<td>2.2876</td>
<td>452.9557</td>
<td>198</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>AY</td>
</tr>
<tr>
<td>2.1442</td>
<td>819.0872</td>
<td>385</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>BB</td>
</tr>
<tr>
<td>2.3242</td>
<td>1341.1184</td>
<td>577</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td>BI</td>
</tr>
<tr>
<td>2.3388</td>
<td>1405.6373</td>
<td>601</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>BJ</td>
</tr>
<tr>
<td>2.2108</td>
<td>601.3534</td>
<td>272</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>BK</td>
</tr>
<tr>
<td>2.3306</td>
<td>587.3327</td>
<td>252</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>BN</td>
</tr>
<tr>
<td>2.0929</td>
<td>539.9901</td>
<td>258</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>BQ</td>
</tr>
<tr>
<td>2.0585</td>
<td>576.3830</td>
<td>280</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>BR</td>
</tr>
<tr>
<td>2.0100</td>
<td>1330.6372</td>
<td>662</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>BS</td>
</tr>
<tr>
<td>2.4244</td>
<td>501.8516</td>
<td>207</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td>BV</td>
</tr>
<tr>
<td>2.3423</td>
<td>634.7799</td>
<td>271</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>BW</td>
</tr>
<tr>
<td>2.5566</td>
<td>442.3062</td>
<td>173</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td>CD</td>
</tr>
<tr>
<td>2.3884</td>
<td>1363.8054</td>
<td>571</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td>CF</td>
</tr>
<tr>
<td>2.4060</td>
<td>512.4940</td>
<td>213</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>CH</td>
</tr>
<tr>
<td>2.3075</td>
<td>793.8003</td>
<td>344</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td>CL</td>
</tr>
<tr>
<td>2.0233</td>
<td>410.7377</td>
<td>203</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>CR</td>
</tr>
<tr>
<td>2.2443</td>
<td>113.1754</td>
<td>504</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
</tr>
<tr>
<td>2.0940</td>
<td>546.5582</td>
<td>261</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>DC</td>
</tr>
<tr>
<td>1.5872</td>
<td>53.9681</td>
<td>34</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>TE</td>
</tr>
</tbody>
</table>

در برآورد مدل بکار برده نمی‌شوند، به صورتی ذیل انجام خواهد شد:

1. استفاده از یک نقطه چک در هر لوپ.
2. استفاده از ۱۰ نقطه چک با پراکندگی اندازه‌گیری در هر لوپ.
3. استفاده از ۱۰ نقطه چک منتشر در هر لوپ.

مشخصات لوپهای به کار برده شده در این آزمایش‌ها در ۴ جدول (۳)؛ اورده شده است. در مورد هر یک از این لوپ به کار برده در این بررسی‌ها میانگین و واریانس اختلاف در نقاط چک تعیین گردیده‌اند. در مواردی که اختلاف بین برای مرطوب بیشتر بوده این نقاط از بررسی حذف و مجذور میانگین و واریانس اختلاف در نقاط چک محاسبه گردیده است. جدول (۴) و (۶) نشان دهنده خلاصه نتایج مربوط به ارزیابی در ۲۵ لوپ بکار برده شده می‌باشد. در جدول (۵) و (۶) علائم اختصاصی بکار برده شده در داودی تعیین ذیل می‌باشد:

شکل ۱: ۲۵ لوپ شبکه ترازیابی درجه ۱ ایران.
جدول ۵: محاسبه میانگین و واریانس اختلافات در کلیه لوپه‌ها.

