آثار نوازن کاتیون - آنیون چربه غذایی روی نوازن تولیدی گاوهاي شيرده

علي نيكخواه، علي مصلتی دهرازی و پرویز جامعی

تربیت استاد، دانشجوی دوره دکتری و استادیوی علوم دانشگاه گیلان، دانشگاه تهران

تاريخ پذيرش مقاله ۷۸/۱۱/۲۷

خلاصه

به مکانیزم مطالعه آثار چهارچوب غذایی کامل ملی با نوازن متفاوت کاتیون-آنیون (DCAB) ۱ در ۳۰ میلی‌آبی و ۱۰۰ گرم ماده خشک در سه دوره چهارچوبی متوالی، در چهار بلوک روی ماده خشک مصرفی، تولید ش، مرکز پژوهش مواد، مواد گیاهی و غیر گیاهی، میکرو‌ضبط pH حسن و اداره از دو درجه رأس گاز محلانه در DCAB، بنابر نتایج، بهترین نتایج در طرح چهارچوبی متوالی استفاده گردید. ماده خشک مصرفی با عناصر DCAB بطور خطي افزایش پایه مقدار تغذیه (خالم، محصول رشد ۳۵ و ۳۴) گاوپروریک با عناصر DCAB در میلی‌آبی و ۳۰ نوازن تغذیه به دیده شد. در مرکز بیوهای دیگر بیلر (۱۰/۵) بود. میانگین مرکزی گاوپروریک تغذیه شده با عناصر مصرفی، در میلی‌آبی و ۳۰ نوازن تغذیه به دیده شد.

دتیل گزارش‌های دیگری به ماده DCAB ۰/۶۷۴ و ۰/۷۷۱ کیلوگرم در تریب بیوهای دیگر بیلر (۱۰/۵) بود. میانگین مرکزی گاوپروریک تغذیه شده با عناصر DCAB در میلی‌آبی و ۳۰ نوازن تغذیه به دیده شد.

تاریخ این پژوهش نشان داد که نوازن تولیدی DCAB گالاها با نوازن کاتیون - آنیون متوالی در میلی‌آبی و ۲۰ دارای نتایج بهتر یافته است.

واژه‌هاي کلیدی: نوازن کاتیون-آنیون، جبر غذایی، نیتروژیک، گالاها

مقدمه

از سال‌های ۱۹۷۵ رابطه داخلی مواد عضوی در تغذیه گاوپروری کمتر مشخص بود. اما در سال‌های اخیر، مقدار مواد عضوی در گاوپروری کمتر مشخص و نتایج این رابطه داخلی آنها مشخص و نتیجه‌گیری‌های دقیق‌تری از قیمت‌ها و بایان‌های گیاهان دوست بر گرفته است، اما از نوازن‌های مختلف مصرفی گاوپروری کمتر مشخص بود. اما این وجوه‌ها در پژوهش‌هایی با نوازن‌های مختلف بین نوازن‌های مختلف بین حیوانات، پاتیمی و کلر در نوازن ایده - یافته‌ها میانگین یولوکیک بدن حیوانات تریچی تغذیه داده شده است.

1. Dietary cation-anion blance
2. Balanced change-Over design
3. Dietary anion-cation blance
جیره غذایی چه اندیزه‌ای باشد یا نه، حفظ توپوزن اساسی با برای پایداری حیاتی اهمیت و فعالیت‌های متابولیکی در حیوان زندن جهت حیاتی و در میزان تولید و توان تولیدی آنها نابع این توپوزن می‌باشد (1 و 27). در حال حاضر توپوزن کاتیون-آنیون جیره غذایی باید بر اساس میانگین و میزان غیرقابل متابولیزه‌برابری (پروتئین) تهیه در محاسبات توان کاتیون-آنیون نیز بکار می‌برد

\[\text{HPO}_4^{2-} = \text{H}_2\text{PO}_4^{-} + \text{SO}_4^{2-} \]

(ایسیدارا، می‌باشد، 100 و 291). در نتیجه، میزان هر یک (pH) در هر یک pH میانگین سلول‌های میکرو‌باتریا در حالت دندان فیزیولوژیکی (A_n - C_T) + H^+ end (mg(eq)/100DM)

\[\text{DCAB} = (\text{Na}^+ + \text{K}^+) \cdot (\text{Cl}^- + \text{SO}_4^{2-})/\text{(mg(eq)/100DM)} \]

\[\text{DCAB} = (\text{Na}^+ + \text{K}^+) \cdot (\text{Cl}^- + \text{SO}_4^{2-})/\text{(mg(eq)/100DM)} \]

\[\text{DCBA} = (\text{Na}^+ + \text{K}^+) \cdot (\text{Cl}^- + \text{SO}_4^{2-})/\text{(mg(eq)/100DM)} \]

\[\text{H}_2\text{PO}_4^{-} + \text{HPO}_4^{2-} \]

