تیمین کروموموهای موثر در مقاومت به سرما با استفاده از رگه‌های جایگزین در گندم زمستانه

حسین ذشتي، پیام زاده صمیمی، محمدرضا فاتحی، سیروس عبد ملکی و احمد سراجی
1-استادیار دانشگاه، ویل عصر (مجری)، 2-4- افتادگی، دانشجو و استاد دانشگاه، کشاورزی دانشگاه تهران
5- اتاق دانشگاه تولوز فرانسه
تاریخ پذیرش مقاله 80/2/2

خلاصه

به منظر شناسایی کروموموهای موثر در مقاومت به سرما از رگه‌های جایگزین کروموموز منتقلین به دو واریته شاین و ویچنگ تهیه و ترجمه دوگانه استفاده شد. آزمایش در طرح بلوکهای کامل تصادفی با دو تکرار برای هر گروه از دو گونه به طور جداگانه اجرای گردید و صفات محتمال آب طوف نیاییات آب و برق و ورق در مزرعه و صفات بقای طوف، تراوش الکترولیتی (پاپاداری غشا)، و LT50 در آزمایشگاه داخلی‌گری شد. نتایج نشان داد که شاین مقاومتر از ویچنگ است و بقای آب طوف دارای همبستگی معنی‌داری با صفات محتمال آب و برق، وزن تر طوف و تراوش الکترولیتی برق می‌باشد. کروموموزهای A, B و D و ویچنگ در شاین بیشتر بقای آب و برق، پاپاداری غشا و افزایش محتوای آب و برق وزن تر طوف شاین بودند. این کروموموها باعث حسانتی شاین در مقابل سرمای می‌شوند. متقابل‌اً جایگزین کروموموزهای A, B و D و ویچنگ در شاین و بقای آب و برق نیاییات آب و برق، کاهش محتوای آب طوف و وزن تر طوف در ویچنگ گردیدند. بنابراین کروموموهای شاین موجب مقاومت به سرما در ویچنگ می‌شوند، و حمایت زنده‌ماند مقاومت به سرما می‌باشد.

واژه‌های کلیدی: رگ جایگزین، پاپاداری غشا، LT50

مقدمه

در قرن اخیر مقاومت به سرما از سرمای متحملات زمستانه خصوصاً غلات یکی از مسائل متداول اصلی اصلاح نیایش و فیزیولوژی در نقاط سردسیر بوده است. یکی از فاکتور مهم کاشت محصولات زمستانه آغازین عملکرد 15 درصدی آنها نسبت به برده‌ها و همچنین استفاده از آب سرمایه و اجتناب از تنش خشک‌سازی نتیزان می‌باشد. (7) جهت بهره‌مندی از این مراحل وجود ارقام دارای مقاومت کافی به سرما در مناطق سردسیر قبیل است و گنبد از غلات است که پرتابه‌های اصلاحی آن جهت افرایش مقاومت به سرما در نقاط سردسیر بسیار مهم است. تولید ارقام دارای مقاومت قابل قبول به سرما می‌تواند در شناسایی

1. Mironovskaya
2. Rannyaya
3. Chines spring

مکانی کننده: حسین ذشتي
آزمایش‌های اولیه این آزمایش برای بررسی تشخیص تفاوت بین والدین
رگه‌های جایگزین از نظر مقاومت به سرم با اندازه‌گیری صفات
پایداری غشاء و LT50، به ترتیب در دو مرحله انجام گرفت.
در مرحله اول، دو گلدن از هر رقم و در هر کدام دو گیاه
کشت و پس از سیز شدن جهت سازگاری به مدت 7 هفته در
دمای 40 درجه فوتورید 16 ساعت قرار گرفتند. سپس به دمای
37 درجه مورد کاشت داده شد و در دمای 28 درجه
گیاهان خارج و در دامای صفر درجه بیشتر به مدت 10 ساعت و سپس
به مدت 10 ساعت در دمای 40 درجه قرار گرفتند و بعد پایداری
غشاء از طریق اندازه‌گیری بهمراه کیفیت الکتریکی بر اساس برتن و
هانکاران (11) اندازه‌گیری شد. برای این منظور از گلدن دو
نمونه برگ در فنگه‌های 1 سانتی‌متری تهیه و در دو طرف حاوی
20 سانتی‌متری مکعب آب متخلخل اندازه‌گیری و هدایت الکتریکی
نمونه در یک组成的 مختلف (به منظور تعیین بهترین زمان قرار
هدایت الکتریکی قرار گرفت 9 درجه در دمای
20 گردن (EC0) سپس نمونه‌های حاوی برگ در دمای
37 درجه دمای و به مدت 20 دقیقه قرار داده شدند و مجدداً در دمای آزمایشگاه
هدایت الکتریکی قرار گرفت گردن (Etotal) و پایداری غشاء از
فروم زیر محاسبه شد.

