طرابی بهینه سیستم تعلیق فعل خودرو با هدف کاهش همزمان نیرو و جرک

محمد محبوبی جهرمی
استادگر گروه مهندسی مکانیک - دانشگاه فنی - دانشکده فنی - دانشگاه تهران
مرتضی تقی پور گورابی
طرح تحصیلات کارشناسی ارشد گروه مهندسی مکانیک - دانشگاه فنی - دانشگاه تهران

چکیده

هدف سیستم تعلیق خودرو، کنترل و کاهش افتنشاسها وارد از طرف جاده بر دنده خودرو است. در بهینه سازی سیستم تعلیق باید بین خواص های مندی و راحتی سفر قید و فرمان‌برفی قدر داشته باشیم. در سال‌های اخیر Jerk، نیرو بطوریکی از شاخه‌هایی راحتی JOC در نظر گرفته شده است که به این روش کنترل بهینه جرک امکان می‌پذیرد. و این امر در عمل تنها 4 مدل خودرو به دو دسته آزاد و محدود قابلیت اندازه‌گیری و به‌صورت مستقیم درون سیستم تعلیق محاسبه شده است.

واژه‌های کلیدی: سیستم تعلیق فعل، کنترل بهینه نیرو، کنترل بهینه جرک، راحتی سفر

مقدمه

سیستم‌های تعلیق مورد استفاده در خودروها به‌طور کلی سیستم‌های تعلیق غیرفعلی + سیستم‌های فعلی + مقایسه ذیل می‌باشد. سیستم تعلیق غیرفعلی شامل فنر و میراکننده 17 ای است که هر دو دارای ضرایب نتیجه‌گیری هستند. سیستم‌های فعلی جنبه‌گیری می‌نمایند با استفاده از کنترل کننده. همچنین به جنگل کننده استفاده می‌شود.

وارد بر هم که در آنها برای عمل کردن سیستم‌های فعلی، جهت هماهنگی در سیستم‌های فعلی و غیرفعالی، در سیستم‌های فعلی از دسترسی هماهنگی کنترل کننده سیستم در حالی که اطلاعات قابل در دسترس باشد و می‌پذیرد کنترل کننده یا کنترل کننده کنترل کننده نیز به این دستگاه می‌شود. همچنین به جنگل کننده برای کاهش همزمان نیرو و جرک و دستگاه‌های پیش‌بینی، لازم است که در کنترل بهینه، به‌دست‌آید بخشی از سیستم تعلیق فعل برای عمل کردن سیستم تعلیق فعل، کنترل بهینه نیرو، کنترل بهینه جرک، راحتی سفر

References:

چهارم خودرو با دو درجه آزادی آموزش می‌گردد و برای عملکرد
جرک مورد بررسی قرار دادند [۲۷].
در این مقاله روش جدیدی برای ایجاد حاصل از
معادلات مورد استفاده قرار گرفته است بطوریکه شباهت
جرک جرم فنربردی شده مستقیماً در تابع هدف آمده
است بنابراین روی آنها می‌توان کنترل داشت. پس از حل
معادلات و بدست آوردن ضرایب پسخورد برای حالت
عبارتی موجود در مشخصه عملکرد برای سه
JOC حالت کنترل بهینه نیرو FOC و حالت سیستم
فعال غیرفعال با یکدیگر مقایسه شده است.

معادلات حالت سیستم

با توجه به اینکه در هر دو نوع سیستم
فعال غیرفعال (یا JOC و FOC) از عملکرد نیرو برای کنترل
نیرو و جرک وارد بر جرم فنربردی شده استفاده می‌شود،
معادلات حرکتی و در نهایه ماتریس‌های حالت، کنترل و
ورودی اغتشاش جاده یکسان است اما به دلیل اینکه
شاخص عملکرد برای دو حالت فرق می‌کند معادلات
کنترلی این دو حالت یکسان نمی‌باشد.

