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Normal Structures on Manifolds

Ebrahim Esrafilian

Faculty of Mathematics, University of Science & Technotogy o} Iran

Abstract

Many Structures on a topological m- manifold M may be defined by means of an atlas

of local coordinate systems for which the coordinate systems belong to some pseudogroup P

of transformations in the model space R™.

To any symmetric alfine connection ¥V on M there is associated a family of normal

coordinate systems in a canonical way, via the exponential may,. However, the coordinate

transformations that occur within this family do not form a pseudogroup of transformations

in R™M. On the other hand , normal coordinate Ssystems are «abundant» in the sense that

there is at least one such system based at every point of M.

The purpose of this paper is to modity the pseudogroup notion of structure to obtain a

characterization of symmetric affine connections.

Preliminaries
We begin this paper by some preliminary remarks

that we need.

a. For simplicity I consider the case of a C°°~ manifold
M modelled on real linear m - space R™. 1 suppose that
M is connected and oM is empty, referring to such an

M as a smooth m-manifold.

b. I denote the ring of all smooth =C real - valued
functions on M by F(M). Thus the set V(M) of smooth
vector fields on M is a linear space over the field R,

and a module over the ring F(M).

c. Suppose then that 7 is a smooth affine connection
on the smooth m-manifold M, and let ¢ : U — U’ be

an admissilble chart on M, where U is an open subset of

M, and U’ an open subset of R™. Then there is a basis
Xisey Xy, for the module V(M)’U, given by Xj=0/0u;
j=1,..., m. ThusI can define a set of m3 smooth

functions rkii: U —> R by

X, m
;e
VX, =2, T4, (1)
k=1

d. Nowlet 1:V — V' be another chart such that

W=TU[()V # &, and let Y{,... Y be the corres-

ponding basis for the module of smooth vector fields on

V. Thus Y;=0/0v;, and
Vol 5T
Yi — Zr ink

It follows that on W,
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(the summation symbol X i1s omitted). Hence by choos-
ing a suitable index, we conclude that

(2)

aui Ol :
FYGB — Ziﬂj:k d v

Comnversely, if M i1s a smooth manifold such that for
any two overlapping charts £, 11 the smooth functions

I, I satisfy (2) on their common domain W, then we
can detine (Y IU)Xi by (1).
Now we define 5 on M by (GY) ﬂ((;} I U)Yl)
X/p X,/p
peM, where X, YeV (M) and X, , Y, are the
restiction of X, Y on U. This determines a smooth

connection \/ on M.

e. The ditferential equations for a geodesic segment

in the local coordinates of some chart &:U— U’ on M are
k o o
=
. ijXi%;]
For cach PeM and each tangent vector Vel M,

there 15 a2 unique maximal geodesic y : I = M such that

O0el, v(0) = P, and y’'(0) = V. This geodesic will be

denoted by v,, {the point P being indicated by the context).

Results

Alter these preliminaries we are ready to study the
notion of normal trasformation, which is designed to
capture the essence of this relationship.

1: For each xeR™ there is a smooth path vy, ‘R— R™
given by ,(t) = tx If x=0, «v.(t) =0 for all
teR. But for x3#0, y, maps R bijectively onto the

I- dim=nsional linear subspace L of R™ generated by

x. It follows that for all xeR™ and all t, seR,

lm.,\l.a.........q__g 9 ux:.:.lo (_;lm.,h;.b 3

Vs () == H(sX) == (18)X ==y, (ts) =5v,(1),

and

v (1) =x.

FFor x+#0, y, will be called the ray through x.

2: Suppose next thatf : A — B 1s a smooth (=)
ditfeomorphism, where A, B are open sets of R™. For
each xeR™ put A _=L_{)A. Then for A ,# o there
is a non-empty open subset I4 of R such that y, ] 1A
1S a smooth path a, : I, -> A with image A,. This path
composes with { to give a smooth path {, =foq,: I, — B.
Of course, the image of f,, is notnecessarily a subset of any

line L, and may intersect transversally, or touch, any

Y)
ray through B.

3: Def. With the above notation, a smooth ditfeomor-
phism f: A — B between open subsets of R™ is said to be
a normal transformation if the following condition 1s
satistied.

(N) Let x€A and v—={(x)eB, v, be any ray through
x, and suppose that v, is any ray throughy. It £(A,)
touches v, aty, then {(A,) = By.

Condition(IN)states that the image of any ray through
A must cross for all the rays in B transversally or
must coincide with the image of one of these rays.

