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Abstract 

The present work is focused on the bending, buckling and free vibration 

analysis of BDFG (bidirectional functionally graded) sandwich beams using a 

quasi-3D analytical solution. The present formulation is based on a 

displacement field that includes indeterminate terms and involves a few 

variables to define. The BDFG beam consists of functionally graded (FG) 

skins at the bottom and top with isotopic core in the middle. The materials 

characteristics of the skins are continuously distributed through the thickness 

and the length of the beam based on a specified power law. The governing 

equations of the simply supported curved beam are derived using the 

principal of virtual works and are then solved utilizing the Navier solution. 

The exactness of the proposed formulation is assessed by checking their 

numerical results with other of reliable publications available in the literature. 

A detailed numerical study is presented in order to investigate the impact of 

several parameters such grading indexes, radius of curvature, sandwich type, 

BDFG beam geometry and other setting on the buckling, bending and free 

vibration of curved BDFG beam. 
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1. Introduction. 

Curved beams have been extensively employed in numerous engineering disciplines such as civil, mechanical, 

aerospace and other engineering utilizations. We can also find them in the form of golf shafts and fishing rods that 

take on apparently deformed shapes during use[1]. With the rapid development in material science, the functionally 

graded material (FGM) and in a particular the sandwich materials were adopted to the curved beams[2].  

Since beams are an essential component in a structure, it is essential to perform a precise structural analysis of the 

behavior of curved FG beams under various applications. However, in literature, researches on curved beams are very 

limited. An outline of some typical works can be listed as follows. 
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Fereidoon et al.[3] investigated the bending response of curved sandwich beam simply supported and having FG 

core. The authors employed the Euler-Bernoulli beam theory (also known as classical beam theory (CBT)) for the thin 

face-sheets and high-order shear theory (HSDT) to model the core layer. Stoykov [4] used the CBT to study the 

buckling of curved beam. The system of the nonlinear algebraic equation has been solved by Newton-Raphson’s 

method. Mohamed et al.[5] studied the nonlinear forced and free vibrations of Euler-Bernoulli curved beams lying on 

nonlinear elastic foundations around post buckling configuration. 

Li et al.[6] employed a mixed finite element (FE) approach based on the First-Order shear theory (FSDT) for the 

nonlinear investigation of FG curved beams. In another work, Li et al.[7] proposed a FEM formulation for 

geometrically nonlinear examination of FG curved beams having discontinuous stiffness. The generalized differential 

quadrature method (GDQM) in conjunction with the FSDT were employed by Kurtaran [8] to predict nonlinear static 

and dynamic response of FG curved beams having constant curvature. The Timoshenko beam theory was used by 

Wan et al.[1]  to investigate the geometrically nonlinear response of FG curved beams having variable curvatures. The 

beams were exposed to thermomechanical loading. Transverse normal stress and strain were considered in sinusoidal 

solution proposed by Sayyad and Ghugal [9] for the static behavior of FG sandwich curved beam under uniform load. 

The trigonometric shear deformation beam theory (TSDBT) was employed by Jun et al.[10] to investigate the free 

vibration response of laminated composite shallow curved beams. The authors used also the dynamic stiffness method 

to find the modes shapes and natural frequencies of these beams. 

In the framework of the NURBS based isogeometric analysis, Luu and Lee[11] studied the buckling and post 

buckling of elliptical curved beams. Ye et al. [12]used a 2D kinematics relations for the vibration characteristics of 

thick laminated and sandwich composite curved beams with varying curvatures and general stresses. The flexural 

behaviour of multilayered curved beams having constant curvature was investigated by Thurnherr et al. [13]employing 

higher order beam formulation. 

Avhad and Sayyad [14] presented a quasi-3D higher order shear deformation theory (HSDT) to examine the static 

bending of FG sandwich curved beams under uniform load. Belarbi et al. [15] presented a FE formulation based on a 

HSDT with three-unknown functions for the buckling response of FG curved sandwich beams. Using the same 

methodology, and in another work, Belarbi et al. [16]studied the static bending of FG curved sandwich beams. Eroglu 

[17] examined the large in-plane deflection of curved planar FG beams. Lezgy-Nazargah [18] investigated the bending 

of curved thin-walled beams by proposing a FE model with thirteen DOFs. Using the nonlocal elasticity theory, 

buckling, free vibration and bending behaviour of curved nano beams have been examined by authors of Refs [19-21]. 