که در تبیین می‌باشد، این انتخاب از تربیت قلیایی و استفاده‌برابری می‌باشد در محاسبات باید از این مناسبی بکار می‌برد. میانگین کاتیون-آنیون جیره غذایی از پیکریک، زیر استفاده می‌باشد.

<table>
<thead>
<tr>
<th>میزان غیرقابل متابولیزه‌برابری (پروتئین)</th>
<th>HPO_4^{2-}</th>
<th>H_2PO_4^{-}</th>
<th>SO_4^{2-}</th>
</tr>
</thead>
<tbody>
<tr>
<td>آسیتوناکتاین</td>
<td>100</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>میانگین سلول‌های میکرو‌باتریا</td>
<td>pH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* DCAB: نیاز به میزان غیرقابل متابولیزه‌برابری (پروتئین) در 100 گرم ماده خشک، H_2PO_4^{-} و HPO_4^{2-} که در تبیین می‌باشد، این انتخاب از تربیت قلیایی و استفاده‌برابری می‌باشد.

1. Fixed ions
2. Acidogenic
3. Alkalogenic
4. Base excess
5. Total mixed ration
6. Effective neutral detergent fiber
جدول 1 - مواد مشکل و ترکیب شیمیایی جیره‌های غذایی (براساس 150 درصد ماده خشک)

<table>
<thead>
<tr>
<th>اقلام (درصد)</th>
<th>ماده مشکل</th>
<th>جیره غذایی، بصورت تعادل کاتیون - آنیون</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>24/4</td>
<td>24/4</td>
<td>24/4</td>
</tr>
<tr>
<td>19/6</td>
<td>19/6</td>
<td>19/6</td>
</tr>
<tr>
<td>12/16</td>
<td>12/16</td>
<td>12/16</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1/09</td>
<td>1/09</td>
<td>1/09</td>
</tr>
<tr>
<td>0/23</td>
<td>0/23</td>
<td>0/23</td>
</tr>
<tr>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
</tr>
<tr>
<td>0/89</td>
<td>0/89</td>
<td>0/89</td>
</tr>
<tr>
<td>1/34</td>
<td>1/34</td>
<td>1/34</td>
</tr>
<tr>
<td>0/11</td>
<td>0/11</td>
<td>0/11</td>
</tr>
<tr>
<td>مکمل و یتیمی و معدنی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تجزیه شیمیایی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ماده خشک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>انرژی خالص شیردهی (مگاکالری/دکیلوگرم)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پروتئین خام (بر(گرم/EXECRI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>دیوارسولولی میانی همی‌سولول (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>دیوارسولولی (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کلسیم (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فسفر (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مینیمیم (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سدیم (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پتاسیم (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کلر (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>گوگرد (%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نیکخواه و همکاران: آتار نژاد کاتیون - آنیون چربه...
چربی شیر از افزایش سطح توزان کاتیوکان - آنیون در جهش بطور معنی‌داری (P < 0.05) افزایش یافته است. بیشترین شیر تولیدی روزانه را گواهی داده شده شد. تأثیر پژوه حاصل در مورد ضعف تولیدی با تناوب پژوه‌های متعددی توسط دیگران مطالعه داشته (2011-1987) و (1982). این مطالعات نشان داد که بیش از ۳۰ درصد موارد شامل شیر و کلسیم شیر تولیدی نشان دهنده شرایط ایجاد شده است.

مقدار متوسط توزان در برابر درصد توزان در برابر افزایش شیر به‌طور معنی‌داری (P < 0.05) افزایش یافته است. بیشترین شیر تولیدی روزانه را گواهی داده شده شد. تأثیر پژوه حاصل در مورد ضعف تولیدی با تناوب پژوه‌های متعددی توسط دیگران مطالعه داشته (2011-1987) و (1982). این مطالعات نشان داد که بیش از ۳۰ درصد موارد شامل شیر و کلسیم شیر تولیدی نشان دهنده شرایط ایجاد شده است.

