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Abstract

Investigation of the step variable numerical integration methods 1s the main purpose of this paper. Also it
1s shown how the one-dimensional numerical integration method of solving an ordinary differential
equation can be employed to solve a three-dimensional differential equation numerically. In order to
integrate the orbit, the step variable methods of Runge-Kutta-Fehlberg and Adams are employed and their

accuracies are investigated.
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1 INTRODUCTION

There are many numerical integration methods,
which are used In orbit integration process.
Generally, the numerical integration methods are
classified into two groups: a. single step methods
b. multi step methods. Both of these methods can
be used as fixed step or variable step forms. In
fixed step forms, the step size of integration is
fixed and the integration process is carried out
using this step size. However, in variable step
methods, the step size of the integration depends
on the accuracy of integration, 1.e. it 1s selected in
a way that the magnitude of local error be less
than the accuracy of integration. If the local error
1s smaller than this accuracy then the initial step
size 1s accepted, else the step size 1s rejected and
iIs made smaller. This iteration in computing local
error and reducing the size of integration interval
1s continued till the size of local error becomes
below the acceptable Ilimit. There are two
methods for step variable numerical integration.
These two methods could be employed as single
step or mult1 step (predictor-corrector) methods;
One of the most famous single step variable
methods 1s the Runge-Kutta-Fehlberg method,
(Babolian, 1994) and one of the well-known
predictor-corrector step variable methods 1s the
Adams-Bashforth and the Adams-Moulton step
variable (Babolian, 1994) algorithm. Since the

equation of motion of a satellite is a second order
three-dimensional differentid® equation, it could
be solved numerically using these methods.
However these differential equations have to be
converted to a system of first order differential
equations. This system could also be solved
numerically. In the next sections the
atorementioned numerical methods will be
presented 1n detail.

2 RUNGE-KUTTA-FEHLBERG
INTEGRATION METHOD

The Runge-Kutta-Fehlberg (Babolian, 1994)
integration method is similar to the ordinary
Runge-Kutta approach and has been designed to
solve the first order differential equations of the
following form

y' =1(t,y),

|
y(to) =Yo- )

At first, the desired accuracy € and initial

step size h are selected, and then the following
algorithmic solution is used (Babolian, 1994)
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ki=ht(t,,y,),

1 1
k2=hf(t, +—h,y, +—kl),
(t, 2 Yo+ )
3 3 9
k3=hf(t, +=h,y, +—kl+—k2),
(t, " Yn > > )
12 1932
kd=hf(t., +—h,y, + kl+
(ty 13 4 2197
7200 o 7296 3),
2197 2197 (2)
4
KS=hf(t +h,y. +—>2KkI-8k2+
216
3680 K3 845 k),
513 4104
1 8
k6 =hf(t,+—h,y, ——kl+2k2-
(t, 5 B Yn =55
324 1341874 1y

2565 4104 40

The following relations should be employed
to obtain the functional values in the next step

25 1408

=v. +—kl+ k3 +
In41 = Fn T 2565
2070l
16 6656 2
?n+1=yn+—kl+ k3 +
135 12825

6L, 945 24

56430 50 33

In order to check the initial step size the
following criterion is defined as

VA
6:0.84[— ) , (4)

,rn+l|

where

ro= Yo+i = Yos

, d
n+l h ( )

if <0.1 then h is replaced by 0.1h, if 0>4
then h is replaced by 4h and if 1 <90 <4then h is

changed tooh . Also if |r, +1| < € then the step

size 1s accepted, consequently y. ., 1s adopted as
of the functional value in the next step, or else if

I..1|>¢€ the step size i1s rejected and the

algorithm should be iterated from equation (2).

According to the above algorithmic process,
it 1s clear that 1f the local error is smaller than the
desired accuracy, then the step size 1s accepted or
else rejected. This algorithm has been designed to
solve a first order differential equation. Therefore,
in order to apply the method to the higher order
differential equation, the differential equation
should be converted to the system of first order
differential equations. Then the system can be
solved numerically by the Runge-Kutta-Fehlberg
(RKF) method. According to Babolian (1994) the
RKF method 1s subject to from instability.