\[\text{ELEC} = \frac{\text{EC0}}{\text{Etotal}} \]

این روش که نسبت فاصله‌ی زمانی است از پایداری غشاء
بیشتر و در نتیجه مقاومت به سرمایه‌ی بیشتری دارد. بعد از
تغییر داده‌ها به طرح فاصله‌ی اصلی‌ترین زمان تجربه شد.

در مرحله دوم، برای اندازه‌گیری LT50 (دلماهمی که
گیاهان تحت نشیب از بین می‌روند 8 گلدن از هر رقم و در هر
گلدن 10 گیاه کشت شد و پس از عمل سازگاری پوششی که در
مرحله اول شرح داده شد، هماً به سرعت 2 درجه مورد
کاشت داده شد و در دماهای 6-8 و 12-16 درجه
سانتی‌گراد از هر رقم 2 گلدن خارج گردد و پس از 10 روز
تعداد گیاهان باقی مانده در هر نقطه دماها در هر گلدن
شمارش و LT50 هر رقم بروش پروپت محاسبه شد.

1. Cheyenne
2. Anti Freeze Protein
3. Wichita
4. Duplicate

5. Electrolyteleakage

6. Probit

در مطالعه‌ی سری جایگزینی کروموموزه‌های شاین، در
چاپی‌نیزی‌های گونه کروموموزه‌های شاین حامل
زنده‌ی اصلی کنترل کننده مقاومت به سرمایه‌ی آب.
در آزمایش دیگری با همین مواد گیاهی علاوه بر
کروموموزه‌های گونه، کروموموزه‌های 2A و 2B نیز اثر
مندایی در بقای چاپی‌نیزی‌های ناشان داده‌اند (9) با استفاده
از گیاهان جایگزین در چاپی‌نیزی‌های مکانی شک که
کروموموزه‌های شاین در مکانی و فعالیت پروتئین‌های ضریح
1 (AFPS) و 3 (RTA) و 5 (RTD) و 6 (RTb)
به سایر رگه‌ها تجمیع اتفاقی
همچنین مکانی شک و سری کروموموزه‌های 1A, 1B, 2A, 2B
ذاتی و فعالیت در فعالیت‌های فیزیولوژیکی و مکانی شک که
پرتوپترون‌ها می‌یابند (2). شکاکی اظهار داشت
که برای گسترش و انفتاح خزانه‌ی زنی به منظور ابجار تنش برای
مقاومت به سرمایه‌ی آب خوش‌بیناندان و شنیده غذای
آوپیرون و چاپی‌نیزی‌های مکانی شک به همراه مقاومت
و افزایش حساسیت استفاده کرد (9). این مطالعه به منظور
تشخیص کروموموزه‌های حامل صفات مقاومت به سرمایه‌ی
استفاده از آنها در مطالعات زنتیکی و همچنین در صورت امکان
استفاده از آنها در پارانه‌های اصلی از طریق چاپی‌نیزی
کروموموزه‌ای انجام گرفته است.

مواد و روش‌ها
مواد زنتیکی که در این مطالعه مورد استفاده قرار گرفت,
چهل و دو گونه چاپی‌نیزی متفاوت بین در واریته‌های بلوکی و بی‌بیکینا
بصورت دوگانه (مجمع‌آرا 48) تولید شده در دانشگاه
نپسکاوا ژاپن 111. در آزمایشات کروموموزه از
دو گروهی که با اندیس‌های x و x مشخص شدند. برای آزمون
یک‌بتایی زنیتهای زنتیکی در صفات کی ایستاده می‌شد.
برای تعیین کروموموزه‌های موثر در مقاومت سرمایه
آزمایش انجام گرفت.
تجزیه و ارایش جدایگان برای هر آزمایش و همچنین تجزیه مربک (فقط برای پرایچه وارتیه قسمت سیالن، ویچنا و شاپر) انجم گرفته و کروموزومهای موتر در هر یک از صفات اندازه‌گیری شده توسط آزمون دستگاهی زنگیکی راه‌های جاگ‌گیری فقط برای صفت درصد اب طوقه انجم شد. جوین فقط این صفت در هر دو گانه x زیان‌های اندازه‌گیری شد اگر مقیاس دو گانه‌های هر گران جاگ‌گیری (x نگه) انجام شد که برای این منطقه LSD چاپ‌گذاری محاسبه گردید (1) آزمایش سوم

