آخر غلظت مواد فعال سطحی روبای‌پایدار فومهای گاز-مایع

سیدمحمدعلی موسویان
دانشگاه گروه مهندسی شیمی - دانشکده فنی - دانشگاه تهران
احمد حلاچی تانی
کارشناس آرشد مهندسی شیمی - دانشکده فنی - دانشگاه تهران

(تاریخ دریافت ۱۳۹۳/۶/۷، تاریخ تصویب ۱۳۹۴/۱۲/۱۸)

چکیده
در این مقاله رابطه بین پایداری فومهای گاز-مایع تولید شده به روش دیسرپرسیو و غلظت ماده فعال سطحی سودآور مطالعه شده که در گذشته و در سطحی که هنوز مورد توجه نشده که این مطالعه به خوبی مشاهده کننده به به بی‌توجهی گونه‌ای می‌باشد که این آزمایش‌ها را برای ایجاد حلال فوم از ماده تولید شده در آزمایشگاهی به استبان و انلاین استفاده از شمایی که در این آزمایش‌ها تعدادی از شرایط‌های مختلف محیط انجام شده، نتایج آزمایش‌ها بانک غیر مطالعه می‌باشد که در این آزمایش‌ها غلظت ماده فعال سطحی به صورت K=10^3 می‌باشد که در آن نتایج که به خوبی خواص فیزیکی محلول مانا و سوخته‌کننده کننده سطحی و جرم حجمی مسگی دارد. یک عامل اصلی این آزمایش‌ها و وجود رابطه بین پایداری فوم و ارتفاع ستون حلال تولید شده در کنار پایداری و وجود

کلید واژه‌ها: فوم، فوم گاز مایع، پایداری، مواد فعال سطحی

مقدمه

فاز مداوم می‌باشد. فومهای گاز-مایع، حیالهای متراکم هستند که به وسیله فیلم‌های ترازی از هم جدا شده اند و بین حیال‌های از هر بار از بار دارد و به نسبت این مداوم محلولی می‌شود که این فاز مداوم از فوم که اغلب مایع است.

2 - روش نشری: مواد تولید کننده حیال به صورت مداوم حل شده در فاز مداوم و وجود دارد که در اثر همدمایی یا تکان دادن، قفل تولیدی می‌شود مانند فومهای آتش نشایی.

مایعات خالص، تولیدی ایجاد فوم و را نمود. بنابراین

برای این که مایعات و تولیدی فوم را داشته باشد باید

حاوی مقادیر کمی از ماده ای که به لیزر تولید کند باید.

درسته آی از مواد که در مایعات تولیدی ایجاد فوم

باید آن را دارد است [1]. این اولین بانک این روش توسط

ارائه شده است [1].

1 - Dispersion 2 - Condensation

در طبقه بندی های که براساس اجتماع دوز و

کنار هم صورت می‌گیرد، فوم‌ها جزء سیستم‌های

کلوبی‌هی‌هستند که در آن گاز فاز براکتیند و مایع با گرد
ایجاد می‌کند به مواز "فعال سطحی" معروفند. این مواد
با تجمع در سطح مشترک و کاهش کشش سطحی
محلول، موجب افزایش سطح و نتیجه‌گیری بیشتر حلال
در فاز اول و یک گروه یونی کوچک حلال در فاز آبی
همستند. عوامل سطحی این مواد برای حالت‌های
گروه‌های مشخص به مولکول‌های حلالات آنها. اندارد.
نسبی آنها و افزایش آنها در مولکول غیرمعنی‌دار می‌شود. از
هم‌پذیری خواص این مواد تجمع در سطح مشترک و بالا
بردن میزان حل‌حلوی و تشکیل توده‌ای از مولکول‌ها در فاز
سطحی است که در غلفت‌های بزرگتر از غلفت مایلی
به‌عنوان (C.M.C). [5]

فورم‌ها به دلیل خواص ویژه آن که مانند تری
کاربردهای منفعت در صنایع می‌باشد. به دلیل داشتن
سطح نازک به ازای واحد جرم در آنتی‌نشان و حتی
پاک‌ترین محیط زیست از آنها استفاده می‌شود. فوم‌ها
منتوانند مواد مختلفی را به صورت انتخابی حرکت خود
جای می‌دهند. این خاصیت سرمایه‌ای است بطوری که
موکب استفاده از فوم‌ها در بازی‌های جامه‌ای نفت؛ جذب
آن از جا نمی‌تواند؛ نوین بکتری‌ها که رژیم در نسائي
و بازی‌های مورد به روش فلزاترودی می‌شود. [6]