<table>
<thead>
<tr>
<th>Method</th>
<th>Checking method</th>
<th>Mean(mgal)</th>
<th>Variance (mgal 2)</th>
<th>Mean(mgal)</th>
<th>Variance (mgal 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4</td>
<td>1</td>
<td>20.558</td>
<td>1497.050</td>
<td>9.693</td>
<td>59.018</td>
</tr>
<tr>
<td>P4</td>
<td>2</td>
<td>36.734</td>
<td>4454.848</td>
<td>18.518</td>
<td>521.671</td>
</tr>
<tr>
<td>P4</td>
<td>3</td>
<td>42.272</td>
<td>14905.218</td>
<td>18.638</td>
<td>981.125</td>
</tr>
<tr>
<td>P8</td>
<td>1</td>
<td>10978.878</td>
<td>3004327973.940</td>
<td>16.528</td>
<td>363.505</td>
</tr>
<tr>
<td>P8</td>
<td>2</td>
<td>16536.743</td>
<td>6808818354.542</td>
<td>33.632</td>
<td>2313.295</td>
</tr>
<tr>
<td>P8</td>
<td>3</td>
<td>25895.094</td>
<td>16711764778.397</td>
<td>40.304</td>
<td>10910.679</td>
</tr>
<tr>
<td>E20</td>
<td>1</td>
<td>31.665</td>
<td>616.727</td>
<td>26.828</td>
<td>356.279</td>
</tr>
<tr>
<td>E20</td>
<td>2</td>
<td>63.314</td>
<td>7863.832</td>
<td>40.527</td>
<td>1711.504</td>
</tr>
<tr>
<td>E20</td>
<td>3</td>
<td>70.779</td>
<td>7143.022</td>
<td>49.473</td>
<td>1836.362</td>
</tr>
<tr>
<td>E180</td>
<td>1</td>
<td>36.638</td>
<td>380.086</td>
<td>36.638</td>
<td>380.086</td>
</tr>
<tr>
<td>E180</td>
<td>2</td>
<td>69.186</td>
<td>6999.025</td>
<td>47.878</td>
<td>1669.603</td>
</tr>
<tr>
<td>E180</td>
<td>3</td>
<td>30.034</td>
<td>550.580</td>
<td>30.034</td>
<td>550.580</td>
</tr>
<tr>
<td>E360</td>
<td>1</td>
<td>38.378</td>
<td>311.611</td>
<td>38.378</td>
<td>311.611</td>
</tr>
<tr>
<td>E360</td>
<td>2</td>
<td>39.090</td>
<td>469.803</td>
<td>36.693</td>
<td>340.374</td>
</tr>
<tr>
<td>E360</td>
<td>3</td>
<td>40.793</td>
<td>557.113</td>
<td>38.084</td>
<td>389.839</td>
</tr>
<tr>
<td>SP</td>
<td>1</td>
<td>36.772</td>
<td>862.275</td>
<td>34.075</td>
<td>709.979</td>
</tr>
<tr>
<td>SP</td>
<td>2</td>
<td>67.002</td>
<td>7944.201</td>
<td>43.969</td>
<td>1709.663</td>
</tr>
<tr>
<td>SP</td>
<td>3</td>
<td>29.034</td>
<td>756.292</td>
<td>21.447</td>
<td>360.319</td>
</tr>
</tbody>
</table>

توجه: سی‌و‌سه‌ی میانگین و واریانس اختلافات قبل از حذف Outlier ۲‌دهمی می‌باشد.

جدول ۶: تعیین Outlier‌ها در کلیه لوپه‌ها

<table>
<thead>
<tr>
<th>Method</th>
<th>Checking method</th>
<th>Outlier 1</th>
<th>Outlier 2</th>
<th>Outlier 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4</td>
<td>1</td>
<td>164.103</td>
<td>126.909</td>
<td>-</td>
</tr>
<tr>
<td>P4</td>
<td>2</td>
<td>250.990</td>
<td>241.434</td>
<td>-</td>
</tr>
<tr>
<td>P4</td>
<td>3</td>
<td>609.505</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P8</td>
<td>1</td>
<td>274075.264</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P8</td>
<td>2</td>
<td>412611.387</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P8</td>
<td>3</td>
<td>646410.057</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E20</td>
<td>1</td>
<td>98.156</td>
<td>76.432</td>
<td>-</td>
</tr>
<tr>
<td>E20</td>
<td>2</td>
<td>340.741</td>
<td>309.993</td>
<td>-</td>
</tr>
<tr>
<td>E20</td>
<td>3</td>
<td>332.017</td>
<td>299.573</td>
<td>-</td>
</tr>
<tr>
<td>E180</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E180</td>
<td>2</td>
<td>333.177</td>
<td>295.265</td>
<td>-</td>
</tr>
<tr>
<td>E180</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E360</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E360</td>
<td>2</td>
<td>96.612</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E360</td>
<td>3</td>
<td>105.818</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SP</td>
<td>1</td>
<td>101.506</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SP</td>
<td>2</td>
<td>347.952</td>
<td>315.826</td>
<td>-</td>
</tr>
<tr>
<td>SP</td>
<td>3</td>
<td>87.706</td>
<td>85.985</td>
<td>80.336</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

