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Figure 4. Comparison of analytical and numerical solutions. Incomplete cubic hermitian basis Function
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NUMERICAL RESULTS

The program was applied to a one - dimensional
aquifer of length 1. At time t=0, the concentration of a
pollutant is zero everywhere in the aquifer. For t>0,
the concentration at x=0 is maintained at unity. The
length of the aquifer is chosen so that the
concentration at x=1 will be zero and will not
influence the concentration within the aquifer.

The initial and boundary condition are summarized as:

Cx, 0)=0 for O0=x=l
Cx, )=1 for t>0
C(Q, v)=0 for t>0

The parameter values used to construct the
different curves are: node spacing (Ax)=10 ft, apparent
groundwater velocity (VXE)=0.075 ft/day, porosity
(n)=0.3, groundwater seepage velocity (VXEP)=0.25
ft/day, time step (At)=20 days, simulation time
(t)=2000 days, retardation factor (R)=1, decay
coefficient A=0. The first node was treated as a
node with a relative

constant  concentration

concentration of 1. The dispersivity (a.) was varied so

that the Peclet number (P, = VIXDA") of 1, 10, 50 and
100 were obtained. The Courant number (C, =_VI")At)

was held constant for all four runs at 0.5. The exact
concentration distrbution versus distance can be

obtained form the analytical solution of [8] as

= % [erfc (;-/I\)i;) + exp (YI%) erfc ();\*}1\5/:%)] (22)

where erfc (u)=1 - erf (u) is the complementary error
function [1].
The solution of equation (18) for concentration C

was obtained using the appropriate weighting function

o and a linear interpolation function. The results of
this method for different Peclet numbers are given in
figures 3 (a) - 3 (d). The method was repeated using
the incomplete cubic Hremitian function as the
interpolation function. The results of these runs are
shown in figure 4(a) - 4(d). The dashed line represents
the numerical solution and the solid line represnts the
analytical solution.

For low Peclet numbers less than 10, satisfactory
results are obtained. The match between the analytical
and numerical solution is quite good. When the Peclet
number increases, advection becomes dominant and
oscillations appear at downstream of the concentration
front. For a Peclet number of 100, the oscillations
increase in magnitude and the numerical solution lags

behind the analytical solution.

CONCLUSION

This numerical example clearly demonstrate the
close interaction between the spatial and temporal
derivatives in the mass transport equation.
Inappropriate derivative approximations either in space
or time (eq. 18) can degrade the accuracy of the overal
solution regardless of how accurately the other
approximations are obtained [4].

The solution of the adjoint equation results in
weighting function that are similer to the upstream
weighting technique. Use of the these weighting
functions and an interpolation function in the Petrov -
Galerkin method results in a variable technique for
solving mass transport problems in groundwater.
Oscillation - free solution are obtained for right

combination of Peclet and Courant numbers.
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involving only diffusion across grid lines. B is a non

symmetric 1] matrix.

Bik = Ewa,gﬁdQ
n ¢h dt

defined over cell interiors which vanishes if ¢, are

(12)

independent of time, C is an I - dimensional vector of

nodal concentration values. Fis a symmetric I«I matrix.

Fy = X [ Ro; ¢, dQ (13)
and Qrl isgzr;n I - dimensional vector.

Q=G+H (14)
consisting of interior source terms.

G = X [ SwdQ (15)
and b(r;ulslzaary flux terms

H =_ fo q.vew; df (16)

The differential equations are free of advective
terms and terms involving diffusion and decay in the
interior of the grid cells; the corresponding
information is carried entirely by the weight functions.
Hence the accuracy of the terms in equation (10) to
(16) depends not on the refinement of the original grid
but on the accuracy with which w;(x, t) and ¢i(x, t) are
evaluated over each neighborhood fli.

If w; is independent of time, the matrix [B] is equal to
zero and equation (10) becomes

[A] {C} + {F} {%—f} = [Q] 17)
Equation (17) is a system of ordinary differential
equations, the solution of which provides values of {C}
and {%(tl} at each node in the finite element mesh at
each time. This equation can be solved using a finite

difference approximation for {%%} .

{Z5} = % dOhuateh) (18)

ot
where the subscript denotes the time level and At is

the length of the tims step.