قوانین حاکم در فوم‌ها

1- فشار مویینه: اگر فشار گاز در تمام حجم حباب
یکشماره بوده و مقدار ان P در نظر گرفته شود و فشار
هیدرواستاتیکی بلند در بالای حباب P0 و در بالای حباب
باشد آن گاه در بالا و بالای حباب به ترتیب
(P0 + gρZ) و رابطه زیر برقرار است [7]

\[P - P_0 = \gamma \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

\[P - P_0 - g\rho Z = \gamma \left(\frac{1}{R_3} + \frac{1}{R_4} \right) \]

دالایل پایداری فوم‌ها

فوم به‌هورشی که تولید شده باشد باید قطع گاز
و رژیم از انتفاع کاسته می‌شود. تخلیه فیلم‌های فومی

\[\frac{1}{R_1} + \frac{1}{R_2} - \frac{1}{R_3} - \frac{1}{R_4} \]
نامدهای مختلف پایداری فوم

تاکنون نامدهای مختلفی به عنوان معيار پایداری فوم توسط مقایسه مطلوب شده است که مدل‌های مربوطه به طور بیشتر خلاصه از این قرار است:

مدل سدنتی

اساس صندل معادله حالت فوم است که

\[\Delta P = \frac{\Delta V}{\gamma} \]

(8)

با افزایش زمان زمان خاصی انتظار به عنوان درود یاده زمان فرصت برای خلاصه را انتظار در نظر گرفته و نمودار غرفت را افزایش زمان رسم کرده.

فوم؛ طول لر ایجاد می‌کند که متوسط طول عمر واحد سطح مابعد قم بو و بوسیله معادله زیر به دست می‌آید:

\[L = \frac{1}{A} \int_0^\infty A(t) dt \]

(9)

در این روش قم به شکل دوازدهوجهی فرض می‌شود و حجم محورهای گازهای ایده‌آلی از گاز برداشته می‌شود.

\[\frac{\Delta V}{\gamma} = \sum \frac{1}{v} \]

(10)

در حالت بایدری و جزئیات هوا و وزنی فروم به طرف دیگر به نسبت آن گذشته.

 shovel به طور مداوم از یک صفحه متخلخل گشته‌است.

\[\frac{\Delta V}{\gamma} = \sum \frac{1}{v} \]

(11)

در حالت بایدری و جزئیات هوا و وزنی فروم به طرف دیگر به نسبت آن گذشته.

 shovel به طور مداوم از یک صفحه متخلخل گشته‌است.
شماره دستگاه‌های شده و روش آزمایش

هرکدام از روشهای به کار رفته به نوعی پایداری را معرفی می‌کند. اما شکل عمومی همه این روشهای عدم قابلیت نکرده تأثیر آزمایش‌ها است. ضمن این که در هر روشهای این آزمایشات، گونه‌ای وجود دارد که باعث می‌شود نتایج جدیدی نباشد. همچنین استفاده از یک دستگاه‌های بیشتر اینکه تأثیر بر هر سازشmai یک چنین کاغذی که با گفته آن در انجام ارائه و اتصال ایجاد شده که از هر اندازه و روش آزمایش قابلیت نکرده خود از خود این دارای گونه‌ای در همه جا است که در این صورت رابطه زیر برای استفاده می‌باشد.

$$\frac{d\delta}{dt} = \frac{8\pi \delta^3}{3\mu n^2} \frac{\gamma}{ab}$$

در این فرمول n تعادل سطوح مرزی ساکن و b شعاع اندازه مرز پریبوئولی باشد. برای این رابطه بین b و δ اندازه این آزمایش می‌باشد. در حالات پایدار حجم مالی این فرمول به در اث آشکار از طریق قیمت‌ها با کلیه رود برای است. با توجه به مجموع این فرضیات، رابطه زیر برای ضخامت بدست می‌آید.

$$8 \begin{vmatrix} 1 & \frac{9}{2} & \frac{9}{4} \\ \frac{9}{2} & \frac{9}{4} & \frac{9}{4} \end{vmatrix}$$

$$\delta = \frac{0.32(n)^7 (U/\mu)^7 (\psi)^7}{4 (\rho g)^7 (\phi H)^7}$$

که در آن $H = \frac{U}{E}$ ارتفاع حالات پایدار قوم است.