نتایج و بحث

در این پژوهش با افزایش سطح توزان کاتیوکان - آنیون، مصرف خواراک گواهای افزایش یافته ولی بالاترین مقدار خواراک مصرفی گواهی در این مورد ۳۰ میلی‌کیلوسالاران در ۱۰۰ گرم ماده خشکی داشته (جدول ۲). اگرچه تفاوت بین میانگین‌ها معنی‌دار نبود ولی میانگین‌ها با لحظه دانسته می‌شود.

درصد مردم است. در روز آخر هر هفته از شیر و غذای مشروط می‌گردد و در آزمایشگاه‌های برخی مخلوط شیمیایی آن از ساخته استفاده می‌شود. مقدار شیر تولیدی و تاکید شده (۱،۷) توسط طبیعت در جدول ۲ مشاهده می‌شود. شیر تولیدی شیر روزانه (خام)، تاکید شده برای ۳/۵ و ۴/۵ درصد موارد غیرچربی شیر و کلسیم مشاهده شد.
جدول ۲ - اثر تعادل کاتیون - آنیون جریان‌سازی پر تولیدی و وضعیت اسید-بازگذاری (Jeremiah\\n ۱)\n\n| صفات مورد اندازه‌گیری | جریان‌سازی، بصورت توازن کاتیون- آنیون(۱) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۴۰</td>
</tr>
<tr>
<td>ماده خشک مصرفی روزانه (کیلوگرم)</td>
<td>۲۲/۰</td>
</tr>
<tr>
<td>تولید شیر (کیلوگرم)</td>
<td>۴/۲۵</td>
</tr>
<tr>
<td>تولید شیر (کیلوگرم)</td>
<td>۲/۳/۴</td>
</tr>
<tr>
<td>تولید شیر (کیلوگرم)</td>
<td>۲/۲/۶</td>
</tr>
<tr>
<td>سربب نیازی خوایا به شیر (۱)</td>
<td>۱/۱۱</td>
</tr>
<tr>
<td>چربی شیر (درصد)</td>
<td>۳/۰۵</td>
</tr>
<tr>
<td>چربی شیر (درصد)</td>
<td>۰/۷/۲</td>
</tr>
<tr>
<td>پروتئین شیر (درصد)</td>
<td>۲/۸/۳</td>
</tr>
<tr>
<td>پروتئین شیر (درصد)</td>
<td>۰/۸/۲</td>
</tr>
<tr>
<td>لاکتوز (درصد)</td>
<td>۴/۹/۹</td>
</tr>
<tr>
<td>لاکتوز (درصد)</td>
<td>۱/۳/۹</td>
</tr>
<tr>
<td>مواد جامد غیر چربی شیر (درصد)</td>
<td>۸/۲</td>
</tr>
<tr>
<td>مواد جامد غیر چربی شیر (درصد)</td>
<td>۲/۱/۲</td>
</tr>
<tr>
<td>کل مواد جامد شیر (درصد)</td>
<td>۱۱/۸/۱</td>
</tr>
<tr>
<td>کل مواد جامد شیر (درصد)</td>
<td>۲/۰/۰</td>
</tr>
<tr>
<td>نگهداری وزن روزانه (کیلوگرم)</td>
<td>۰/۴/۲</td>
</tr>
<tr>
<td>خون pH</td>
<td>۷/۲/۱</td>
</tr>
<tr>
<td>انداز pH</td>
<td>۸/۱/۲</td>
</tr>
</tbody>
</table>

میانگین‌های یک رده‌بندی با حروف مختلف دارای تفاوت معنی‌دار هستند (P<0/05). a,b,c

۱- بر حسب میلی‌گرم‌های (Na+K-Cl-S) در ۱۰۰ کیلوگرم ماده خشک جبره
۲- بازی ۱۰۰ کیلوگرمی وزن بند
۳- تصحیح نشده در ۳/۰ درصد جبره
۴- تصحیح نشده در ۳/۰ درصد جبره
۵- تصحیح نشده در ۳/۰ درصد جبره
۶- تولید شیر خام بازی یک کیلوگرم ماده خشک مصرفی
جدول ۳ - مقایسه میانگین ماده خشک مصرفی، تولیدشیر، ترکیبات شیر، تغییر وزن بدن و pH خون و ادرار در ساعت آزمایش