In Ref [22], authors curried out elasticity solution based on Airy stress function method for multilayered orthotropic 

FG curved beams subjected to a uniform load. Sahoo et al. [23] presented a FE solution based on 2D- HSDT- 

kinematics field for the thermal post-buckling FG sandwich curved structure subjected to variable thermal loads. 

All the above-described models have been employed to investigate the mechanics of curved FG structures with 

radially/thickness graded characteristics. However, for some structures working under extremely severe conditions 

such as aerospace craft and shuttles, the distribution of stress and temperature in the FG structures are not in one 

direction but in two or three. As a result, these structures are not suitable.  

Consequently, scientists developed new FG structures with characteristics changing in two or three directions. The 

bi-direction functionally graded materials (BDFG), with characteristics changing in two directions, have better 

properties than those composed of a directional FGM due to the mechanical behavior which can be adapted both in 

the axial and thickness directions. Lately, BDFG structures have received a lot of attention [24-26]. 

Pydah and Sabale [27] employed the CBT for the static bending of BDFG circular beams. In another study, Pydah 

and Batra [28] extended the previous work by using a logarithmic function of the radial coordinate in the postulated 

expression of the circumferential displacement. Using the same methodology, Fariborz and Batra [29] studied the free 

vibration of BDFG circular beams of different opening angles and having several boundary conditions. However, one 

can be noted that studies on BDFG curved beams are very rare. 

To the best author’s experience, study on the buckling, bending and free vibration of BDFG curved sandwich 

beams based on a quasi-3D formulation have not been yet reported. This study presents, for the first time, an 

investigation on the behavior of BDFG curved simply supported sandwich beams. 

The aim of this work is to introduce a quasi-3D formulation for examining the buckling, bending and free vibration 

response of BDFG curved sandwich beams. The kinematics employed involves undetermined integral terms and gives 

only four unknowns functions. The governing equations are obtained utilizing Hamilton’s principle and then are 

solved by Navier solution for the simply supported cases. An in-depth study of the impact of various parameters on 

the bending, buckling and free vibration of BDFG sandwich curved beams is presented. 
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2. Problem description 

2.1. BDFG sandwich curved beams configuration and properties 

In the presents work, a BDFG curved sandwich beam simply supported is analyzed as indicated in Fig.1 

 

The BDFG curved sandwich beam is composed from three layers, the top and bottom layers have characteristics 

that vary in both directions while the core layer has isotropic characteristics. 

 

 
Fig 1: BDFG curved sandwich beam 

The effective material properties for n-th layer, like the Young's modulus and the mass density  are 

expressed as [30]. 

1.  

2. where  is the effective material property of FG of layer n. 
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Where  is the volume fraction of n-th layer and  is a parameter that denotes the power index and takes 

values greater than or equal to zero. 

2.2. Kinematics and constitutive equations 
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The kinematic relations can be obtained as follows: 

  ,  ,  

where 

,  ,  

, 

 

,

 

With the help of the Navier-type approach, the integrals used in Eq.(3a) can be stated as  

is a coefficient depending on the Navier solution, and is expressed as: 

,  

where  defined in expression (19). 

The constitutive relations are: 
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The Hamilton's principle is stated as follows: 

 

The variation of strain energy is  

 
Stress resultants N, M, Q, and S are defined by 

 

, ,  

Where  hn and hn-1 are the top and bottom z-coordinates of the nth layer       

The variation of work done by in-plane and transverse loads is given by: 

 

The variation of kinetic energy of the plate can be expressed as 
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Replacing Eqs. (10), (11) and (12) into Eq. (9), the following can be derived: 

 

The stress resultants are obtained as: 
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Replacing Eq. (15) into Eq. (14), the equations of motion can be expressed in terms of displacements ( , , ) 

as: 
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3. Solution for BDFG curved sandwich beams simply rested 

The following representation is considered the solution for the case of our problem: 

 

For simply supported case: 

 

where  is the frequency of the beam,  the imaginary unit. 
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And 

 

The transverse load q is also expanded in the double-Fourier sine series as 
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For the case of a sinusoidally distributed load, it is 

 and  

where q0 intensity of the load at the beam center. For the case of a uniformly distributed load (UDL), it is: 

 

4. Numerical results and discussion 

In this part of paper, various examples will be presented and discussed relating to bending, free vibration and 

buckling of BDFG curved sandwich beams. Therefore, this section will be divided into three parts. 

