حل تحليلي مسائل ترمولاستسيميه وابسته ديناميكی در محيط استوانهای
قسمت دوم: حل عددی

محمد رحیمیان
استادیار گروه مهندسی عمران - دانشکده فنی - دانشگاه تهران
مرتضی اسکندی داری
دندوی دوره دکتری گروه مهندسی عمران - دانشکده فنی - دانشگاه تهران
عمرضا حیدری
فارغ التحصیل کارشناسی ارشد گروه مهندسی عمران - دانشکده فنی - دانشگاه تهران
(تاریخ دریافت: 6/6/1267، تاریخ تصویب: 7/7/1267)

چکیده

در این مقاله با استفاده از روش‌های عددی، نتایج گرافیکی تغییر مکان، تغییرات درجه حرارت و نشان‌گر حل تحلیلی مسائل ترمولاستسیمیه وابسته دینامیکی در بی‌بی‌لوه استفاده از داده‌هایی در حالت متران محوری ارائه می‌شود. این نتایج گرافیکی با استفاده از جواب‌های حاصل از حل تحلیلی است که در قسمت اول مقاله برای مسائل ترمولاستسیمیه وابسته دینامیکی بی‌بی‌لوه مدت آمده است. [11] نتایج بدست آمده از این مقاله با روش‌های عددی مرجع [12] مقایسه شده‌اند.

برای بدست آوردن نتایج در فضای زمانی، نیاز به تعیین انگکوک مکانی برای تغییر مکان و درجه حرارت محاسباتی دارد. همچنین، به طور خاص شناسایی درجه حرارت سطح بالایی در محدوده انگکولی از بُر لازم است. برای پذیرش

کلیدواژه‌ها: ترمولاستسیمیه وابسته دینامیکی، متران محوری، تبدیل لایلاس، روش‌های عددی، تابع دیرک،

نقطه تکین

مقدمه

مسائل ترمولاستسیمیه وابسته دینامیکی را می‌توان به صورت زیر تعریف کرد: حالت نیمه وابسته که در آن ابتدا تغییرات درجه حرارت از محدوده انگکولی حرارت بدست می‌آید و با تغییرات درجه حرارت در محدوده انگکولی، تغییر مکانها بدست می‌آید. در این حالت اثر انگشت دسته و سرعت تغییر آنها بر تغییرات درجه حرارت مطالعه نشده است و فقط اثر تغییرات درجه حرارت بر تغییر مکانها، کرنشها و

حل تحلیلی مسائل ترمولاستسیمیه در حالت وابسته

برای لوله‌های طولی با مقطع دایره‌ای و ضخامت دلخواه

سی‌نگولو 2 - دیرک، صفحه 1
در حالی که می‌توانیم محوری در قسمت اول مقاله آمده این جواب را بررسی می‌کنیم. شکل توزیع حرارت و تغییرات درجه حرارت به صورت تحلیلی در فضای اوراسیا و در بررسی نواحی به سرعت می‌رود. ایران در این مقاله به سرعت می‌رود. این مقاله به سرعت می‌رود. در این مقاله به سرعت می‌رود. از این مقاله به سرعت می‌رود. این مقاله به سرعت می‌رود. در این مقاله به سرعت می‌رود. این مقاله به سرعت می‌رود. در این مقاله به سرعت می‌رود.

\[
\begin{align*}
\Phi &= \frac{1}{\varepsilon_p} \left(A_1 \Phi_1 I_0 (\Phi, \varepsilon) \left(\frac{\Phi - \kappa}{k_z} - \varepsilon_c \right) \right) - B_1 \Phi_1 \\
&+ \frac{\Phi - \kappa}{k_z} - \varepsilon_c \\
\end{align*}
\]

(4)

پارامترهای این روابط در قسمت اول مقاله توضیح داده شده است. تبدیل مغناطیسی u به صورت زیر تعیین می‌شود:

\[
\begin{align*}
\Phi (r, \varepsilon) &= \int_0^\infty e^\varepsilon u(r, \varepsilon) d\varepsilon, \\
\Xi (r, \varepsilon) &= \int_0^\infty e^\varepsilon T(r, \varepsilon) d\varepsilon
\end{align*}
\]

(5)

با استفاده از این تعیین تغییر مکان u و تغییر درجه حرارت T در فضای واقعی یکبار می‌باشد.

\[
\begin{align*}
u(r, \varepsilon) &= \frac{1}{2\pi} \int_0^\infty e^{\varepsilon} \Phi (r, \varepsilon) d\varepsilon, \\
\xi (r, \varepsilon) &= \frac{1}{2\pi} \int_0^\infty e^{\varepsilon} T(r, \varepsilon) d\varepsilon
\end{align*}
\]

(6)

با قرار دادن توابع تغییر مکان u(r, \varepsilon) و تغییر درجه حرارت T(r, \varepsilon) در معادلات (4) در روابط (6)، توابع T(r, \varepsilon) در فضای زمانی به‌دست می‌آیند. به منظور در انتخاب داشتن مقداری از این توابع نیاز به برآورد انتگرال‌های روابط (6) می‌باشد. \(\eta = \frac{\gamma T_0}{c_0} = \frac{\gamma T_0}{\rho c} \) می‌باشد. به علاوه پیچیدگی توابع تعیین این انتگرال‌ها به صورت تحلیلی T(r, \varepsilon) و u(r, \varepsilon)

\[
I(t) = \lim_{c \to 0} \int_{x}^{t} \frac{f(p)p}{(p-x)^{1}} dp \quad \forall c
\]