The choice of time, between t and t+At, at which

{C} is evaluated, is controlled by the time relaxation
factor .
{Cr=(1_B) {C}+B {Clun

Substitution of these two equations into equation (17),

(19)

result in.
([F]+BAYA]) {Cha = ([F]-(1-B) At [A]) {Chuun
((1-8) {Q}+B {Q}ua) (20)
The solution procedure begins by specifying the
initial values of {C} as {C,), then we solve the system
of linear equations to obtain values of {C} at the end
of the first tims step, {C}y.a We then set.
{CH={Clus+n

in equation (18) and repeat the solution process for

(21)
the next time step, and so on.

WEIGHT FUNCTION

The adjoint equation (4) is solved for w using the
Galerkin finite element method. To evaluate the
coefficients of the matrix [A] one has to obtion the
weight function w and its spatial derivative %x“i at each
node of the fine grid. A cubic Hermitian interpolation

function was used in the solution of the weight

function w. The distribution of w over two adjacent
elements for different values of (V/D) are shown in
figures 2(a) - 2(d). Examination of the these figures
shows that when V/D is small, diffusion dominates and
the weight functions approach piecewise linear. When
advection becomes progressively dominant, the weight
functions become increasingly skewed in the upstream
direction. For large values of V/D, numerical
oscillations appear in the distributions. i)espite the
oscillations, it seems more rational to use these weight
functions rather than using arbitrary upstream weight

factors.
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The weak form of equation (1) is

f(I‘C)w(_)dQ f (_V.q_ARC+S_R 2 )w(_)dQ @)

The application of Green’s first identity to equation (2)

twice gives.

JTC)o(x)dQ=[[V. Vo +V.(DVw)_ARw]CIQ

+[[sR %—f] 0dQ_ [ (Svw+DV waC) df=0 (3)
Q I

where [ is boundary of €2 and v a unit vector normal
to [ pointing outward.

To evaluate the weight functions w; (X, t), one has
superimpose a relatively fine local grid E' on Qi
(QiUfi) and evaluate w; (x, t), numerically at the
nodes of this new grid. This will be done by the
standard finite element method. w; (X, t), have to satisfy
the formal adjoint of I'C which is:
'w;=V.Vo,+V.(DVw;)_ARw;=0 on each Q, €L (4)

subject to the local boundary conditions:

w; (x,)=0 at x € [isuch thatx & [ )

DVw;«wv=0 at x € [isuch thatx € [ (6)

Qi=the union of ¥

[i are the boundaries of

In addition, w; (X, t), satisfies
w; (x, t)=0y for all k=1, 2, ..., |
; (x, 1)=0 for all x & Qi

w; (%, t) is continuous everywhere in Q' but the normal
component DVe; exhibits discontinuity across all grid
lines associated with S~2i, including the grid lines ' in
the interior of Q.Q=f UQ.

The

solution corresponding to any € s

indepenpent of that over Qx, k#j and/or 1#j and

hence these can in principle be evaluated
simultaneously on parallel processors. The dependent

variable C will be approximated by.

- 1

Cx,t)= 2CEo ) P (X, 1) @
k=1

The solution of the adjoint equation or any Lagrangian

interpolation function can be used as ¢(x, ). With

weight functions thus defined, equation (3) can be

written as:

f [V.Vw+V.(DVw)_-A Ro;] CdQ

Qn

ﬂMz

z[ [Cw, dQ=
aC N
>N [S—R 2] 0,02 - X fulave
N N
+DVw,.vC) df - 5_; > ffnm (q v,
n=1 m=1

+DVaw,;.vC) df =0 @)

The integrals over [, are evaluated by approaching
this intercell boundary (or grid line) from within €2,. In
such integrals v is a unit normal to fom directed away
from €2,. The double sum of integrals involving q.vw;
vanishes due to the continuity of the solute mass and
wi(x, t) in Q. The integrals of [ ] C over 2, are zero
by virtue of equation (4), and equation (8) simplifies

to:

) Lf DVa,.vCdf + ZIfDVwi.Cdf]

+> f R% w, dR=2 f Sw; dQ_Ef q.vodf (9)
n Qn n Qn n fn

The substitution of equation (7) into equation (9) yield

a system of ordinary differential equation.

a+B) (C1+[F] {25} = Q)

where A is a non symmetric Il matrix.