چهل و دو رگ جاگ‌گیرین متقلب بصورت دو گانه‌های x از همراه با واترین دو واریته قسمت ب (جهانه و مس نم) به عنوان تولدها در دو طرح بلوک کامل تصادفی با دو تکرار و صابون ریف کاشت 2 متری در هر کر (هر یک از دو گانه‌های x در یک آزمایش جدایگان) در سال 1367 در مزرعه دانشکده کشاورزی کرج در جوار یکدریگر به منظور اندازه‌گیری صفات درصد آب طوقه و بقای طوقه کشت شدند. در آزمایش‌های مقایسه یافته از هر تکرار از آزمایش x (دو گانه x) در مزرعه صفت درصد آب طوقه x و طوقه از هر تکرار از هر زنیوتوب برداشت و با قطع کردن بکرها و ریشه‌ها (سپس سانتی متر بالای طوقه و یک سانتی متر زیر طوقه) و با قرار دادن در ورق اولمیا به آزمایشگاه منتقلا و به مدت 6 ساعت در دمای 14 در مزرعه جفت شدند. در آزمایش دوم

نتایج نشان داد 50 برای شاین و ویچنا به ترتیب برای 86 و 12 درجه سانتی‌گراد است و شاین مقیاس شده و تخصص آزمایش دوم

نتایج بررسی رگ‌های جاگ‌گیرین نشان داد کروموزومهای 5D و 5B، 3A و 3B، B از ویچنا در شاین باعث یافتن نسبت ELEC می‌شود و پایداری غشا را کاهش می‌دهد (جدول 1) آزمایش سوم

تجزیه و ارایش سفه بر طبقه و مقیاسه میانگین‌های والدین رگ‌های جاگ‌گیرین و شاهدگان نشان داد که زنیوتوبها در نظر قرار طبقه متغیر و شاین دارای پیشین بقای طوقه و قسم کمترین بقای طوقه و ویچنا و شاین دارای تفاوت معنی‌داری می‌باشند (جدول 2). نتایج تجزیه و ارایش مربک در این آزمایش رگ‌های جاگ‌گیرین و ویچنا در شاین همراه با واترین (۳۳ زنیوتوب) هر یک از 2 گانه Cnn(WI) کشت و پس از سبز شدن و عمل سازگاری، صفت پایداری شنا در دمای 13-17 برای هر یک از اندازه‌گیری شد و اینها در قابل طرح کلی تصادفی تجزیه و کروموزومهای موتر در پایداری شنا از طریق مقیاسه طوقه بر طبقه از این طریق مقایسه هر یک از رگ‌های جاگ‌گیرین با ولای ارزیابی کننده، کروموزوم بررسی تعبیه گردید.

آزمایش سوم

بررسی تفاوت والدین رگ‌های جاگ‌گیرین از نظر مقاومت به سرم نتایج تجزیه واریانس مرتبه به صفت پایداری غشا نشان داد که والدین نتایج عضوی دارند. زمان‌های اندازه‌گیری همایه‌کریکی متغیر می‌باشد و شاین پایداری غشا (۸۷/۷) بیشتر از ویچنا (۸۷/۹) دارد و منحنی تغییرات بر اساس میانگین والدین در زمان‌های مختلف اندازه‌گیری بعد از شروع آزمایش نشان داد که با گسترش زمان این نسبت افزایش می‌یابد و به همچنین زمان اندازه‌گیری زمانی است که قدرت همایه‌کریکی به حداکثر خود می‌رسد. در اساس این آزمایش معلوم شد که بهترین زمان 15 ساعت بعد از قرار دادن قطعات بر دلخ آب می‌باشد (شکل 1).