In the following calculations, a BDFG curved sandwich beam with the following characteristics is used: 

Ceramic (Alumina,
 

)  

Metal (Aluminium, )
 

 

The following forms are employed in the different representation of results: 

 

 

 

4.1. Bending analysis 

This part of the paper is reserved for the results of the present formulation for the static bending of simply supported 

BDFG curved sandwich beams.  First for all, results computing with the present formulation are compared with those 

from different theories presented in scientific publications dealing with the same problem.  In this regard, a verification 

is carried out between the results of the present quasi-3D formulation with three unknows functions and those of 

Sayyad and Ghugal [9] using quasi-3D sinusoidal shear deformation theory, Avhad and Sayyad[14] based on fifth-

order shear and normal deformation theory (FOSNDT) and Draiche et al.[31] employing a quasi-3D shear deformation 

theory with four unknows functions. 

We list in tables 1-3, a comparison between non-dimensional axial displacement , non-dimensional deflection 

and non-dimensional axial stress of FG sandwich curved beams simply supported under uniform loading 

respectively. One can noted that there is a good concordance between all results. 

In table 4, results of the current formulation in term of , and for different configuration of simply supported 

BDFG curved sandwich beams are reported. The beams are expected to be submitted to a sinusoidally distributed 

load. In addition, the results are presented for different grading indexes and different values of radius of curvature 

(R/h). 

After examining the obtained results, the following conclusions can be drawn: 

• Increasing the values of the R/h ratio results in a reduction of the values of the axial displacement, regardless of 

the type of sandwich, the material composition of the beam (variation of nx and nz) and the slenderness ratio 

(L/h) used, 

1m = 0mq q=

04
1,3,5.....m

q
q m

m
= = 

2 3Al O 380cE GPa=

Al 70mE GPa=

3

4

100
0,

0 2

mE h h
u u

q L

 
= − 

 

3

4

100
,0

0 2

mE h L
w w

q L

 
=  

  0

,
2 2

xx xx

h L h

q L
 

 
=  

 

2

m

m

L

h E


 =

2

0 3

12
cr

m

L
N N

E h
=

u

xx

u w xx

(24) 

(25) 



Journal of Computational Applied Mechanics 2025, 56(3): 641-662 651 

• The deflection values are not affected by the variation of the radius of curvature values. The axial stresses are 

only slightly affected by this variation, where a very slight increase can be noticed, 

• For the same values of L/h and R/h ratios as well as the material composition of the beam, the lowest values of 

displacements and stresses are obtained for the sandwich type (1-2-1). This result can be justified by the fact that 

the thickness of the core layer is two (02) times thicker than the other layers. Knowing that this layer is isotropic 

composed by the ceramic, therefore it is more rigid which favors the reduction of the parameter’s response of the 

beam, 

• A comparison between displacement ( , ) and stress ( )values reveals that the isotropic beam (nx=nz=0) 

shows lower results compared to the FG beams. 

  

The variation of the nondimensional axial displacement , the nondimensional deflexion  and the nondimensional 

axial stress across the thickness of BDFG curved sandwich beams submitted to a sinusoidally distributed load is 

represented respectively in Fig.2 a-c. Three kind of beams are studied, isotropic sandwich beam (nx=nz=0), 

transversally functionally graded sandwich beam (nz=1, nx=0) and BDFG sandwich beam (nz=1, nx=1). 

 

 

Table 1: Verification of for a transverselyFG sandwich curved beams under uniform loading (nx=0) 