الف - سیستم تعلیق فعال

از شکل (a) قسمت b داریم:

\[-k_1(x_1 - w) - k_2(x_1 - x_2) - c_2(x_1 - x_2) - U = m_{wa} \ddot{x}_1\]

\[k_1(x_1 - x_2) + c_2(x_1 - x_2) + U = m_s \ddot{x}_2\]

که در آن متغیرهای حالت عبارتند از:

\[z_1 = x_1\]
\[z_2 = \dot{x}_1\]
\[z_3 = x_2\]
\[z_4 = \dot{x}_2\]

\[-k_1(z_1 - w) - k_2(z_1 - z_3) - c_2(z_2 - z_4) - U = m_{wa} \ddot{z}_2\]

\[k_2(z_1 - z_3) + c_2(z_2 - z_4) + U = m_s \ddot{z}_4\]

ب) شکل 1: مدل فیزیکی یک چهارم خودرو با دو درجه آزادی و
معگریهای حالت برای (a) سیستم تعلیق غیرفعال (b) سیستم
فعال فعال است که تنها توسط تابی نگه‌داری می‌شود.

مدل فیزیکی

مدل فیزیکی ارائه شده، مدل ۱/۴ خودرو با دو
درجه آزادی است که در شکل (1) نشان داده شده است.
جرم فنربردی شده شامل جرم قسمتهایی از خودرو است
که به وسیله سیستم تعلیق تغییر می‌شود که شامل
سرعت جرم فری یکنوازی شده:
\[\dot{X}_2 \]
نریوی وارد از طرف عملکرد U

بایناریون شاخه عملاکدر در این حالت به صورت زیر تعریف می‌شود:

\[P.I. = \frac{1}{2} \int_0^\infty (Y^T MY + U^T NU) dt \]

(6)

\[Q = C^T MC \]
\[N_2 = C^T MD \]
\[R = D^T MD + N \]

(7)

و اکنون:

\[U = -K_1 X(t) \]
\[K_1 = R^{-1}(B^T P + N^T) \]

(8)

با حل معادله‌های مشابه ریکاتی (Y) محاسبه ماتریس P و فرل دادن آن در معادله (9) ضرایب پسخورده محاسبه می‌شوند.

معدلات کنترلی سیستم برای پوست

\[P.I. = \frac{1}{2} \int_0^\infty (Y^T MY + X^T S X + X^T V X + U^T NU) dt \]

(10)

- سیستم تعلیق غیرفعال
برای این حالت با حالت قبل نه در این که در اینجا عملکرد U وجود ندارد بایناریون در این حالت:

\[L = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ m_u \\ 0 \\ 0 \end{bmatrix}, A = \begin{bmatrix} 0 & 0 & 0 \\ -(k_1 + k_2) & -c_2 & k_2 \\ 0 & m_u & m_u \\ 0 & 0 & 1 \end{bmatrix} \]

(11)

محاسبه معادلات کنترلی سیستم

FOC معادلات کنترلی سیستم برای حالات

برای حالات FOC متغیرهای تابع هدف 12 عبارتند از:

\[X_1 - W \]

(12)

تغییر شکل دینامیکی تابع

\[X_2 - X_1 \]

(13)

تنبیه‌های ماتریس و محاسبه معادلات ماتریسی، معادلات زیر حاصل می‌شود اضافه می‌شوند:

\[X_2 - X_1 \]

(14)
شده و نیروی عملکرد در دو روش JOC و FOC به کمک
یکن

است. ضرایب وزنی شبک و جرک در روش JOC
بايد با توجه به شرایط موجود انتحاب شوند.

1 - باشک زمانی سیستم

در حوزه زمان ورودی به سیستم عامل شده
به ارتفاع Haversine 10 κm/h و طول 30 cm
برای خودروی با سرعت 60 km/h

درنگ فرگنه شده است (شکل (c)).
نتایج شبیه گزارش
سازی برای این ورودی در شکلهاي
1.6)
نشان داده شده است. ورودی دوم
140 sm برآمده خودرو ای به ارتفاع 6 cm

است که در شکل (a) نشان داده شده است.
نتایج شبیه سازی برای این ورودی در شکلهاي
1.8)
بايد مانع برای کنترل بی‌بخش درایه کامل برنده

| $\phi_i = \begin{bmatrix} B & AB & A^2B & A^3B \end{bmatrix}$ |

سومین نکته است که باید به آن توجه شود آن است که

ضرایب وزنی S و N، همیشه در مقایسه ضرایب
پسخورد و در نتیجه کنترل جملات متدرج در نتیجه هدف

دشته و فقط با انتحاب ضرایب وزنی مناسب می‌توان

به نتیجه مورد نظر رسید.