4 : Condition (N) says nothing about the relation
between the parametrizations of Such coincident rays.

We thercfore formulate a second condition as follows.
5: Asin §2, {: A— B is a smooth diffeomorphism.
(N*) It x £ 0 and f(Ay) =B,,

beR, a#0 such that, for all tel,, f (tx) =(at<+Db)y.

then there exist a,

Thus (N*) requires that the change of parameters on

comcident rays in any normal transtormation should be

affine .

6: Detf. If {:A — B satisfies both (N) and (N*),we say
that { 1s a strong normal trnstormation. It will be useful
to record a tew examples befor proceeding further.

7. EXAMPLE 1. Let  : R™— R™ be a linear auto-
morphism, and let A be any non -empty open subset of

R™. Then o|A: A — ¢(A) isa strong normal

transformation.



4 E. Esrafilian

A — il A ol——

e —— i —

EXAMPLE 2. Let A : R™— R be any smooth
function which has a local extremum 0 at 0, and no other
critical points. Define @ : R™ — R™ by®d(x) =A(X)
x€R™. Then for any non-empty open subset A of R™/{0}
the diffeomorphism f = ® | A: A— B, where B=®(A),
1S a normal transformation .

EXAMPLE 3. Suppose that f: A — B 1is a strong
normal transformation such that 0e A (] B and
f (0) =0 Consider g=D1{f(0)~!of, Then g is a strong
normal transforation of the type described in example
2 in which the function A is constant on each 1-dimens
ional lineair subsace of R™. Thus A is constant, and so

f is the restriction of a linear automorphism, as in

Example 1.
EXAMPLE 4. Let g : R? —» R2 be given by
g(x,y)=(x+1, (x*+1)y).
Now let  A={(x,y)eR?:x>0} and
B={(x,v)eR?%: x> 1}. We can  show that

A-A-B

8 : It i1s natural to ask next whether the set

is a Strong normal transformation.

f=g

N (m) of all normal transformations in R™ is a
pseudogrour:. Tt follows immediately from definition
that N(m) satisfies the first four axioms of the pseudo-
group of transformations. The same is true of the set
N* (m) of all strong normal transtormations in R™,
However, the «composition axiom» of pseodograoup is
satistfied by neither N (m) nor N* (m). to see
this, consider the followiing pair of transtormations.
Let A denote the open subset of R? given by
O<o<m/2. O<r<mn/Y in polar coordinates, and
let f : A~ A be the diffeomorthism given in Polar
coordinates by f(r, 9)==(g, r). Then { maps the rays
Next.

0 = constant to the arcs r = constant. let

o R2 —~ R? be defined by g(x,y):(x——n/Q,y).
Then both f and g are (strovg) normal transfor-

mations. However, gof, which maps A diffeomor -

phically onto the open subset
A — 11;/2 — { (1’ 003(9—"75/2); I'Sinﬂ) ' D<o TE/QJ

O<r<m/ 2} of R? , 1s not a normal transformation.
9: It would appear, theretore, that we cannot make
use of normal transtormations to constrruct atlases and
structures on manifolds, unelsss we can advise some
substitute for ths composition axiom. Now the rrormal
coordinate systems on an affinely connected manifold M
not only have the property that all changes of coordinate
are (strong) normal transtormations, but they are also
very numerous: there 1s a normal coordinate system
associated with every point of M. This fact suggests
that we might usually formulate a notion of a normal
atlas on a smooth m- manifold M ir the following way.
10: Det. Let A::.{é;J . Uj “*U’j l JEJ} be a set of
charts on M. Then A is a (strong) normal atlas on M
iff
(1) for all xeM there exists j € J such that C; (x) =0
(2) for all j, keJ with U NUx=W+#g, the
transformation Dy QJ(W) — & (W) is a (strong)
normal transformation. Two(strong) normal atlases A &
B are equivalent iff AU B is a (strong) normal atlas.
Each equivalent class of (strong) normal structures
contains a unique maximal element called a (strong)
normal structure. In what folows, our main concern is
with strong normal structures. We give one example,
however, to show that there are normal atlases which

are not strong normal atlases.