R/h nz Theory 
L/h=5 L/h=20 

2-1-2 1-1-1 1-2-1 2-1-2 1-1-1 1-2-1 

5 

0 

Ref [9] – 1.8244 – – – – 

Ref[14] 1.9111 1.9111 1.9111 3.5597 3.5593 3.5597 

Ref[31] 1.8299 1.8299 1.8299 3.5644 3.5644 3.5645 

Present 1.9098 1.9098 1.9098 3.5657 3.5657 3.5657 

1 

Ref[[9] – 3.6707 – – – – 

Ref[14] 4.1660 3.7665 3.2614 8.0805 7.9353 6.2672 

Ref[31] 4.0731 3.6801 3.1704 8.1032 7.3111 6.2776 

Present 4.1456 3.7532 3.2481 8.0919 7.3026 6.2737 

5 

Ref[[9] – 6.6188 – – – – 

Ref[14] 7.9700 6.7387 5.1209 15.6414 13.2728 10.0641 

Ref[31] 7.8107 6.6392 5.0226 15.7019 13.3390 10.0486 

Present 7.7943 6.6266 5.0509 15.6273 13.2759 10.0155 

10 

0 

Ref[9] – 1.3995 – – – – 

Ref[14] 1.4856 1.4856 1.4856 1.9888 1.9888 1.9888 

Ref[31] 1.4033 1.4033 1.4033 1.9901 1.9901 1.9901 

Present 1.4836 1.4836 1.4836 1.9913 1.9913 1.9913 

1 

Ref[9] – 2.8300 – – – – 

Ref[14] 3.2378 2.9276 2.5352 4.5168 4.0733 3.5025 

Ref[31] 3.1402 2.8365 2.4419 4.5247 4.0823 3.5053 

Present 3.2184 2.9139 2.5219 4.5190 4.0782 3.5036 

5 

Ref[9] – 5.1148 – – – – 

Ref[14] 6.1938 5.2376 3.9257 8.7490 7.4235 5.6309 

Ref[31] 6.0340 5.1290 3.8777 8.7679 7.4489 5.6111 

Present 6.0500 5.1437 3.9209 8.7271 7.4139 5.5932 

20 

0 

Ref[9] – 1.1682 – – – – 

Ref[14] 1.2539 1.2539 1.2539 1.1333 1.1333 1.1333 

Ref [31] 1.1710 1.1710 1.1710 1.1334 1.1334 1.1334 

Present 1.2516 1.2516 1.2516 1.1346 1.1346 1.1346 

1 

Ref[9] – 2.3726 – – – – 

Ref[14] 2.7320 2.4706 2.1397 2.5746 2.3217 1.9962 

Ref [31] 2.6325 2.3774 2.0456 2.5774 2.3253 1.9966 

Present 2.7139 2.4571 2.1267 2.5747 2.3236 1.9962 

5 

Ref[9] – 4.2963 – – – – 

Ref[14] 5.2255 4.4193 3.3597 4.9886 4.2327 3.2112 

Ref[31] 5.0671 4.3071 3.2546 4.9948 4.2434 3.1964 

Present 5.1008 4.3367 3.3060 4.9722 4.2240 3.1867 
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Table 2: Verification of for a transverselyFG sandwich curved beams under uniform loading (nx=0) 