3 ADAMS PREDICTOR-CORRECTOR
STEP VARIABLE INTEGRATION
METHOD

The Adams predictor-corrector step variable
method 1s a multi step solution of differential
equation. In order to start the algorithm of
solution, some initial values, which are computed
by the Runge-Kutta algorithm are required. The
next functional value i1s predicted using the
Adams-Bashforth predictor and corrected using
the Adams-Moulton corrector. The step size must
be controlled too. It the difference between
predicted value and corrected value is 10 times
smaller than the desired accuracy then the step
size 15 accepted else it i1s rejected and changed by
means of q factor. The following algorithm
shows the simple Runge-Kutta algorithm in order

to obtain the required initial values.
First, the imtial step size h and the accuracy

€ are selected; second, some initial values are
computed by the Runge-Kutta method so that

kl=ht(t,,y,),

k2 =hf(t, +—1-—h.,,yrl +-1—k1),
2 2 (6)
k3=h1t(t, +%h,y]n +%k2),

k4 =hf(t, +h,y +k3),

and the functional values in next steps are
computed recursively by
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Y. 1=y, t %(kl +2k2 +2k3 + k4). (7)

The predicted value is obtained using Adams-
Bashforth and corrected by the Adams-Moulton
(Babolian, 1994) corrector as

h
P =y +—(551(t_, — 59 x
yn+1 yn 24( ( n yn)
f(tn—] s yn—l) + 37f(tn-—-2 ° yn—2) _ (8)

9f(tn-—3 ’ yn—3 )) 9

) h
Yosl = Yo + 54-(91“ (tps1> Yosr) +
19f(t ,y.)=5€(t._,y. )+ (9)
f(tn—2 s yn-——2 )) ’

the local error is computed as

6 =0.1yn41 = Ynails (10)

also the q factor 1s computed

- A
D)

if 0.1e <o <¢ then the step size is accepted and

the corrected value 1s a good approximation of

functional value, if g>4 then h is replaced by 4h,
otherwise it 1s changed to gh. If q<0.1 theretore h
changes to 0.1h else to gh again. If ¢ > € then
the step size i1s rejected and the algorithm must be
iterated from equation (4) using the new step size.
The above algorithm 1s designed for the solution
of a first order differential equation.

4 SOLUTION OF EQUATION OF
MOTION OF A SATELLITE

The equation of motion of a satellite 1s a second
order vector differential equation, therefore it has

to be converted to a system of first order

differential equation in order to employ the above
mentioned methods:

. GM
X=““‘|'%|TX+KX
= GM . . GM
r =— |F|3 r+K = y=—-i';|'§'-y+Ky —
Z “%$§2+Kz
r
Vi =
v, =y (12)
vV, =Z
GM
. V, =— |i-'|3 X+K,
GM
Vy _ﬁy-FKy
. GM
VZZ—"H:}’—Z+KZ
I

where, r 1s the position vector, GM is the product
of gravitational constant and Earth’s mass, k is the
ettects of all of the perturbing forces acting on a
satellite. This system of first order differential
equations could be solved by RKF or Adams step
variable methods.

5 ORBIT INTEGRATION BY RUNGE-
KUTTA-FEHLBERG METHOD

The mathematical description of this method was
considered. Now in this section this method is
employed in orbit integration. The solution of a
system of first order differential equation can be
obtained according to Babolian (1994). The
following algorithm 1is very similar to the
described algorithm of RKF but this algorithm
includes many coefficients to be computed.