را می‌توان یا با جایی محاسبه

\[
\lim_{x \to \infty} I(t) = x + \epsilon
\]

نمود. به‌عنوان مثال، دانسته‌ی انجام خودکار به طوری که

\[
\alpha = 1.17 \times 10^{-6} \frac{m^{3}}{sec}
\]

(ضریب انتشار)

\[
\frac{1}{K^{*}} = 11.7 \times 10^{-6}
\]

(ضریب انباشت طولی)

در ادامه برآورد عددی \\(T \) و برای هر یک از توابع

به صورت زیر دارهایی جدایه‌ای بررسی شده‌اند که در

\[
\begin{align*}
 \sigma_{0}(t) &= 0.0011 \\
 \delta(t) &= \delta(t)
\end{align*}
\]

در این مقاله توابع برگیری‌ها نیز در حالت \\(t \) به

\[
\begin{align*}
 f_{0}(t) &= -0.003 \times (1-e^{-10t}) \\
 f_{1}(t) &= -0.015 \times e^{-2t} \\
 f_{2}(t) &= \delta(t) \\
 g_{1}(t) &= \delta(t)
\end{align*}
\]

که در آن \(t \) تابع کلیه‌ای اصلاح شده بوده و با افزایش

ضریب \(2 \) توان \(x \) به سمت تابع دنده‌ای اضافه می‌شود. برای هر تابع ضریبی \(f_{1}(t) \) تابع ضریبی \(f_{2}(t) \) باشد. تابع دنده‌ای \(g_{1}(t) \) از دیدگاه حجاری‌های زمانی برای برابر که در برگیری

\[
\begin{align*}
 f_{1}(p) &= \frac{-0.003}{p} + 0.003 \\
 f_{2}(p) &= \frac{-0.015}{p+10}
\end{align*}
\]

1 - Modified step stress
\[f_1(t) = -0.003 \times (1 - e^{-10t}) \]

شکل ۱: نمودار توابع \(F \) نسبت به زمان در نقطه داخلی استوانه.

\[f_2(t) = -0.003 \times (1 - e^{-10t}) \]

شکل ۲: نمودار توابع \(F \) نسبت به زمان در نقطه میانی استوانه.
حل تحلیلی مسائل نرمال استیسیس و استیسیس دینامیکی

شکل ۲: توابع $F(t)$ نسبت به زمان در نقطه خارجی استوانه.

$$f_1(t) = -0.003 \times (1 - e^{-0.1t})$$

شکل ۳: مقایسه نسبت شعاعی نسبت به زمان در نقطه داخلی استوانه.

در شکل‌های (۴۲) تا (۳۹) تنش‌های شعاعی، نمایشی و درجه حرارت در نقاط داخلی و بیرونی استوانه بدست آمده از روش‌های مقایسه با روش عدیدی مقایسه شده‌اند. واضح است که در نقاط داخلی استوانه (یا $r=1$) با مراحله در هر لحظه برای تنش ورودی باشند (شرط مرزی داخلی). با مشاهده شکل (۴) ملاحظه می‌شود که این تنش در روش
شکل ۷: مقایسه نشان ماماسی نسبت به زمان در نقطه دامپه استوانه

حاصل از روش این مقاله و روش عدید.

\[f(t) = 0.003 \times (1 - e^{-10t}) \]

شکل ۸: مقایسه درجه حرارت نسبت به زمان در نقطه داخلی استوانه

حاصل از روش این مقاله و روش عدید.

شکل ۹: مقایسه درجه حرارت نسبت به زمان در نقطه میانی استوانه

حاصل از روش این مقاله و روش عدید.

مقطع استوانه داده‌که به منظور افزایش دقت باید تعداد این اجزای را افزایش داد.

حال اگر در روش ارائه شده در این مقاله فقط شعاع‌های داخلی و خارجی برای معرفی شکل مسئله کافی‌ست. در طراحی بک مقطع استوانه‌ای همراه با تنش‌های میانی تنش اساسی دارند. با مشاهده اشکال (۶) و (۷) در می‌باشد که نتایج بدست‌آمده از روش تحلیلی حد بالایی نسبت به روش صریح مکری می‌باشد. بنابراین مقایسه این نتایج نشان می‌دهد که روش تحلیلی باید مبتنی بر طراحی قرار گیرد.

شکل‌ها (۸) و (۹) مقایسه درجه حرارت‌های بدست‌آمده
حل تحلیلی مسائل ترموالاستیشیک وابسته دینامیکی

$ f_2(t) = -0.015 te^{-2t}$

شکل 10: توابع F نسبت به زمان در نقطه داخلی استوانه.