با توجه به نتایج مندرج در جدول اول و اشکال آرائه شده، می‌توان نتیجه مدل‌سازی شتاب نقل را در امتداد خطوط ترازایی‌بی به شرح زیر خلاصه نمود:

1- با توجه به دقت‌های مورد نیاز شتاب نقل در شبکه‌های ترازایی دقیق بر کردن خلاصه‌های شتاب در شبکه ترازایی دقیق ایران از طریق مدلهای جهانی موجود (مدل بسته‌بندی به هارمونیکهای بیضوی و میدان نقل سومیگالانا-پیتی) و مدلهای محلی (مدل چند جمله ای ۴ پارامتری و مدل چند جمله ای ۸ پارامتری) امکان پذیر می‌باشد.

۲- در بین مدلهای مورد بررسی مدل جنگل‌های ۴ پارامتری در اکثر موارد بهترین پرآورندگان نقل مطلق را نتیجه‌گیری می‌دهد.
تشکر و قدردانی
بدنیوسیله از دانشگاه تهران به خاطر حمایت مالی‌طلبی تحقیقاتی شماره ۶۲/۱/۲۰۱۴ تشرکر و قدردانی می‌گردد. همچنین مولفین مقاله ربات تشرکر و قدردانی خود را از جناب آقای مهندس تولک، جناب آقای مهندس حامانی از سازمان نقشه برداری کشور به خاطر انتخاب قرار دادن مشاهدات مورد نیاز این تحقیق، اعلام می‌دارند.

مراجع

ضریمه
برآورد دقت مورد نیاز در انجام مشاهدات نقی در شبکه ترازیابی درجه ۱

(الف) مدل عمومی تبعیض اختلاف پتانسیل بین دو نقطه A و B از طریق شتاب ثقل

\[\Delta W_{AB} = \frac{g_A + g_B}{2} \times \frac{\Delta h_B - \Delta h_A}{2} \]

(1)
\[\sigma^2_{\Delta w_{\mu}} = \left(\frac{\partial \Delta W_{\mu \mu}}{\partial g_A} \right)^2 \sigma^2_{g_A} + \left(\frac{\partial \Delta W_{\mu \mu}}{\partial g_B} \right)^2 \sigma^2_{g_B} + \left(\frac{\partial \Delta W_{\Delta h_{\mu}}}{\partial \Delta h_F} \right)^2 \sigma^2_{\Delta h_F} + \left(\frac{\partial \Delta W_{\Delta h_{\mu}}}{\partial \Delta h_R} \right)^2 \sigma^2_{\Delta h_R} \]

(ج) فرضيات

\[\sigma^2_{g_A} = \sigma^2_{g_B} = \sigma^2_g \]

(3)

\[\sigma^2_{\Delta h_F} = \sigma^2_{\Delta h_R} = \sigma^2_{\Delta h} \]

(3)

(د) حل معادله (3) بعد از اعمال فرضيات 1

\[\sigma^2_g = \frac{8\sigma^2_{\Delta W} - (g_A + g_B)^2 \sigma^2_{\Delta h}}{\left(\Delta h_F - \Delta h_R\right)^2} \]

(4)

(ه) فرضيات 2

\[\Delta h_F - \Delta h_R = 2\Delta h \]

(5)

\[g_A = g_B \equiv 9.8 \left(\frac{m}{g^2}\right) \]

(6)

(و) رابطه (4) بعد از اعمال فرضيات 2

\[\sigma^2_g = \frac{2\sigma^2_{\Delta W} - 96.04\sigma^2_{\Delta h}}{\Delta h^2} \]

(7)