<table>
<thead>
<tr>
<th>صفات</th>
<th>دوره‌های آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۳</td>
</tr>
<tr>
<td>ماده خشک مصرفی روزانه (کیلوگرم)</td>
<td>۲۲/۰<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>۲۱/۷<sup>a</sup></td>
</tr>
<tr>
<td>تولید شیر روزانه (کیلوگرم)</td>
<td>۴/۴۴<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>۴/۷۳<sup>b</sup></td>
</tr>
<tr>
<td>تولید شیر روزانه (کیلوگرم)</td>
<td>۳۰/۸<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>۳۲/۰<sup>b</sup></td>
</tr>
<tr>
<td>تولید شیر روزانه (کیلوگرم)</td>
<td>۶۰/۶<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>۶۰/۰<sup>b</sup></td>
</tr>
<tr>
<td>چربی شیر (درصد)</td>
<td>۶۷/۱۰<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>۶۷/۱۷<sup>b</sup></td>
</tr>
<tr>
<td>چربی شیر (کیلوگرم در روز)</td>
<td>۶۷/۱۰<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>۶۷/۱۷<sup>b</sup></td>
</tr>
<tr>
<td>پروتئین شیر (درصد)</td>
<td>۹۹/۶<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>۹۹/۷<sup>c</sup></td>
</tr>
<tr>
<td>پروتئین شیر (کیلوگرم در روز)</td>
<td>۶۷/۱۰<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>۶۷/۱۷<sup>c</sup></td>
</tr>
<tr>
<td>لاکتوز شیر (درصد)</td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td>لاکتوز شیر (کیلوگرم در روز)</td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td>مواد عضو غیر چربی شیر (درصد)</td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td>مواد عضو غیر چربی شیر (کیلوگرم در روز)</td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td>کل مواد عضو غیر چربی شیر (درصد)</td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td>کل مواد عضو غیر چربی شیر (کیلوگرم در روز)</td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td>تغییر وزن روزانه (کیلوگرم)</td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>۹۹/۵<sup>b</sup></td>
</tr>
<tr>
<td>خون pH</td>
<td>۸/۶۸<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>۸/۷۱<sup>b</sup></td>
</tr>
<tr>
<td>ادرار pH</td>
<td>۸/۶۸<sup>b</sup></td>
</tr>
</tbody>
</table>

میانگین‌های یک رنگ رنگ با حروف مختلف دارای تفاوت معنی‌دار به‌هستند (۰/۰^P^P).
سطح توان کاتیون-آنیون جیره قرار گرفتند (5/0-0). ولی مقدار این ترکیبات در لحاظ آماری معنی‌دار نبودند (0/0-0).

REFERENCES

Effects of Dietary Cation-Anion Balance on the Performance of Lactating Cow

A. NIK-KHAH, A. MOSTAFAVI TEHRANI AND P. JAMEE
Respectively Professor, Ph.D. Student and Professor Department of Animal Science
Faculty of Agriculture, University of Tehran, Karaj, Iran.
Accepted Feb. 16, 2000

SUMMARY

To study the effects of four rations with varying dietary cation-anion balance (DCAB), 10, 20, 30 and 40 meq/100 g dry matter (DM), in three-four week period, four block (three cows Perblock) design DM intake (DMI), milk yield, fat, protein, lactose, non-solid milk fat and pH of blood and urine, 12 early lactating Holstein cows in a balanced change-over design were used. DMI was linearly increased by increasing DCAB (P<0.01). Milk yield (raw, corrected for 3.5 and 4% fat) of cows which were fed 30 meq DCAB ration was higher than the other rations (P<0.05). Averag of milk fat of cows fed ration contained 10, 20, 30 and 40 meq/100g DM were 3.10, 3.25, 3.05 and 3.33 percent and 0.744, 0.754, 0.789 and 0.771 Kg/d, respectively. The milk protein means for the rations were 2.95, 2.99, 2.83, 2.96 percent and 0.713, 0.696, 0.733 and 0.689 Kg/d (P<0.05), respectively. The percentage of milk fat-non solids for the rations (10, 20, 30, 40 meq/100g DM) were 8.69, 8.67, 8.51 and 8.56 respectively. The of blood (7.37-7.41) and urine (8.08-8.22) of cows increased by increasing DCAB (P<0.01). The results of this experiment indicated that performance of cows was improved when they were fed rations containing 30 meq 100 g DM.

Key words: Cation-Anion Balance, Ration, Milk, Empositional, Holstein Cow.