Ay= DZ [ﬁf DV o;wwed [+ mZﬁLDV wi-v¢kdf]
(11)

(10)
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INTRODUCTION

The simulation of contaminant transport in both
surface and subsurface hydrology requires solution of
the advective - dispersive equation which have great
importance in many fields of engineering and science.
This equation, in its compact form, can be written as:
[C=-V.q-ARC+5-R % =0 1)
where

I' = differential operator

C = concentration

V = gradient with respect to the space coordinates

q = solute mass flux qg=VC-DVC

v

seepage velocity

D = dispersion tensor

A = exponential decay coefficient

R = rearsation coefficient

= source term

a considerable interest in finding accurate numerical
solution to equation (1) exists because these solutions
characteristically exhibit oscillations "over shoot"
and/or excessive numerical dispersion [3]. Considerable
work has been expended in developing formulate to
overcome this kind of problem ([2], [5], [6], [10]). Most
methods to eliminate the oscillations have focused on

upstream weighting techniques [10]. A fundamental
criticism of these methods is the essentially ad-hoc
nature of their development. This is manifested
through the use of an arbitrary parameter, the
magnitude of which has to be selected by the analyst.
An alternate and very promising approach has been
introduced by Herrera [7]. In this approach, Herrera
chooses the weight functibn to be a solution of the
homogeneous adjoint differential equation associated
with the original governing differential operator. When
the homogenous adjoint differential equation has

constant coefficients, it can be solved exactly. It cannot

be solved exactly if the coefficients are not constants.
Neuman [9] presented a method to approximate the
solution to I"w=0 thereby providing good estimates
for the weight functions. where I is the adjoint
opertor. Neuman superimposed a relatively fine local
grid over a coarser one and used a finite element
method to solve the weight functions. Once the weight
functions are obtained they are used to compute the

field variable over the coarser grid.

DEVELOPMENT OF THE METHOD

The method is described in detail by Neuman [9] it
is presented below in summary form. The domain E°is
divided into subdomains 2, (n=1, 2,3, ..,n), forming
four sided areas. The boundary segments of €2, are
designated by f,, if they coincide with the global
domain boundary [ and by [, if they are contiguous
on another subdomain Q,, m#n. The intersections of
these segments form nodal points, i=1,2,3,..., I (1=20
in Figure 1), and pairs of contiguous nodes i#j from
grid lines 9 which coincide with the boundaries [,
andfor I',, of contiguous subdomains €2,. Associated
defined as

with each §'J is a subdomain Qi

Qi=Q UQ,, m#n which forms the union U of the
two contiguous subdomains €, and €, on the two

opposite sides of y¥ (Figure 1).

8 12 16 20
I 5 6
B 3 p6 | 63 O3 196 Q9 o1
p2 |7 s |1 15 19
3 s 156
2 ps |52 5 8 o8 Q11
21 6 [54 10 14 18
2 2 45
Q14|04 a1| @ Q10
| 4 17

Figure 1. Global two-dimensional grid E° (after Neuman [9]).
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Accurate solution of groundwater mass transport equation

using the adjoint Petrov - Galerkin method

Kaboudanian, Ardestani M. (Ph.D)*

Abstract :

An adjoint Petrov - Galerkin method was proposed by Neuman
[1] to solve multidimensional advection - dispersion equation. The
method uses a numerical solution of the adjoint state equation on
a sequence of nested grids to compute the weight functions. A
numerical application of the method shows that at low Peclet
numbers, the application of method results in a satisfactory match
between the analytical and the numerical solutions. When the
Peclet number increases and advection become dominant, the
results obtained show oscillations of the concentration profile and
a lag between the analytical and the numerical solution. The
oscillations are a function of the Peclet and Courant numbers.
Accurate solutions are obtained when the Courant number is
equal to one, for Peclet number up to 50. For Peclet number
greater than 50, the numerical solution lags behind the analytical
solution. At other Courant numbers, the maximum Peclet number

for stable solution drops off rapidly.

Key words :
Groundwater, Analytical Solution, Accurate Solution, Numerical Solution, Mass

Transport, Peclet Number, Courant Number.
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