First, the initial step size h and the desired
accuracy € are selected, and then the following

coefficients are computed
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kll1=hx_,
kl12=hy_,
kl13=hz_,
k14 =ht,(x,,¥,,Z,);
k15 =hfy(x,,y,,2,),
kl6 =hts(x, ,y,,Z,),
k21 =h(x, +(kl14)/4),
k22 =h(y, +(k15)/4), (13)
k23 =h(z_ 2 +(kl16)/4),
k24 = hf,(x, +(kl1)/4,
y, +(k12)/4,z_ +(k13)/4),
k25 =hfs(x, +(kl1)/4,
y, +(k12)/4,z_ +(k13)/4),
k26 = hf(x, +(k11)/4,
y, +(k12)/4,z_ +(kl13)/4),

k31=h(x_ +3(k14)/32+9(k24)/32),
k32 =h(y, +3(k15)/32+9(k25)/32),
k33=h(z, +3(k16)/32+9(k26)/32),
k34 =hf,(x, +3(k11)/32+9(k21)/32,

k51=h(x, +439(k14)/216-8(k24) +
3680(k34)/513—845(k44)/ 4104),
k52 =h(x, +439(k15)/216 —8(k25) +
3680(k35)/513 —845(k45)/ 4104),
k53 =h(x, +439(k16)/216—8(k26) +
3680(k36)/513 —845(k46)/4104),
k54 = hf,(x, +439(k11)/216—8(k21) +
3680(k31)/513—845(k41)/4104, ---),
k55 = hf(x, +439(k11)/216-8(k21)+
3680(k31)/513—-845(k41)/4104, ---),
k56 = hf, (x, +439(k11)/216 -8(k21) +
3680(k31)/513-845(k41)/4104, ---),

(16)

k61 =h(x, —8(k14)/27 +2(k24) — 3544(k34)/
2565 +1859(k44)/ 4104 —11(k54)/ 40),

k62 =h(y, —8(k15)/27 +2(k25) —3544(k35)/
2565 +1859(k45)/ 4104 —11(k55)/ 40),

k63 =h(z, —8(k16)/27 +2(k26) —3544(k36)/
2565 +1859(k46)/ 4104 —11(k56)/ 40),

y. +3(k12)/32+9(k22)/32,

z. +3(k13)/32+9(k23)/32),
k35 =hty(x, +3(k11)/32+9(k21)/32,

y. +3(k12)/32+9(k22)/32,

z. +3(k13)/32+9(k23)/32),
k36 =hf (x, +3(k11)/32+9(k21)/32,

y. +3(kl12)/32+9(k22)/32,

z +3(k13)/32+9(k23)/32),

k64 = hf, (x, —8(k11)/27 +2(k21) —3544(k31)/

(14) 2565 +1859(k41)/4104 —11(k51)/40, ---),
k65 = hf(x,, —8(k11)/27 +2(k21) — 3544(k31)/

2565 +1859(k41)/4104 —11(k51)/ 40, --),

k66 = hf(x,, —8(k11)/27 +2(k21) —3544(k31)/

2565 +1859(k41)/4104 —11(k51)/ 40, - -,

X, =X, +25(k11)/216 +1408(k31)/
2565 +2197(k41)/ 4104 — (k51)/5,

Yoe = Yq +25(k12)/216 +1408(k32)/
2565 +2197(k42)/4104 - (k52)/5,
Z,, =2, +25(k13)/216 +1408(k33)/
2565 +2197(k43)/ 4104 — (k53)/5,
(15) X, =X, +25(k14)/216 +1408(k34)/
2565 +2197(k44)/4104 - (k54) /5,
Yo = ¥q +25(k15)/216 +1408(k35)/
2565 +2197(k45)/ 4104 - (k55)/5,
Z, =2, +25(k16)/216 +1408(k36)/
2565 +2197(k46)/4104 - (k56)/5,

k41=h(x, +1932(k14)/2197 — 7200 x
(k24)/2197 +7296(k34)/2197),
k42 =h(y, +1932(k15)/2197 — 7200 x
(k25)/2197 +7296(k35)/2197),
k43 = h(z, +1932(k16)/2197 - 7200 x
(k26)/2197 +7296(k36)/2197),
k44 =hf,(x, +1932(k11)/2197 — 7200 x
(k21)/2197 +7296(k31)/2197, - -,
k45 = hfg(x, +1932(k11)/2197 - 7200 X
(k21)/2197 +7296(k31)/2197, --+),
k46 = hf, (x. +1932(k11)/2197 — 7200 x
(k21)/2197 +7296(k31)/2197, --+),