نتایج نشان داد 50 برای شاین و ویچنا به ترتیب برای 86 و 12 درجه سانتی‌گراد است و شاین مقیاس شده و تخصص آزمایش دوم

نتایج بررسی رگ‌های جاگ‌گیرین نشان داد کروموزومهای 5D و 5B، 3A و 3B، B از ویچنا در شاین باعث یافتن نسبت ELEC می‌شود و پایداری غشا را کاهش می‌دهد (جدول 1) آزمایش سوم

تجزیه و ارایش سفه بر طبقه و مقیاسه میانگین‌های والدین رگ‌های جاگ‌گیرین و شاهدگان نشان داد که زنیوتوبها در نظر قرار طبقه متغیر و شاین دارای پیشین بقای طوقه و قسم کمترین بقای طوقه و ویچنا و شاین دارای تفاوت معنی‌داری می‌باشند (جدول 2). نتایج تجزیه و ارایش مربک
شكل 1- تغییرات میانگین تراش الکتریکی والدین در زمان‌های مختلف اندام‌گیری

شماهد: اندازه‌گیری‌های مربوط به ظرف حاوی برگ تحت تنش قرار گرفته است

جدول 1 - تفاوت میانگین رگ‌های جایگزین کروموزومی و بچی در شاپین

صفت تراش الکترولتی در دمای°C

<table>
<thead>
<tr>
<th>شاپین</th>
<th>تفاوت‌های اسیمپل</th>
<th>تفاوت‌های اسیمپل</th>
<th>تفاوت‌های اسیمپل</th>
<th>تفاوت‌های اسیمپل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>رگه‌جایگزین</th>
<th>تفاوت‌های اسیمپل</th>
<th>تفاوت‌های اسیمپل</th>
<th>تفاوت‌های اسیمپل</th>
<th>تفاوت‌های اسیمپل</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>0/015</td>
<td>1B</td>
<td>0/012</td>
<td>1D</td>
</tr>
<tr>
<td>2A</td>
<td>0/019</td>
<td>2B</td>
<td>0/011</td>
<td>2D</td>
</tr>
<tr>
<td>3A</td>
<td>0/013</td>
<td>3B</td>
<td>0/010</td>
<td>3D</td>
</tr>
<tr>
<td>4A</td>
<td>0/009</td>
<td>4B</td>
<td>0/009</td>
<td>4D</td>
</tr>
<tr>
<td>5A</td>
<td>0/007</td>
<td>5B</td>
<td>0/007</td>
<td>5D</td>
</tr>
<tr>
<td>6A</td>
<td>0/007</td>
<td>6B</td>
<td>0/007</td>
<td>6D</td>
</tr>
<tr>
<td>7A</td>
<td>0/006</td>
<td>7B</td>
<td>0/006</td>
<td>7D</td>
</tr>
</tbody>
</table>

LSD 0/005

* معنی‌دار در سطح 0/05

(شاپین) دارند و باعث کاهش بقاء طوله شدند. محتواً کروموزوم‌های A، B، C و D از شاپین در ویچیتا تفاوت معنی‌داری نسبت به والد دریافت کندنده کروموزوم (ویچیتا) دارند و باعث افزایش بقا طوله شدند. وهذا کروموزوم B، A حاصل از جایگزینی کروموزوم‌های A و B از ویچیتا در شاپین باعث افزایش وزن و در طوله و کم‌ترین آب طوله و قصد دادن. باعث داشته باشد و تفاوت‌های معنی‌داری میان رگ‌های جایگزین حاصل از جایگزینی کروموزوم‌های A و B از ویچیتا در شاپین باعث افزایش وزن و در طوله و کم‌ترین آب طوله و در 0/005 معنی‌داری داشته باشد.
جدول ۲ - میانگین والدین رگه‌های گیاهی و شاهدی وایصف مختلف

<table>
<thead>
<tr>
<th>وزن ترب و برگ</th>
<th>دشداب</th>
<th>دشدب</th>
<th>وزن ترب و برگ</th>
<th>زنونتیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۹۹۶</td>
<td>۷۷/۷v_b</td>
<td>۷۷/۴v_b</td>
<td>۱۰/۴۰</td>
<td>۷۷/۲v_b</td>
</tr>
<tr>
<td>۸۹۸۳</td>
<td>۷۵/۴v_b</td>
<td>۷۴/۳v_d</td>
<td>۲۸/۴۰</td>
<td>۸۱/۰v_a</td>
</tr>
<tr>
<td>۱۹۹۵</td>
<td>۷۲/۲v_a</td>
<td>۷۲/۲v_a</td>
<td>۲۸/۴۰</td>
<td>۸۱/۰v_a</td>
</tr>
<tr>
<td>۱۹۹۶</td>
<td>۷۲/۲v_a</td>
<td>۷۲/۲v_a</td>
<td>۲۸/۴۰</td>
<td>۸۱/۰v_a</td>
</tr>
</tbody>
</table>