R/h nz Theory 
L/h=5 L/h=20 

2-1-2 1-1-1 1-2-1 2-1-2 1-1-1 1-2-1 

5 

0 

Ref[[9] – 3.1294 – – – – 

Ref[14] 3.1775 3.1775 3.1775 2.8551 2.8551 2.8551 

Ref[31] 3.1394 3.1394 3.1394 2.8944 2.8944 2.8945 

Present 3.1814 3.1814 3.1814 2.8970 2.8970 2.8970 

1 

Ref[9] – 6.1913 – – – – 

Ref[14] 6.9461 6.2763 5.4307 6.5667 5.6738 5.0931 

Ref[31] 6.8665 6.2092 5.3605 6.5791 5.9359 5.0970 

Present 6.8889 6.2377 5.4003 5.6312 5.9332 5.0972 

5 

Ref[9] – 11.0770 – – – – 

Ref[14] 13.3090 11.2480 8.5579 12.7110 8.5781 8.5781 

Ref[31] 13.0790 11.1160 8.4264 12.7480 10.8290 8.1583 

Present 12.9294 10.9910 8.3819 12.6973 10.7866 8.1375 

10 

0 

Ref[9] – 3.1295 – – – – 

Ref[14] 3.1775 3.1775 3.1775 2.8570 2.8570 2.8570 

Ref[31] 3.1396 3.1396 3.1396 2.8946 2.8946 2.8946 

Present 3.1816 3.1816 3.1816 2.8971 2.8971 2.8971 

1 

Ref[9] – 6.1916 – – – – 

Ref[14] 6.9461 6.2763 5.4307 6.5667 5.6612 5.0931 

Ref[32] 6.8668 6.2094 5.3607 6.5795 5.9362 5.0973 

Present 6.8891 6.2378 5.4004 6.5748 5.9335 5.0974 

5 

Ref[9] – 11.0780 – – – – 

Ref[14] 13.3090 11.2480 8.5579 12.7110 8.5601 8.5601 

Ref[31] 13.0800 11.1160 8.4266 12.7480 10.8300 8.1586 

Present 12.9297 10.9912 8.3821 12.6979 10.7872 8.1378 

20 

0 

Ref[9] – 3.1295 – – – – 

Ref[14] 3.1775 3.1775 3.1775 2.8928 2.8928 2.8928 

Ref[31] 3.1396 3.1396 3.1396 2.8946 2.8946 2.8946 

Present 3.1816 3.1816 3.1816 2.8971 2.8971 2.8971 

1 

Ref[9] – 6.1916 – – – – 

Ref[14] 6.9461 6.2763 5.4307 6.5667 5.6520 5.0931 

Ref[31] 6.8668 6.2094 5.3607 6.5796 5.9363 5.0974 

Present 6.8891 6.2379 5.4004 6.5749 5.9335 5.0975 

5 

Ref[9] – 11.0780 – – – – 

Ref[14] 13.3090 11.2480 8.5579 12.7110 8.5457 8.1799 

Ref [31] 13.0800 11.1170 8.4267 12.7480 10.8300 8.1588 

Present 12.9298 10.9912 8.3821 12.6981 10.7873 8.1379 

 

Fig.2-a shows that, for all beams, the variation of the axial displacement is linear through the thickness and the 

highest values are obtained for the BDFG sandwich beam. The same observation is made for figure 2-b. However, the 

variation of the deflection is not linear but presents a certain curvature. This is due to the quasi-3D nature of the present 

formulation which naturally takes the effect of thickness stretching. From the Fig.2-c, it can be seen that the variation 

of the axial stress is linear for the case of isotropic sandwich beam. But for the other beams, the variation is parabolic 

due to the variation of material composition of the skins. In addition, the maximum axial stress is observed for the 

sandwich curved beam with transversally functionally graded skins (nz=1, nx=0). 

In Fig.3-a-b the effect of radius of curvature (R/h) and slenderness ratio (L/h) on the nondimensional axial 

displacement and nondimensional deflection is represented respectively. After examining the obtained results, it 

should be noted that the radius curvature affects greatly the axial displacement while the deflection is insensitive to 

this parameter. Besides, the slenderness ratio affects slightly the deflection where a slight decrease is observed with 

the increase of this ratio. As for the axial displacement, an increase is noticed with the increase of the (L/h) ratio. This 

increase becomes more notable with the decrease of radius of curvature (R/h). 

4.2. Buckling analysis 

At this stage of paper, numerical results are presented for the buckling of a BDFG sandwich curved beam simply 

supported. First, to confirm the precision of the current formulation, a numerical verification is performed as is 

reported in table 5. 

In this table, critical buckling loads computed with the quasi-3D solution for FG straight sandwich beams 

(R/h=infinity) are compared with those of Nguyen et al.[32] using a 2D HSDT analytical formulation and Vo et al.[33] 

employing FE model based on a refined HSDT. The verification is made for four (04) different configurations of 

w
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sandwich beams. Here again, on can be noted that the present formulation provides excellent agreement with the cited 

solutions. 

Table 3: Verification of for atransverselyFG sandwich curved beams under uniform loading (nx=0) 