(17)
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X ., =x, +16(k11)/135+6656(k31)/
12825 +28561(k41)/56430 —9 x
(k51)/50+2(k61)/55,

V... =Y., +16(k12)/135+6656(k32)/
12825 +28561(k42) /56430 — 9
(k52)/50 +2(k62)/55,

7 ., =z +16(k13)/135+6656(k33)/
12825 +28561(k43) /56430 —9 x
(k53)/50 +2(k63)/55,

X ., =x_+16(k14)/135+6656(k34)/  (18)
12825 +28561(k44) /56430 —9 x
(k54)/50 +2(k64)/ 55,

V.. =¥, +16(k15)/135+6656(k35)/
12825 +28561(k45) /56430 —9 x
(k55)/50 +2(k65)/55,

7., =z +16(k16)/135+6656(k36)/
12825 +28561(k46) /56430 —9
(k56)/50 +2(k66)/55.

The state vector of position can be computed
recursively using the following relations

_ Xn4l T Xn+

I“x:n+1 o h ?
_ Yn+1 " Yn+
I - y
Y+l h
r Zn+l ~ Lny
Z o v
n+l h
- . (19)
r _ Xn+l T Ap4
X T °
n+l h
r ~ Yn+1 T Yn+
y - ’
yn+] h
Lyl T Lny
I'Z = —,
n+l h
where,
(20)

the following criterion is used to control the step
size of integration in each step

(21)

: J%

I.n+1

6:0.84[

if 0<0.1 then h changes to 0.1h, if 0 =4 then
h is replaced by 4h and if 1 <0 <4 then by oh.

It

y ,; 1s adopted as an approximation of the

r..;| < € then the step size 1s accepted and

functional value at the next step, or else if
r +1| > ¢ the step size is rejected then the

algorithm should be iterated from equations of
(11) until the desired accuracy is achieved.

6 ORBIT INTEGRATION BY ADAMS
STEP VARIABLE INTEGRATION
METHOD

The mathematical description of this method was
considered before, now the system of first order
ditferential equation should be solved using the
Adams method too. The orbit integration
algorithm of the Adams method will be presented
as follows. As we mentioned before the orbit must
be integrated by the Runge-Kutta method in order
to provide some initial values for starting the
Adams algorithm.

First, the initial step size h and accuracy
¢ are selected, and then the Runge-Kutta method

1s employed for computing the starter values,

kll=hx, ,

kl12=hy_,

ki3=hz_,

ki4 =hf,(x,,y¥,.Z,),

k15 =hts(xp,y,,2,),

k16 =htc(x,,¥p,2,),

k21=h(x, +(k14)/2),

k22 =h(y, +(k15)/2), (22)

k23 =h(z, +(kl16)/2),

k24 =hf,(x, +(k11)/2,y, +(k12)/2,
z. +(k13)/2),

k25 =hts(x, +(k11)/2,y, +(kl12)/2,
z, +(k13)/2),

k26 =hfs(x, +(kl11)/2,y,  +(kl2)/2,
z, +(k13)/2),
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k31=h(x, +(k24)/2),
k32 =h(y, +(k25)/2),
k33=h(z, +(k26)/2),
k34 =ht,(x, +(k21)/2,y, +(k22)/2,
z. +(k23)/2), (23)
k35 =hfs(x, +(k21)/2,y, +(k22)/2,
z, +(k23)/2),
k36 =hfg(x, +(k21)/2,y, +(k22)/2,
z. +(k23)/2),

k41 =h(x, +k34),
k42 =h(y_, +k39),
k43 =h(z  +k36),
k44 =htf,(x, +k3Ly, +k32,z_+
k33), (24)
k45 =hf,(x +k3l,y +k32,z +
k33),
k46 =ht (x +k3ly_ +k32,z +
k33).