مدل نویرس

در این تکنیک چکه برای نک تکلیم به کار می‌گیرد. در سالون‌های مخصوصی تکنیک‌های مورد بررسی قرار گرفته‌اند. می‌شود نور تکنیک با طول موج مشخص به قیمت بروخورد. در این مقدار حسی که نور بگذارنی برای تعیین حجم ضخامت و هم‌سرعت نازک شدن قیمت به کار می‌رود. این تکنیک در این برای قیمت‌های به کار رفته‌است. در این تکنیک، همان سیستمی که در این سیستم‌ها دانسته و با کار می‌رود.
همین سرعت حجمی هوای ورودی دوباره به طور نیز تکرار شد. نتایج آزمایش‌ها با انگریزی توانسته و قابلیت تکرار خوبی داشته است. سیستم آزمایش‌ها با همین فلزات و لیمب سرعت حجمی هوا ورودی بالاتری انجام شد. آزمایش‌ها ناپایی که قوم سرسر سستون را برکنار ادامه داده شد. سیستم آزمایش‌ها با ماده فعال سطحی دیگر انجام شد. در این سروی آزمایش‌ها نتایج اضافه کردن اسید دی کانویک به محلول کلیه به مورد بررسی قرار گرفت که در نتیجه آن مشخص گردید که ورود اسید موجب کاهش میزان قوم تولید شده و بالعده آن می گردد.

نتایج آزمایش‌ها و بحث

در زیر نتایج آزمایش در غلظت‌ها و سرعت‌های حجمی مختلف برای (a) نمی‌تنست، (b) 13 پروپانول و (c) جنیل 2 - بوتان آل اماده است:
نشیرو دانشکده فنی، جلد ۲۳، شماره ۲، شهریورماه ۱۳۷۸

\[V(\text{cm}^3/\text{sec}) \]

\[C(\text{mg/Lit}) \]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

\[\ln(c) \]

\[\ln(\Sigma) \]

\[7 \text{cm}^3/\text{S} \quad 9 \text{cm}^3/\text{S} \quad 11 \text{cm}^3/\text{S} \quad 13 \text{cm}^3/\text{S} \]

شکل ۲: نرمال پنتانول.

\[\ln(c) \]

\[\ln(\Sigma) \]

\[7 \text{cm}^3/\text{S} \quad 9 \text{cm}^3/\text{S} \quad 11 \text{cm}^3/\text{S} \quad 13 \text{cm}^3/\text{S} \]

شکل ۳: ۲-پروپانول.
درازای شبکه بوده و باعترضاً از میان‌ها و مکانی درماند. شبکه خطوط هم‌هسته در محدودهٔ 3/۳ تا ۲/۴ فرور دارند. مقادیر نسبی و دامنه نسبی بین این سه سطحی محول مانند کستیس سطحی، سطح حجمی، سطح سطحی و سطح سطحی محول‌های و همچنین سرعت حجمی هوا و توده به سطحی دارد. با استفاده از آنالیز ابعادی نیز همین مقادیر به‌صورت نظری برای n به دست امده [۱]. بنابراین با تغییر غلظت مواد فعال سطحی برای افزایش سیستم معین می‌توان باپارداری را به دست آورد. اضافه کردن اسید دی‌کانسید به محلول می‌تواند سبب کاهش هم ارتقاء و هم پدیداری قند شود که این به دلیل تغییر pH محیط می‌باشد زیرا که هر محلول در pH نیز به داری بیشتر از داری به‌تغییر جمله تولید قند می‌باشد.

شکل‌های این جای رابطه برای پدیداری ارتباط آن با ارتقاء قند در حالت برای این در اساس اساس رابطهٔ مورد بررسی قرار گرفته و مقدار m بین ۲/۴ تا ۱۸، به دست امده. این مقدار توافق دارد خوشهٔ با پایه دیکتونف به‌عنوان [۱۶] دارد.

\[\ln C = K C^n \]

\[\ln \Sigma = K_0 + n \ln C \]

استفاده از نتایج آزمایش‌ها در فرمول‌ها ناشان دهنده وجود مقادیر نسبی نسبت n برای همه مواد است. منحنی لگاریتمی پایداری بر حسب لگاریتم غلظت ماده فعال سطحی با استفاده از رابطهٔ [۲] برای تحلیل و آنالیز در شکل‌های [۲] و (۴) آمده است. همه خطوط نسبی