بررسی کروموزوم‌های موثر در آب طولک را در نشان داد که رگه‌های چاپ‌داند کروموزوم‌های A۲، B۲، D۲ و D۳ و YB از ویژگی در راهان باغ‌آبی آب طولک (جدول ۱) ولی رگه‌های چاپ‌داند کروموزوم‌های A۲، B۲، D۲ و D۳ فقط در یکی از دوگانه (۰) نتایج به‌دست آمده. دانه‌های گیاهی از نوع A۲، B۲، D۲ و D۳ کروموزوم‌های شده نشان داد که این نوع در این نوع می‌تواند به عنوان گیاهی بزرگ‌تر از دیگر گیاهی شده نشان دهد که رگه‌های چاپ‌دانند A۲، B۲، D۲ و D۳ کروموزوم‌های موثر در ایجاد حسیستی در شایان قابل مصرفی می‌باشد. این نتایج به این‌جواب که زمین‌های مختلف (۱۹۸۸) در راهبی با فاقد زمین‌های این رگه‌ها در مزرعه نبوده و در این زمین‌های چاپ‌داند شایان در ویژگی‌ها، سخت باقی طولک، محیط اب طولک و وزن ترب و برگ اندازه‌گیری شد. لذا کروموزوم‌های A۲، B۲، D۲ و D۳ که با هر سه صفت اصلی دارد کروموزوم‌های A۲، B۲، D۲ و D۳ همچنین کروموزوم‌های A۲، B۲، D۲ و D۳ در چاپ‌داندیگن از آزمایش‌های ۹۰ و ۱۰ کروموزوم‌های حامل وزن مقاومت نسبت به چاپ‌داند سرپرست گزارش شده است و در انجا نیز کروموزوم‌های A۲، B۲، D۲ و D۳ از شایان در زمین‌های ویژگی ایجاد مقاومت به سرمای کردند. به علاوه کروموزوم‌های A۲، B۲ و D۲ از شایان حامل زن مقاومت به سرمای کاهش می‌یابد و همگانی بین
جدول 3- نتایج مبتدایی در گهگاهی جایگزین متقابل از والد دریافت کننده برای صفات بقاء طوطع و وزن تر طوطع برای دوگانه (ن)