The state vector of position can be obtained
recursively as

X 4 =X, +(kl1+2k21+2k31+
k41)/6,

y =Y, +(k12 +2k22 +2k32 +
k42)/6,

z =2 +(kI13+2k23+2Kk33+
k43)/6,

X . =X, +(kl14 +2k24 +2k34 +
kd44)/6,

y . =Y. +(k15+2k25+2k35+
k45)/6,

z ., =2z +(k16+2k26+2k36 +
k46)/6.

(25)

The predictor-corrector formulas are used for
prediction and correction

k14 — f4(Xn+3,yn+3aZn+3 )9
k15 = fs (xn+3=Yn+3ﬂzn+3 )’

k16 = f6 (Xn+3ayn+3azn+3 )3
k21 = in+2’

k22=1y,,2,
k23=z_,,,
K24 =14(Xp425Yn+2:Zn+2)s
k25 = fS (xn+2s~yI1+29Zn+2 ),
k26 =16 (X1425Yn+2:Zn+2)s

k31 — )'(n_*_],

k32=y,.15

k33=2n+19

k34 — f4 (xn+],yn+1azn+])a
K35 =15(X1115Yn+15Zn+1);
k36 = f6 (xn+15yn+lﬂzn+l)’
kdl=x_,

kd2=y_,

kd43=1%_,

k44 — f4 (xn aynazn )s

k45 = f5 (xnaynazn )3

k46 - f6 (Xn,yn,zn )5

The Adams-Bashforth predictors are:

P _
Xn+4—-X

s +h(55k11-59k21 +
37k31—-9k41)/24,

yP.. =y .. +h(55k12 —59k22 +
37k32 —9k42)/ 24,

zP., =z, +h(55k13 —59k23 +
37k33 —9k43)/24,

xP., =X .. +h(55k14 —59k24 +
37k34 —9k44)/ 24,

Y. = V.., +h(55k15-59k25 +
37k35 —9k45)/24,

2°., =z, +h(55k16 —59k26 +
37k36 —9k46)/24.

(26)

(27)

(28)
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Now these predicted values are corrected by
the Adams-Moulton method

Xn+a = Xp43 T HO(Xp ) +19k11 -
5k21-k31)/24,

Yata = Ynss ThO(¥5.1) +19k12 -
5k22 -k32)/24,

z: .. =2 ., +h((z’,,)+19kl13 -

n+4 n+l
5k23 -k33)/24,
(29)
Xfl+4 - Xn+3 T h(9f4 (XE+45 y§+4, ZE+4) T

19k14 — 5k24 —k34)/24,

Yﬁ+4 — yﬂ+3 T h(9f5(XE+4,yg+4,ZE+4) T
19k15—5k25-k35)/24,

Z1f1+4 = 21'1+3 + h(gfé(xg+49 YE+45 ZE+4) +
19k16 —5k26 —k36) / 24.

The difference between predicted value and
the corrected value is computed

— C _ P
Oy =0.0Xp 0 —X04p
_ C P
Gyn+l =0.1 Yn+t T Yn+1)
_ S
Oz =011z 11 —Z )
(30)
_ . c _ - p
O'xm] =0.1 Xn+l ~ Xn41)
- . C q p
Oy = = 0.1 Yn+l 7 Yn+1p
_ e C . . p
O, = 0.1z, —Z s
and
(31)
B 2 2 2 2 2 2
0= (Gxnﬂ +GYn+l +Gzn+1 +Gin+l +Gyn+l +Gin+l ?

if the difference is 10 times smaller than the
desired accuracy, then the step size 1s accepted.
After that the q factor is computed as

&
=5/ | — 32
q=3 (20), (32)

and if 0.1le <o <¢ then the step size is accepted

and the corrected value is a good approximation
to the functional value. If g>4 then h is replaced
by 4h, otherwise it is replaced by gh , 1f q<0.1
then h changes to 0.1h else by gqh. If ¢ > € then
the step size is rejected. Also the algorithm has to
be iterated from equation (20) using new step
size.