R/h nz Theory 
L/h=5 L/h=20 

2-1-2 1-1-1 1-2-1 2-1-2 1-1-1 1-2-1 

5 

0 

Ref[9] – 3.8221 – – – – 

Ref[14] 3.7557 3.7557 3.7556 14.8450 14.8450 14.8450 

Ref[31] 3.8318 3.8318 3.8318 15.1520 15.1520 15.1520 

Present 3.6083 3.6083 3.6083 13.3780 13.3780 13.3780 

1 

Ref[9] – 1.4449 – – – – 

Ref[14] 1.5801 1.5068 1.2301 6.2374 6.1237 4.8387 

Ref[31] 1.6029 1.4466 1.2428 6.3691 5.7451 4.9305 

Present 1.5373 1.3859 1.1876 5.6312 5.0777 4.3550 

5 

Ref[9] – 2.6274 – – – – 

Ref[14] 3.0234 2.5838 1.8933 12.0630 10.2648 7.4370 

Ref[31] 3.1004 2.6348 1.9867 12.3640 10.5024 7.9059 

Present 2.9989 2.5495 1.9170 11.9758 9.3223 7.0036 

10 

0 

Ref[9] – 3.8402 – – – – 

Ref[14] 3.7557 3.7557 3.7556 14.8450 14.8450 15.1670 

Ref[31] 3.8134 3.8134 3.8134 15.0700 15.0700 15.0700 

Present 3.6284 3.6284 3.6284 13.4593 13.4593 13.4593 

1 

Ref[9] – 1.4526 – – – – 

Ref[14] 1.5801 1.5068 1.2301 6.2374 6.1237 4.9527 

Ref[31] 1.5938 1.4385 1.2360 6.3287 5.7089 4.9001 

Present 1.5443 1.3924 1.1934 5.6698 5.1125 4.3846 

5 

Ref[9] – 2.6424 – – – – 

Ref[14] 3.0234 2.5838 1.8933 12.0630 10.2640 7.6693 

Ref[31] 3.0817 2.6189 1.9750 12.2800 10.4310 7.8532 

Present 3.0099 2.5588 1.9247 11.0518 9.3872 7.0526 

20 

0 

Ref[9] – 3.8492 – – – – 

Ref[14] 3.7557 3.7557 3.7556 14.8450 14.8450 15.1670 

Ref[31] 3.8042 3.8042 3.8042 15.0290 15.0290 15.0290 

Present 3.6384 3.6384 3.6384 13.5002 13.5002 13.5002 

1 

Ref[9] – 1.4564 – – – – 

Ref[14] 1.5801 1.5068 1.2301 6.2374 6.1237 4.9527 

Ref[31] 1.5893 1.4344 1.2326 6.3085 5.6908 4.8848 

Present 1.5478 1.3956 1.1962 5.6892 5.1299 4.3994 

5 

Ref[9] – 2.6499 – – – – 

Ref[14] 3.0234 2.5838 1.8933 12.0630 10.2640 7.6693 

Ref[31] 3.0724 2.6109 1.9691 12.2390 10.3960 7.8268 

Present 3.0154 2.5635 1.9285 11.0900 9.4198 7.0772 

 

Figure 4 illustrates the relationship between nondimensional critical buckling load and the slenderness ratio (L/h) 

for three values of radius of curvature (R/h). The nondimensional critical buckling load increases as (L/h) ratio 

increases. Nonetheless, this increase is not as large as shown in the figure. For L/h=5 we have =15.68 and for 

L/h=20, =16.6. However, as it can be seen, the radius of curvature (R/h) has no effect on .  

Figures 5 and 6 display the nondimensional critical buckling load as a function of the grading indexes nz and nx 

respectively. These results are obtained for a curved BDFG sandwich beam (1-1-1) and for three values of (L/h) ratio. 

These figures show that the same behavior is observed for the variation of the two grading indexes. This means that 

the increase in these indexes reduce substantially the nondimensional critical buckling load. This can be explained by 

the fact that increasing the nx and nz indexes leads to an increase in the amount of metal in the beam, which 

consequently becomes more flexible, thus reducing the critical buckling loads. 

4.3. Free vibration analysis 

 

The results on the current model for the case of the free vibration of the BDFG curved sandwich beams are 

presented here. In order to assess the performance of the present solution, it is important to validate in the free vibration 

analysis. For that, a comparison of the fundamental natural frequencies is performed in tables 6 and 7. It can be seen 

that the current results are in good agreement with the solutions of Refs [32, 33], so the accuracy of the current model 

is confirmed. 

xx

crN

crN crN
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Figure 07 displays the variation of the nondimensional fundamental natural frequency with L/h ratio for three 

values of radius of curvature (R/h). Increasing the L/h ratio leads to a reduction in fundamental natural frequency. 

This reduction is much more pronounced for beams with low R/h ratio. When the latter ratio increases, i.e. for straight 

beams, the effect of the L/h ratio on the frequencies is minimal. 

Figures 8 and 9 show, respectively, the variation of the nondimensional fundamental natural frequency according 

to nz and nx indexes. For both figures, the data indicate that the frequency diminish with increasing the indexes. Also, 

it is observed that the increase of L/h ratio leads to reduction of the frequency. This result is logical since the increase 

of the mentioned ratio leads to thin beams and therefore more flexible with low frequencies and high vibration periods. 