EXAMPLE . Consider real projective m - space
M= P_,(R) consisting of all equivalence classes [x] of
R™+1/{0} under the equivalence relation ~ where
X~y iff, for some non-zero AeR, X == Ay. Define an
open subset U of P (R) by U ={[x]eP,(R):

X, 1970}, and define a homeomorphism & : U R™
by &([y] )= (Z1y...yZm) €R™, where Z;=Yi/Ym+1
j=1,...,m, Now the orthogonal group 0 ., acts
trausitively on P (R) by wo[y]=[w(y)]. For each
wel, 11, let En: U, = R™ be the homeomorphism

given by &, (woly] ) =¢([yl), yeU. Thus
Up=0woU. It is easyto check that {gm - we0p, H}
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is 2 ncrmal atlas, but not a strong normal atlas, on
P.(R).

We are now approaching the main therorems of this
paper ‘which establishes the equivalence between strong
normal structures and afine connections.As a preliminar
we establish what we mean by the raysof astrong

norma' structure on M.

11: Def. Suppose that A is a normal structure on
M. A smooth path y:] — M iscalled aray on M iff
for each chart § - U-> U’ in A thereisaray y, in R™
for which taking J& =y=!(U), forall te]Eg,
(E0y) (t) = 14(t) Aray y:J] — M on N is said
to be maximal itf there i1s noray § on M such that J
is a proper subset of the domain of § and y==§|].

12 : Lemma. Suppose now that A 1s a srong normal
structure. Then the parametrization of any ray on M
1s detemined up to atfine transtformation in R. That is, if
vy+] = M and §:K—-M are rays on M with
v(J) =8(K), then there exista, beR, a0, such that
for all te J, y(t) = 8(at + b ) This follows
immediately from our definitions, as does the statement
thatany tworays v:] — Mand § - K—~M on M
must either intersect transversally or coincide imagewise
along the complement of some open interval in J. in

particular, if y and § are maximal rays on M, then

either they intersect trasversally or their images coincide.

13:MAIN THEOREM(1) Let ¥ be asmooth affine
connection on a smooth m-manifold M.
Then the family of all normal coordinate
systems on M 1S a strong normal

structure on M.

(2) Conversely , if A 18 a strong normal
structure on, M, there 1S a smooth affine
connection Y on M such that the (max

imal) rays of A on M are the maximal

geodesics ct 7 on M.
PROOF. (1) Let Y be a smooth affine connection

on an m- manifold M; then for every point Pe M there

exists a normal coordinate system &+ U — U’ with the
pole P, i. e. £E(p)=0, for every non - zero tangent
vector v, € TpM there exists a unique maximal
geodesic y;I - M such that y'(0)=p, and y(0)=v.
we call 1t a maximal geodesic with initial v,. Now
suppose that 1n:V -> V' be another normal coordinate
system with the pole q, such that U\ V=W=#g .
Let £E(W)=A, n(W)=B, and meW, §(m)=x,
It v-1I M and §: ]J--M are maximal geodesics

with mitials v, and a, which pass through m, then by

9

the existence and uniqueness maximal geodesic,

theorem <+ and § Intersect transcversally at m or

coincide. Then f=nc¢f& maps & (Y(I)) —1., onto
n(S(J)) :LY or intersects it transversally. In the first

case, let vy and & be parametrised by t and s respectively,
and let X, Y be vectorfields such that X(y(t))== y'(t);

Y(B(S)) = 8’(8) . Suppose that § = ¢ (t) where

h_ ry
9;7“1(W) —> S_I(W); then 0= V" = V.,
0y
Consequently Yezézo and ¢ (t):at+b for some
a, beR and a0 therefore f(tx) =Sy:(at—[—b) f(x))

1.e. { : A— B 1sastrong normal transformation.

(2). To establish the converse statement (2), suppose

that A 1s a strong normal structure on M. Then A
determines a smooth atlas A’ on T M as follows. Let
E:U— U’ be a chart in A- Then the &- coordinaes
X1jee Xy 1N Udetermine a basis 9/9Xy,...,0/0X,,

for the module of smooth vector fields on U. Inj parti-

cular, for each peU, 0/0X; 'p is a basis for T,M.

Thus each VeT ,M can be written uniquely in the

form V= ZyJ _d.._ we define a chrat
T

g v~ (U) = U XR™ by £/(V)=(&(nm(V)),y)

Y=(Y1s++0)¥m)- The family A" = {&":8e A} is a
smooth atlas on T M. Suppose now that Z is a smooth

vector tield on T M, and consider an integral curve

c:S-»> 1M of Z, for some intenterval SCR. Then ¢ 1s
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the canonical lift of a smooth curve y +>— M if for

each teS, (npm) (Zlc(t)))=c(t).