<table>
<thead>
<tr>
<th>رده جایگزین</th>
<th>تفاوت از ویچیتا</th>
<th>تفاوت از والد دریافت کننده</th>
<th>وزن تر طوطع</th>
<th>تفاوت از والد دریافت کننده</th>
<th>تفاوت از ویچیتا</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/0/01</td>
<td>1/0/077</td>
<td>0/0/04</td>
<td>0/0/04</td>
<td>0/0/01</td>
</tr>
<tr>
<td>2A</td>
<td>0/0/015</td>
<td>0/0/212</td>
<td>0/0/06</td>
<td>0/0/06</td>
<td>0/0/19</td>
</tr>
<tr>
<td>3A</td>
<td>0/0/019</td>
<td>0/0/219</td>
<td>0/0/05</td>
<td>0/0/05</td>
<td>0/0/18</td>
</tr>
<tr>
<td>4A</td>
<td>0/0/028</td>
<td>0/0/222</td>
<td>0/0/023</td>
<td>0/0/023</td>
<td>0/0/11</td>
</tr>
<tr>
<td>5A</td>
<td>0/0/012</td>
<td>0/0/223</td>
<td>0/0/011</td>
<td>0/0/011</td>
<td>0/0/1</td>
</tr>
<tr>
<td>6A</td>
<td>0/0/211*</td>
<td>0/0/211*</td>
<td>0/0/12</td>
<td>0/0/12</td>
<td>0/0/1*</td>
</tr>
<tr>
<td>7A</td>
<td>0/0/277</td>
<td>0/0/277</td>
<td>0/0/14</td>
<td>0/0/14</td>
<td>0/0/6</td>
</tr>
<tr>
<td>8A</td>
<td>0/0/271*</td>
<td>0/0/271*</td>
<td>0/0/10</td>
<td>0/0/10</td>
<td>0/0/5</td>
</tr>
<tr>
<td>9A</td>
<td>0/0/201</td>
<td>0/0/201</td>
<td>0/0/12</td>
<td>0/0/12</td>
<td>0/0/6</td>
</tr>
<tr>
<td>10A</td>
<td>0/0/256*</td>
<td>0/0/256*</td>
<td>0/0/10</td>
<td>0/0/10</td>
<td>0/0/5</td>
</tr>
<tr>
<td>11A</td>
<td>0/0/233</td>
<td>0/0/233</td>
<td>0/0/12</td>
<td>0/0/12</td>
<td>0/0/6</td>
</tr>
<tr>
<td>12A</td>
<td>0/0/224</td>
<td>0/0/224</td>
<td>0/0/10</td>
<td>0/0/10</td>
<td>0/0/5</td>
</tr>
<tr>
<td>13A</td>
<td>0/0/228</td>
<td>0/0/228</td>
<td>0/0/10</td>
<td>0/0/10</td>
<td>0/0/5</td>
</tr>
<tr>
<td>14A</td>
<td>0/0/232</td>
<td>0/0/232</td>
<td>0/0/10</td>
<td>0/0/10</td>
<td>0/0/5</td>
</tr>
<tr>
<td>15A</td>
<td>0/0/236</td>
<td>0/0/236</td>
<td>0/0/10</td>
<td>0/0/10</td>
<td>0/0/5</td>
</tr>
<tr>
<td>16A</td>
<td>0/0/240</td>
<td>0/0/240</td>
<td>0/0/10</td>
<td>0/0/10</td>
<td>0/0/5</td>
</tr>
<tr>
<td>17A</td>
<td>0/0/244</td>
<td>0/0/244</td>
<td>0/0/10</td>
<td>0/0/10</td>
<td>0/0/5</td>
</tr>
<tr>
<td>18A</td>
<td>0/0/248</td>
<td>0/0/248</td>
<td>0/0/10</td>
<td>0/0/10</td>
<td>0/0/5</td>
</tr>
<tr>
<td>19A</td>
<td>0/0/252</td>
<td>0/0/252</td>
<td>0/0/10</td>
<td>0/0/10</td>
<td>0/0/5</td>
</tr>
<tr>
<td>20A</td>
<td>0/0/256</td>
<td>0/0/256</td>
<td>0/0/10</td>
<td>0/0/10</td>
<td>0/0/5</td>
</tr>
<tr>
<td>21A</td>
<td>0/0/260</td>
<td>0/0/260</td>
<td>0/0/10</td>
<td>0/0/10</td>
<td>0/0/5</td>
</tr>
<tr>
<td>22A</td>
<td>0/0/264</td>
<td>0/0/264</td>
<td>0/0/10</td>
<td>0/0/10</td>
<td>0/0/5</td>
</tr>
</tbody>
</table>

* میانگین در سطح 0/05
جدول ۴- تفاوت میانگین رگه‌های جایگزین با ولد دریافت کننده برای دوگانه‌های X و Y تفاوت میانگین دوگانه‌ها برای محتمال اب طوله

<table>
<thead>
<tr>
<th>رگ جایگزین</th>
<th>تفاوت از شاخص</th>
<th>X-Y</th>
<th>WI(WI)</th>
<th>Tفاوت از ویجینا</th>
<th>X-Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>۱/۳۵</td>
<td>۱/۳۵</td>
<td>-۱/۸۱</td>
<td>A</td>
<td>-۲/۶۸</td>
</tr>
<tr>
<td>B</td>
<td>-۱/۲۶</td>
<td>-۱/۲۶</td>
<td>-۱/۹</td>
<td>B</td>
<td>-۲/۷۳</td>
</tr>
<tr>
<td>C</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۳۴</td>
<td>C</td>
<td>-۲/۳۵</td>
</tr>
<tr>
<td>D</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۸۵</td>
<td>D</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>E</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۳۴</td>
<td>E</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>F</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۸۵</td>
<td>F</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>G</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۳۴</td>
<td>G</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>H</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۸۵</td>
<td>H</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>I</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۳۴</td>
<td>I</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>J</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۸۵</td>
<td>J</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>K</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۳۴</td>
<td>K</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>L</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۸۵</td>
<td>L</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>M</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۳۴</td>
<td>M</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>N</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۸۵</td>
<td>N</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>O</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۳۴</td>
<td>O</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>P</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۸۵</td>
<td>P</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>Q</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۳۴</td>
<td>Q</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>R</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۸۵</td>
<td>R</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>S</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۳۴</td>
<td>S</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>T</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۸۵</td>
<td>T</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>U</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۳۴</td>
<td>U</td>
<td>-۲/۳۲</td>
</tr>
<tr>
<td>V</td>
<td>-۱/۱۷</td>
<td>-۱/۱۷</td>
<td>-۱/۸۵</td>
<td>V</td>
<td>-۲/۳۲</td>
</tr>
</tbody>
</table>