Table 4: response of a BDFG sandwich curved beam simply supported under sinusoidally distributed load 

R/h nz,nx 
 L/h=5 L/h=20 

2-1-2 1-1-1 1-2-1 2-1-2 1-1-1 1-2-1 

5 

0,0 

 1.4761 1.4761 1.4761 2.7937 2.7937 2.7937 

 2.5150 2.5150 2.5150 2.2845 2.2845 2.2845 

 2.9740 2.9740 2.9740 10.8566 10.8566 10.8566 

1,0 

 3.2138 2.9090 2.5163 6.3405 5.7219 4.9157 

 5.4399 4.9260 4.2653 5.1840 4.6783 4.0192 

 1.2586 1.1352 0.9737 4.5722 4.1227 3.5357 

1,1 

 4.5747 4.2584 3.8243 8.9421 8.3088 7.4247 

 7.7549 7.2206 6.4890 7.3113 6.7935 6.0708 

 1.7695 1.6438 1.4674 6.4337 5.9754 5.3337 

2,1 

 5.6921 5.1901 4.4844 11.2383 10.2344 8.7892 

 9.6351 8.7863 7.5979 9.1885 8.3677 7.1862 

 2.2292 2.0304 1.7418 8.1065 7.3795 6.3270 

10 

0,0 

 1.1421 1.1421 1.1421 1.5591 1.5591 1.5591 

 2.5152 2.5152 2.5152 2.2846 2.2846 2.2846 

 2.9903 2.9903 2.9903 10.9226 10.9226 10.9226 

1,0 

 2.4871 2.2512 1.9472 3.5384 3.1933 2.7433 

 5.4401 4.9261 4.2655 5.1842 4.6785 4.0194 

 1.2642 1.1403 0.9783 4.6033 4.1507 3.5595 

1,1 

 3.5401 3.2953 2.9593 4.9903 4.6369 4.1435 

 7.7551 7.2208 6.4892 7.3116 6.7939 6.0710 

 1.7779 1.6517 1.4747 6.4766 6.0152 5.3691 

2,1 

 4.4051 4.0165 3.4703 6.2718 5.7116 4.9050 

 9.6353 8.7865 7.5981 9.1890 8.3681 7.1865 

 2.2391 2.0395 1.7499 8.1613 7.4295 6.3697 

20 

0,0 

 0.9604 0.9604 0.9604 0.8873 0.8873 0.8873 

 2.5152 2.5152 2.5152 2.2846 2.2846 2.2846 

 2.9984 2.9984 2.9984 10.9557 10.9557 10.9557 

1,0 

 2.0917 1.8932 1.6376 2.0137 1.8172 1.5612 

 5.4401 4.9262 4.2655 5.1843 4.6786 4.0194 

 1.2670 1.1429 0.9806 4.6189 4.1648 3.5715 

1,1 

 2.9771 2.7712 2.4886 2.8399 2.6388 2.3580 

 7.7552 7.2209 6.4893 7.3117 6.7939 6.0711 

 1.7821 1.6556 1.4783 6.4982 6.0352 5.3868 

2,1 

 3.7047 3.3779 2.9184 3.5692 3.2504 2.7914 

 9.6354 8.7866 7.5982 9.1891 8.3682 7.1866 

 2.2441 2.0440 1.7540 8.1888 7.4546 6.3912 
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Figure 02: Response of curved sandwich under sinusoidally distributed load (a) variation of across the thickness (b) variation of 

across the thickness (c) variation of across the thickness ((1-1-1), R/h=5,L/h=10) 
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Figure 03: Effect of (L/h) on (a) axial displacement (b) deflection ((2-1-2) ,nx=nz=1) 
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Table 5: Verification of (nx=0,L/h=5,R/h=infinity) 

nz Theory 1-0-1 2-1-2 1-1-1 1-2-1 

0 

Present 48.3400 48.3400 48.3400 48.3400 

Nguyen et al. [32] 48.5964 48.5964 48.5964 48.5964 

Vo et al. [33] 48.5959 48.5959 48.5959 48.5959 

0.5 

Present 27.8462 30.0134 31.8418 34.6845 

Nguyen et al. [32] 27.8380 30.0146 31.8650 34.7546 

Vo et al. [33] 27.8574 30.0301 31.8784 34.7653 

1 

Present 19.7718 22.3499 24.6815 28.5044 

Nguyen et al. [32] 19.6541 22.2121 24.5602 28.4440 

Vo et al. [33] 19.6525 22.2108 24.5596 28.4447 

2 

Present 13.7464 16.1519 18.6023 22.9774 

Nguyen et al. [32] 13.5820 15.9167 18.3596 22.7859 

Vo et al. [33] 13.5801 15.9152 18.3587 22.7863 

5 

Present 10.2455 11.9143 14.0154 18.3745 

Nguyen et al. [32] 10.1460 11.6697 13.7226 18.0915 

Vo et al. [33] 10.1460 11.6676 13.7212 18.0914 

Table 6: Verification of (nx=0, L/h=5, R/h=infinity) 