It is convenient to denote the canonical lift ¢ of v by
v/, and the canonical lift ¢’ of ¢ by v", Thus if
trmo = 1ypn, then ¥'=7Z 0y may be regarded as

a second order differential equation on M, and any

Zoy'and v'(0)=veTl ()M

is called a solution of this differential equation with

curve vy in M with y" =

inital condition v.

Let us return now to the chart &'- T (U) —>
U’ x R™, and let &'(V) :-:(X,y), VETEM_I(U).
Then there are smooth vector fields d/0X;,...,
/0K, s 0/0Y seves 0/0ym in T(my~1(U))=T2U,
with an obvious abuse of notation . Thus we can write

Z|TU in the form

m O 0 \
£ = Z(ai 0Xi +B10y)
j=1 :

o;c U X R™ - R,
B. - U’ X R™— R, It follows from the above remarks,

for some smooth {unction

however, that the conditon 1mysoZ, = 1y is satistied
iff o;(V)=vy,, where &'(V)= (X}y),

Hence

0

(1) X)Y) = ZYI "I‘Bi(XJY)

1==]

0YVi |

We now apply these considerations to the vector field

Z on 'TM obtained from the rays of A on M. That is,we

consider the second order differential equation v/ =7 oy’

on M whose solution curves are the rays of A. Suppose

then that y+S— M is aray on M, and for simplicity
suppose that v (S)C U, where U — U’ is a chart in
A> and y(0)=q, &(p)=0. Then for all teS,
€ (v(t)) = tw, for some weR™,

v (t)=(tw,w) and y'(t)= (w,0) .

theretore, that

w # (0. Hence

we conclude,

=7/(v), vel,M,

Z(O)Y — (Y)

= Sy 2

1=1

&'(V) :(O,y). thus, for all aeR, Z(O)ay):—_(ay)O))

which we may rewrite in coordinate - free form as

(ii) L({av)=a(T)(Z(v)),

where o : ITM — TM is given by a(v) =
Equations (i) and (ii) imply that for all (x,y)eU’

X R™ and all aeR,

Bi(x,ay)= a* Bi(x,y).
Thus there are smooth functions Ty : U’ — R such that

J § ¢

(i) B (x,y) = Z (%)Y

1,k=1
In fact, the functions l_ijk are christoffel symbols of the

required affine connection ¥ on M in the chart &. To

see this, consider another chart n: V- V' in A with
W=U[1V#%. Then on W we have two expressions

for Z namely

il

Z(W) — Z( ,Y)—- / YI "I—Bl XJY) Y
1=1 :
:Z(Eﬁg}) — Z ?1 O _I'Bl(xfy) Y

1= ]

where x =®(X), ®=no&", O(x)(y)-

— Bi (xy¥) = Z rijk(X)Yij;
1 k=1

— B'j(§)§)= Z rijk(X)Yij '
ik=1

It follows therefore, after a routine calculation, that

X, ox 0X:
(%) = Z | 2 5 S TYg5(X) +
L3 2% o

thus, in view of the results of § 4 it follows therefore, the

functions I ijk defined on each chart of A arve the



Y Normal Sructures on Manifolds lasabids (S39) b Slaylsle

christotfel symbols of an sffine connectoon Y/ on M,

whos: geodesics are the rays of A .

The main theorem shows that it is possible to define
the concept of an affine connection in such a way that
the geodesics, that is the rays are given directly by linear

equation in local coordinates rather than by a system of
second.order differential equations. However, if vy is a

solution curve of
iv) /() =Z oy
which does not pass through the pole: of the chart § and

Eoy(t: = x(t), then we have

V) (0= 2, (?:‘lfi)o; + 2. ( iizt};i ) o;

1 1

put from (i) and (iii)

= Sl (Sl

1

or

) z()= X|(T) 2

1

: dXJ ka) 0 ]
(Z Cjelx) dt dt/oy;

I,k
thus from (v) and (vi) we find that y is given in &-coord-

dinates by the classical second order differential

equations
..y d?x, .. dx; dx
(vii) L ri. j k
dt? % k(%) ~qe " at

I't should also be noted that the use of strong normal
structures does not involve the tangent bundle. On the
other hand the mechanism of the normal coordinate
systems serves to transfer the linear structure of R™ (and
of any linear space) frome the model space R™ in the
appropriate affinely connected m - manifold M. The
one- dimensional linear subspaces of R™ are mapped to

the geodesics in M and most areas of differential

geometry can be handled directly in this approach.
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