7 NUMERICAL RESULTS

According to Kepler’s laws the satellite’s
trajectory i1s an ellipse in a central field. This
trajectory is also called a theoretical orbit. In
order to investigate the global error of integration
the integrated orbit in a central gravitational field
1s compared to the theoretical orbit. The RKF
method is a step variable method and its
integration step size depends on the local error of
integration. The following figures show the step
size and local error for a low Earth orbiting
satellite in one revolution, the period of this
revolution is about the 5600 second,

250
200 | :
p—
¥y
~— 150} .
o,
O
wd
/)
L
N 100t ]
) |
50 H 4
0 ) | J 1 1
C 1000 2000 3000 4000 5000 6000
Time (s)
Figure 1. Step size with local error 0.1 m.
146 — T 1 -1
Y |
—~ 100
“Sumarr’
o,
>
—~ 8o} ]
O
L
L e}
40 :
L__A_
20 ]

l ] |
0 1000 2000 3000 4000 5000 2011
Time (s)

Figure 2. Step size with local error 0.01 m.
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BD T 1 e Y I T
75t 1
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o &0
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7 55 b 4
N
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35|[ -
30 e ———
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Figure 3. Step size with local error 0.001 m.
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Figure 4. Step size with local error 0.0001 m.
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P
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Figure 5. Step size with local error 0.00001 m.

The above figures show the dependence of
the step size of integration and period of
revolution of the satellite at an altitude of about
400 Km. Figure 1 shows that the 1nitial step size

selected for starting the process changes abruptly
from 30 second to 240 second with local error of
about 0.1 meter and the integration will be
continued using this step size. Figure 2 presents
the variations of step size with local error of 0.01
meter. According to this figure one can see that
the step size changes suddenly from 30 to about
130 second in one revolution of the satellite.
Figure 3 shows the relation between step size and
local error of 0.001 meter, it can be seen that the
step size changes to 75 second from 30 second.
Also by referring to the figure one can see that the
step size changes to 42 second with local error of
0.0001 meter. Finally, figure 5 shows the step size
variations due to the local error of about 0.00001
meter. It 1s understood that the step size varies
between 23.5 -24 second. It 1s clear that there are
no intensive variations in this situation.

The difference between theoretical orbit and
integrated orbit using these step sizes 1s as
follows:

2000 r T -
o -2000 ~ -1
=
N’
L '4&1] ™ —
D
5
o 6000} 1
% -------- along track
-—- radial track ]
8000 —— Cross track S
-10000 _
-12000 ‘ ; ’ 4 -
0 1000 2000 3000 4000 5000 b000
Time (s)
100 : :
0p== .
'1m B __'_.,—d-’-d_-
E  omf 1
- -300
o
é’ 400+ . ;
Q S00F [ — along track
— tadial track
600 + v CIDSS track
700} e X
-800 S——— | i I i |- -.H“"“*«_
0 1000 2000 3000 4000 5000 6000

Time (s)

Figure 6. Difference between theoretical orbit and
integrated orbit with local error of 0.1 and
0.01 m.
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Figure 7. Difference between theoretical orbit and
integrated orbit with local error of 0.001

and 0.0001 m.
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Figure 8. Difference between theoretical orbit and
integrated orbit with local error of

0.00001 m.

According to figure 6 to figure 8, one can
understand that the difference between the
theoretical orbit and integrated orbit depends
exactly on the local error. This figures show the
same behavior of this difference but with a

difference in magnitude of the errors. It 1s evident
that the error of numerical integration method
(local error) has to be smaller than the desired
accuracy of the orbit. Figure 1 shows that the
local error of about 0.1 meters provides a huge
difference between theoretical orbit and integrated
orbit, which means that the local error of 0.1
meter 1s not acceptable for our purposes at all.
According to the figures one can conclude that by
reducing the local errors the difference between
theoretical and integrated orbit is also reduced.
Also one can say that the local error of 0.00001
meter 1s permissible to compute the satellite orbit
and obtain the suitable step size for the integration
process.