nz Theory  1-0-1 2-1-2 1-1-1 1-2-1 

0 

Present  5.2696 5.2696 5.2696 5.2696 

Nguyen et al. [32] 5.1528 5.1528 5.1528 5.1528 

Vo et al. [33] 5.1528 5.1528 5.1528 5.1528 

0.5 

Present  4.2052 4.3202 4.4194 4.5739 

Nguyen et al. [32] 4.1254 4.2340 4.3294 4.4791 

Vo et al. [33] 4.1268 4.2351 4.3303 4.4798 

1 

Present  3.6402 3.8069 3.9581 4.1989 

Nguyen et al. [32] 3.5736 3.7298 3.8756 4.1105 

Vo et al. [33] 3.5735 3.7298 3.8755 4.1105 

2 

Present  3.1229 3.3075 3.4975 3.8187 

Nguyen et al. [32] 3.0682 3.2366 3.4190 3.7334 

Vo et al. [33] 3.0680 3.2365 3.4190 3.7334 

5 

Present  2.7799 2.9063 3.0919 3.4599 

Nguyen et al. [32] 2.7450 2.8441 3.0182 3.3771 

Vo et al. [33] 2.7446 2.8439 3.0181 3.3771 

Table 7: Verification of  (nx=0, L/h=20, R/h=infinity) 

nz Theory  1-0-1 2-1-2 1-1-1 1-2-1 

0 

Present  5.5749 5.5749 5.5749 5.5749 

Nguyen et al. [32] 5.4603 5.4603 5.4603 5.4603 

Vo et al. [33] 5.4603 5.4603 5.4603 5.4603 

0.5 

Present  4.3830 4.5042 4.6126 4.7849 

Nguyen et al. [32] 4.3132 4.4278 4.5315 4.6972 

Vo et al. [33] 4.3148 4.4290 4.5324 4.6979 

1 

Present  3.7636 3.9354 4.0983 4.3638 

Nguyen et al. [32] 3.7147 3.8768 4.0328 4.2889 

Vo et al. [33] 3.7147 3.8768 4.0328 4.2889 

2 

Present  3.2088 3.3913 3.5919 3.9411 

Nguyen et al. [32] 3.1764 3.3465 3.5389 3.8769 

Vo et al. [33] 3.1764 3.6465 3.5389 3.8769 

5 

Present  2.8608 2.9640 3.1537 3.5472 

Nguyen et al. [32] 2.8440 2.9311 3.1111 3.4921 

Vo et al. [33] 2.8439 2.9310 3.1111 3.4921 

crN




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Figure 04: Effect of (L/h) on  (2-1-2, nz=nx=1) 

 

Figure 05: Effect of grading index nz on  (1-1-1, nx=1, R/h=5) 
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Figure 06: Effect of grading index nx on  (1-1-1, nz=1, R/h=5) 

 

 
Figure 07: Effect of (L/h) on  ( (2-1-2, nz=nx=1)                 
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Figure 08: Effect of grading index nz on  (1-1-1, nx=1  R/h=5) 

 
Figure 09: Effect of grading index nx on  (1-1-1, nz=1, R/h=5) 

 

5. Conclusion 

This study aims to analyze bending, buckling and free vibration response of BDFG curved sandwich beams.  A 
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considering the stretching effect. According to the results of the present study, the following conclusion can be drawn 

as follows: 
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•  For the same values of L/h and R/h ratios as well as the material composition of the beam, the lowest values of 

displacements and stresses are obtained for the sandwich type (1-2-1).  

• The non-dimensional critical buckling load increases slightly with increasing (L/h) ratio. 

•  The increase in nz and nx indexes reduce substantially the nondimensional critical buckling load. 

• The nondimensional fundamental natural frequency diminishes with increasing the indexes. 

 

Further work can be performed using the present formulation, for example examination of curved beams/plates 

with variables section or using other kinds of materials and other models [34, 35]. 
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