**، معنی دار در سطح ۰/۰۵ و **، معنی دار در سطح ۰/۰۱.
جدول 5- ضرایب همبستگی بین صفات مختلف مقاومت به سرما

<table>
<thead>
<tr>
<th>وزن تر طوفه</th>
<th>محتوای آب طوفه</th>
<th>تراوش الکترونی</th>
<th>محتوای آب طوفه</th>
</tr>
</thead>
<tbody>
<tr>
<td>342/5*</td>
<td>0.342/5***</td>
<td>342/5*</td>
<td>0.342/5***</td>
</tr>
<tr>
<td>352/7**</td>
<td>0.352/7**</td>
<td>352/7**</td>
<td>0.352/7**</td>
</tr>
<tr>
<td>362/0**</td>
<td>0.362/0**</td>
<td>362/0**</td>
<td>0.362/0**</td>
</tr>
<tr>
<td>372/3**</td>
<td>0.372/3**</td>
<td>372/3**</td>
<td>0.372/3**</td>
</tr>
</tbody>
</table>

شندن آن می‌گردد و چنین اظهار نظری در این کروموزوم حامل وزن غالب عدم نیاز به وراثی‌اسیان (Vrn) است و لی این زن در زمینه زننیکی و بجیتا بیان نمی‌شود و حساس شدن رگه Cnn(W13B) در مقابل سرما به این مسئله نسبت داده شده است (12).

سرما می‌یابند کروموزوم‌های A و D شاین در آزمایشات کروموزومی در تجمع و فعالیت پروتئین‌های ضد یخ موتور شناخته شده‌اند (5) که می‌تواند یکی از دلایل ایجاد مقاومت به سرما در زمینه زننیکی و بجیتا باشد. جایگزینی کروموزوم B3 و بجیتا در داخل شاین باعث بهره‌برداری می‌شود.

REFERENCES

1. نوینی، ج. صمدی، ب. ع. رضایی و ی. ولی‌زاده (1376). بزرگ‌های آماری در پژوهش‌های کشاورزی: انتشارات دانشگاه تهران.
Identification of Chromosomes Contributing to Cold Resistance in Winter Wheat by Using Substitution Lines

H. DASHTI¹, B.YAZDI-SAMADI², M.R.GHANNADHA³, C.ABD-MISHANI⁴ AND A.SARAFI⁵
1- Asistant Professor of Valiasr University, Rafsanjan.
2, 3&4- Professor, Associate Professor and Professor of Tehran University, Iran.
5- Professor of Tolouz University, France
Accepted. May. 23, 2001

SUMMARY

In order to search out chromosomes involved in cold resistance, reciprocal sets of chromosome substitution lines in duplicate between two winter wheat cultivars, Cheyenne and Wichita, were used. Two experiments were carried out in a complete block design with two replications for each duplicate. Crown and leaf water content, crown and leaf wet weight were measured in the field. Crown survival, electrolyte leakage and LT50 were measured in laboratory. The results showed that Cheyenne is more resistant than Wichita. Crown survival had significant correlations with crown water content, crown wet weight and electrolyte leakage. Chromosomes 6A, 3B, 5D substituted from Wichita into Cheyenne decreased the crown survival, membrane stability and increased crown water content as well as crown wet weight of Cheyenne. Therefore, these chromosomes decreased cold hardiness in Cheyenne. Reciprocally, chromosomes 5A, 5D, 3B, 4A and 4D from Cheyenne into Wichita increased crown survival, decreased crown water content and crown weight in Wichita. It is concluded that these chromosomes causing cold hardiness in Wichita and carrying cold resistance genes.

Key words: Substitution line, Electrolyte leakage, LT50.