The following figures show the variations of
the step size with different local errors in the
Adams step variable method.
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Figure 10. Step size with local error 0.001 m.
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Figure 11. Step size with local error 0.001 m. Figure 12. Step size with local error 0.0001 m.
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Figure 13. Difference between theoretical orbit and integrated orbit by Adams method with accuracy of 0.1 m
and 0.01 m.

2 1  p— - amp—— T T -
along track

- SRR radial track
; ] | bty —— cross track

vvvvvvv along track , E
— radial track !

—— cross track | g E T HHHIH
1} ' R ; 1+ -
I ’Ff BB
: e 05F <
N 1B

. .
id101)-1 R
. .

Difference (m)
Difterence (m)

:
e | | -
ENRER

181

g, | L A I | 1 !
_2 A | 1 1 L i
D 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 5000 7000

Time (s) Time (s)

Figure 14. Difference between theoretical orbit and integrated orbit by Adams method with accuracy of 0.001
m and 0.00001 m.






Journal of the Earth and Space Physics, Vol. 31, No. 1, 2005

Figure 9 shows the step size variations due to
the local error of 0.01 meter. It can be seen that
there are two sharp variations during one
revolution of the satellite. The average of the step
size variations is about 17 second reduced from
30 second. Figure 10 presents this step size
average reduced to less than 5 second due to the
0.001 meter local error. According to the figures
it is concluded that the step sizes of integration
have the same behavior but differ with magnitude.
The figures show the stable step sizes except two
points during one revolution.

The difference between theoretical orbit and
integrated orbit using the Adams step variable
method is also investigated and the results are as
follows:
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Figure 15. Difference between theoretical orbit and
integrated orbit by Adams method with
accuracy of 0.00001 m.

The above figures show the differences between
theoretical orbit and integrated orbit using the
Adams step variable method. Figure 13 shows
that the different changes between -0.5-1 m. in 3
directions of along, cross and radial track
components due to the local error of 0.1 m. Figure
14 and figure 15 show that the difference has
random behavior in the along track component
and the variations in other components have been
reduced, 1. e., the geometry of the orbit is
approximately preserved. Also according to the
figures one can conclude that there is no
improvement in the difference between theoretical

and integrated orbit by reducing the local error of

integration during one revolution.

8 CONCLUSIONS AND
RECOMMENDATIONS

According to the numerical results presented in

11

the previous sections, it is clear that the Runge-
Kutta-Fehlberg method 1s a step size dependent
method. Also this method shows that it provides
the worst results in large step sizes but gives the
most satisfactory results in small step sizes and
local error. In this method the step size 1s changed
during of integration process and i1t does not have
a fixed value. The Runge-Kutta-Fehlberg
algorithm has large wvariations in large local
errors, but it can be improved using small local
error and there is not large variation in step sizes.
Clearly, the difference between the theoretical and
integrated orbit have to be reduced too. The
Runge-Kutta-Fehlberg method changes the
geometry of the orbit of the satellite but the
Adams method 1s more stable than the RKF
method and regardless of the accuracy, the
geometry of satellite’s orbit is preserved, i.e., it
does not change the orbit geometry. The
numerical values of the results of the Adams
method are very close to each other, therefore,
this method is more stable than the RKF method
but in small step sizes the RKF method is suitable
and stable for orbit integration. Also the Adams
method 1s not economical in order to be
integrated. For the local error of about 0.1 m the
RKF method gives the step size of about 240
second while the Adams method gives the step
size of about 17 second does this belong to the
previous or next seuteuce. With Adams method
the step size of about 6 second is obtained but the
RKF method yields the step size of about 23
second and 1t 1s more economical than the Adams
method. Therefore, the Adams method could be
employed in large step size because of its stability
too, but the RKF method is stable in small step
size. Since the Adams step variable method is
very stable in any step size therefore, it is

recommended that the Adams method be used for
long arc orbit integration or in low resolutions

(high step size) orbit integration and in contrast it

Is recommended that for high resolution (low step
size) the RKF method be used.
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