تحليل نتایج

مقادیر در نظر گرفته شده برای مدل ارزیابی

سیستم به شرح زیر است:

| $m = 36kg$ |
| $m_i = 240kg$ |
| $k_i = 160000 N/m$ |

با استفاده از مقادیر بالا ماتریس‌های

شده و در نتیجه معادلات ذکر شده در (11) حل

شده و مقادیر عددی ضرایب پسخورد محاسبه می شوند.

ضرایب وزنی انتحاب شده در مورد نگاه مکان دینامیکی

تایب و جابجایی نسبی سیستم تولید، سرعت جرم فنری

$Q - N_2K_2 + A^TP + P(A - BK_2) +$
$S(A - BK_2)^4 - V(A - BK_2)^6 = 0$
$U = -K_2X(t)$
$K_2 = R^{-1}(N_2^T + B^TP)$
نمودار ۱: پاسخ‌های سیستم‌های تعیق (خط ممتا). JOC (خط چین برگ) و غیرفصل (خط چین کوچک) برای ورودی نوع اول FOC (خط چین برگ) و غیرفصل (خط چین کوچک) برای ورودی نوع اول Haversine (b). تغییر شکل دینامیکی تایب (c): جابجایی نسبی سیستم تعیق (d): شتاب جرم فنر بندی شده (e): جرک جرم فنر بندی شده.
شکل ۳: پاسخ‌های سیستم‌های تعقیب (خط متمایل) JOC (خطوط چین‌پرتوگ) و غیرفعال (خط چین‌کوچک) برای ورودی نوع اول FOC (خط متمایل) .

(a): تغییر شکل دینامیکی ناپای (c): جابجایی نسبی سیستم تعقیب (d): نتایج جرم فرترنگی شده

(e): جرک جرم فنربرنگی شده.

(b) Haversine
نمودارهای (c)-(d) و (2-d) مربوط به شتاب و جرک است. همانطور که مشاهده می‌شود در محدوده فرکانسی کمتر (منجر به ارتباط بین HZ 10 و HZ 1) عملکرد روش JOC بهتر از روش FOC و این هر دو بسیار بهتر از عملکرد سیستم تعلیق غیرفعال است.

جمع بندی

همانطور که در این برسی مشاهده شد است بین خواسته‌های راحتی سفر و فرمان پذیری نتایج وجود 2- پاسخ فرکانسی سیستم برد مربوط به پاسخ فرکانسی سه روش JOC و تعریق غیرفعال در شکل (2) نشان داده شده است. در شکل (2-a) پاسخ فرکانسی تغییر شکل دینامیکی تاثیر افزایش یافته است. همانطور که در شکل JOC دیده می‌شود در محدوده فرکانسی 1 HZ روش FOC بهتر از روش JOC و غیرفعال عمل می‌کند. در شکل (2-b) که مربوط به پاسخ فرکانسی جایگاه نسبی سیستم تعویق است این محدوده فرکانسی کوچکتر است.
دارد به این معنی که کاهش میزان شتاب و جرک باعث افزایش تغییر دینامیکی تابی و جابجایی نسبی سیستم تعقیب گردد (عكس این قضیه نیز درست است). اما با استفاده از روش کنترل بهینه جرک پیشرفت قابل ملاحظه‌ای صورت گرفته است به این ترتیب که با افزایش ۱۴٪ در تغییر مکان دینامیکی تابی و ۳۲٪ در جابجایی نسبی سیستم تعقیب ۱۸٪ مقدار شتاب و ۲۱٪ مقدار جرک کاهش می‌یابد. یاگ توجه نمود که با تغییر نسبی ضراب وزنه در مشخصهعملکرد می‌توان مقادیر ذکر شده را تغییر داد. همچنین با توجه به اینکه در روش JOC بکار رفته جملات مربوط به شتاب و جرک در نابد و وجود دارد، می‌توان پوستی مثبت و زنی آنها را تغییر داده و با مشاهده اثر آنها به طراحی مطلوب دست پایان.