$ f_2(t) = -0.015 te^{-2t}$

شکل 11: توابع F نسبت به زمان در نقطه خارجی استوانه.
شکل ۱۲: توابع F نسبت به زمان در نقاط میانی استوانه.

از روشهای تحلیلی و عددی را نشان می‌دهد و انطباق
نتایج به معنی صحت نتایج این مقاله می‌باشد.

پاسخ به ضریح تش مقدار

$$f'(t) = 0.015 re^{-2t}$$

نتایج روش ارائه شده در این مقاله برای توابع F شامل
پاسخ تنش‌های شعاعی، مماسی، تغییر مکان و درجه
حرارت نسبت به زمان در نقاط داخلی، مبانی و خارجی
استوانه، هنگامی که تنش نیرویی (یا برگزاری) به صورت
(۷) باشد در شکل‌های (۱۰) و (۱۱) نشان داده
شدگاند.

در شکل‌های (۱۳) نشان شعاعی، مماسی و درجه حرارت نسبت به زمان در نقاط داخلی و
مامی استوانه به دست آمده از روشهای تحلیلی و عددی
مقاومه شدگاند. در شکل (۱۴) نشان شعاعی استوانه در
نقطه داخلی حاصل از روشنایی مقاله و روشنایی

حل مسائل مربوط به نسبت به زمان در نقطه میانی استوانه

شکل 16: مقایسه نسبت به زمان در نقطه میانی استوانه.

$$f_2(t) = 0.015 e^{-2t}$$

شکل 14: مقایسه نسبت به زمان در نقطه میانی استوانه.

شکل 17: مقایسه درجه حرارت نسبت به زمان در نقطه داخلی استوانه.

شکل 15: مقایسه نسبت به زمان در نقطه داخلی استوانه.

معمایی در زمان $8 > 3$ بزرگتر از نتایج ناشی از روش تحلیلی است. با دقت در اشکال (10) و (13) براساس طول زمان پارگذاری می توان دریافت که نتایج روش صریح مکری دقیق نمی باشد. همچنین شکل (16) نشان می‌دهد که نتایج روش این مقاله برای تنش معمایی حد بالای نتایج بوده و با این معیار طراحی قرار گیرد.

پاسخ به پرسیدنی تایوزی
در این حالت $f(t) = \delta(t)$ است. بدست آوردن جواب برای این پرسیدنی به روش المان‌های محدود بسیار مشکل
شکل ۱۹: توابع $f_5(t)$ نسبت به زمان در نقطه داخلی استوانه.

شکل ۲۰: توابع $f_5(t)$ نسبت به زمان در نقطه میانی استوانه.
شکل ۲۱: توابع F نسبت به زمان در نقطه خارجی استوانه.

شکل ۲۲: توابع F نسبت به زمان در نقطه داخلی استوانه.
شکل ۲۳: نسبت به زمان در نگه‌داری نمایشگر

شکل ۲۴: نسبت به زمان در نگه‌داری نمایشگر
می باشد. به علت یافته‌های نویسندگان همانند این نوشتار، ممکن است این مقاله مقدمه به روش تحلیلی بسیار مشکل است. این نگرش از این مقاله، تأکید دارد که این مقاله را به چهار گروه اصلی تقسیم کند:

1. تحلیلی مساله نرم‌الاستینسیته و استنده دینامیکی

2. شاید هم غیرمکن است. اما به روش تحلیلی این

3. مطالعات بیشتری به توانایی بازگشت به جواب آن به

4. آسانی بدهد. شکل‌های (18)، (19)، و (20)

5. می‌تواند بیشتر بگیرد. است. شکل‌های F و G

6. شمار تنش‌های حساسیت، مسمای، تغییر مکان و

7. درجه حرارت نسبت به زمان را در نقاط داخلی، میانی و

8. خارجی استوانه، هنگامی که نش نیرویی (بارگذاری) به

9. صورت (3) باشد، نشان می دهد.

10. پیام به دیپواز حرارتی

در این حالت (3) می باشد و مانند قسمت بالا

11. بدست آورده جواب مسئله برای این تغییر درجه حرارت

12. به روش الگوریتم محاسبه بسیار مشکل است. شکل‌های

13. (21)، (22)، و (23) توابع F و G شامل تنش‌های شعاعی،

14. شعاعی داخلی و خارجی، مشخصات مصالح و تابع

15. بازگشت برای حل مسئله کفایت می کند و جواب به

16. سرعت تبعین می شود.

نتایج حاصل از این مقاله نشان می دهد که اولاً در

17. حالتی که ورودی تنش باشد، تنش شعاعی در شعاع داخل

18. مطابق اندازه‌گیری‌های متن‌بندی تنش ورودی می باشد. تنش‌های

19. مماسی بدست آمده نسبت به جواب‌های حل عدده مبنای

20. کمی برتری دارد و در طراحی ها معیار طراحی خواهد بود.

21. همچنین نشان داده شده است که به ازای نیروی دینامیکی

22. اعمال شده، تغییرات درجه حرارت جسم جنگل زبد

23. نسبت در حالت که به ازای تغییرات درجه حرارت

24. دینامیکی اندک، تنش‌های بوجود آمده در استوانه نسبتاً زیاد

25. است.

مراجع