فهرست علائم
A: ماتریس حالت سیستم
B: ماتریس کنترل سیستم
C: ماتریس ضرایب خروجی
D: ضریب مبایل سیستم تعقیب
E: سرعت جابجایی تاب
F: ضریب خروجی محاسبه
G: ماتریس ضرایب خروجی اغتشاش جاده
H: تایب همبستگی
I: FOC
J: بردار ضرایب پسخورد حالت
K1: بردار ضرایب پسخورد حالت
K2: سختی مدل تاب
L: ماتریس ضرایب وزنه مشخصه‌های خروجی
M: ماتریس ضرایب وزنه مشخصه‌های خروجی
N: ماتریس ضرایب وزنه خروجی
P: ماتریس ریکتی
Q: ماتریس ضرایب وزنه مطابق‌های حالت
R: ماتریس ضرایب وزنه مطابق‌های حالت
S: ماتریس ضرایب وزنه مطابق‌های حالت
T: ماتریس ضرایب وزنه مطابق‌های حالت
U: تابع خروجی
V: ماتریس ضرایب وزنه جرک
W: بردار ورودی اغتشاش جاده
X: بردار مطابق‌های حالت
Y: بردار ورودی محاسبه
Z: ضریب لگاریتم
φ: ضریب لگاریتم
λ: ماتریس کنترل پذیری

مراجع

واژه‌های انگلیسی به ترتیب استفاده در متن

1 - Jerk
2 - Ride Comfort
3 - Handling
4 - Jerk Optimal Control
5 - Optimal Active Suspension
6 - Force Optimal Control
7 - Passive Suspensions System
8 - Algebraic Ricatti Equation
9 - Hamiltonian
10 - Actuator
11 - Semi-Active
12 - Damper
13 - Cost Function

ضمنه ۱ - روش بدست آوردن معادلات کنترل برای روش JOC

\[
P.I. = \frac{1}{2} \int \left(Y^*MY + \dot{X}^*S\dot{X} + \ddot{X}^*V\dddot{X} + U^*NU \right) dt
\]

\[
P.I. = \frac{1}{2} \int \left(X^*QX + U^*N_1X + X^*N_2U + \dot{X}^*S\dot{X} + \ddot{X}^*V\dddot{X} + U^*RU \right) dt
\]

\[
H(X, \dot{X}, \ddot{X}, \lambda, U) = \frac{1}{2} (X^*QX + U^*N_1X + X^*N_2U + \dot{X}^*S\dot{X} + \ddot{X}^*V\dddot{X} + U^*RU) + \lambda^T (AX + BU - \dot{X})
\]

\[
\frac{\partial H}{\partial \dot{\lambda}} = 0
\]

\[
\frac{\partial H}{\partial U} = 0
\]

\[
\frac{\partial H}{\partial X} - \frac{d}{dt} \left(\frac{\partial H}{\partial \dot{X}} \right) + \frac{d}{dt} \left(\frac{\partial H}{\partial \ddot{X}} \right) - \frac{d}{dt} \left(\frac{\partial H}{\partial X} \right) = 0
\]

\[
\dot{X} = AX + BU
\]

\[
\frac{1}{2} N_1X + \frac{1}{2} N_2^T X + RU + B^T \lambda = 0
\]

\[
QX + \frac{1}{2} N_1^T U + \frac{1}{2} N_2^T U + A^T \lambda + \dot{\lambda}
\]

\[
+ S\dot{X}^{(6)} - V\dddot{X}^{(6)} = 0
\]

\[
U = -K_2X(t)
\]

\[
\lambda = PX(t)
\]
و با توجه به اینکه:

\[N_1^T = N_2 \]

\[N_2 - PK_2 + B^TP = 0 \Rightarrow \]

\[K_2 = R^{-1}(B^TP + N_2)' \]

\[Q - N_2K_2 + A^TP + P(A - BK_2) + \]

\[S(A - BK_2)^{60} - V(A - BK_2)^{60} = 0 \]

از معادلات (17) خواهیم داشت:

\[(18) \]

با حل همزمان معادلات (18) ضرایب پسخورد K محاسبه می‌شوند.