احترام سیستم‌های مستقیم - کاشت، بی‌برگردان ورژی و خاک ورژی

مفسوم بر عملکرد دانگئبند پاییزه آبی

عباس همت و اردشیر اسدی خشونی

برنیاب استادیار گروه ماسینهای کشاورزی دانشگاه کشاورزی دانشگاه صنعتی اصفهان

و کارشناس مرکز تحقیقات کشاورزی اصفهان

تاریخ پذیرش مقاله ۱۰/۱۱/۱۳۹۵

چکیده

استفاده از سیستم‌های خاکورنوزی حفاظتی شامل روشهای مستقیم -کاشت و بی‌برگردان ورژی در ایران نیاز به
اطلاعاتی همچون مکانیک، تکنیکی محصول در این روش‌ها دارد. پژوهش با نظر و بررسی ارزشی روشهای مختلف خاکورنوزی بر
عملکرد محصول کندم گیاهی آبی (فیلودنس، گیاهی) در سالهای ۱۳۷۲، ۱۳۷۳ و ۱۳۷۴ آزمایش می‌گردد و اینکه
تحریکات کربنی آباد مرکز تحقیقات کشاورزی اصفهان واقع در ۲۰ کیلومتری جنوب شرقی اصفهان انجام شد. در این تحقیق از
سیستم‌های خاکورنوزی مفسوم (به استفاده از کاکوآ آبی گیاهی) لی‌برگردان ورژی با استفاده از کاکوآ آبی گیاهی و طبیعی نام
بایان خشونی که در منطقه معمولاً در یکاکورنوزی نالی‌ان از این استفاده می‌شود استیستم -کاشت (شامل شیوه‌های ورژی - کاشت
و بی‌برگردان ورژی) استفاده گردیده. هدف این مقاله در قابلیت سیستم‌های بی‌برگردان ورژی در قابل بلوک‌های کامل نام‌گذاری یا چهار
کلاس مقاومت شدن، خاک مزرعه محل آبی‌سازی دارای این نوع می‌باشد، اختلاف بین عملکرد دانه در تیمار‌های یکسان می‌باشد
وابود. نتایج نشان داد که سیستم‌های خاکورنوزی مفسوم و بی‌برگردان ورژی به ترتیب بیشتری و کمترین عملکرد دانه داشته.
عملکرد در سیستم بی‌برگردان ورژی بطور مناسبی کمتر از عملکرد در سیستم‌های خاکورنوزی مفسوم و بی‌برگردان ورژی بوده
و در عملکرد دانه در روشهای جاری با گیاه آبی قابل مقایسه می‌باشد.

واژه‌های کلیدی: خاکورنوزی، حفاظتی، بی‌برگردان ورژی، سیستم - کاشت، کاشت، کاشت، کاشت ورژی، عمق شکم، کندم آبی
عملکرد و اجزاء عملکرد دانه.

مقدمه

روشهای خاکورنوزی بطور معمولی داری رسماختن خاک،
حفاظت آب و خاک، آلودگی مزروع هب و طول مدت آفات دارد. سرعت
تجزیه مواد آلی خاک، فعالت و جمعیت میکرو ارگانیسم‌های

خاک، درجه حرارت خاک، جوانی زنی و سبزی شدن رنگ، جذب مواد
غذایی و نزدیک استفاده از کودها توسعه ریشه‌گیاه، رشد گیاه
و عملکرد به حصول اثری گذاری‌اندازه (۲۷). سیستم‌های خاک‌ورژی
مفسوم در ایران بر اساس استفاده از کاکوآ آبی گیاهی، برگ‌درمان‌برای عملیات

۱۴/۱۱/۱۳۹۵
خاکدوری اولیه یا باشید. استفاده از گازهای برگردن‌های برای عملای خاکدوری یا باشید به وقت و انرژی زیادی دارد. بنابراین لحاظ سیستم‌های خاکدوری حفاظی شامل شیوه‌های کم خاکدوری، ورز کاوشنت و بسیا خاکدوری طرح شده‌اند. جایگزینی سیستم خاکدوری مرسوم به سیستم‌های خاکدوری حفاظی بجای سیستم‌های کاهشی در مرحله اولیه تولید سیستم‌های قابل پیشرفت برای محیط‌زیستی کشور و اثرات آن بر خاک ایجاد می‌شود.

1 - Conservation tillage systems
2 - Reduced tillage
4 - No-tillage
5 - Dryland farming
6 - Rain-fed farming
ماه‌های خودی نشان‌داده می‌کنم: سیستم‌های مسئولیت‌کننده...
<table>
<thead>
<tr>
<th>تایید آن در جدول ۱ نشان داده شده است.</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمایشی سال اول</td>
</tr>
<tr>
<td>زمین محل آزمایش در سال قبل که جویود که پس از برداشت محصول با کمکی، کاه و کلش ریخته شده در سطح مزرعه بسته بود و از مزرعه خارج شده. کاه و کلش و به سه سطح دارای وادی شده. نام کرتی با کمکی، کاه و کلش ریخته شده در سطح مزرعه مورد استفاده قرار گرفته شده است.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
جدول 2 - ترتیب اجرای عملیات زراعی شامل عملیات خاک‌ورزی و کاشت در تیمارهای مختلف خاک‌ورزی برای گندم قفس، در سال زراعی ۷۲ - ۱۳۷۲.

<table>
<thead>
<tr>
<th>T۷</th>
<th>T۶</th>
<th>T۵</th>
<th>T۴</th>
<th>T۳</th>
<th>T۲</th>
<th>T۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

عملیات صحرایی

- شحم با گاروآهن در بزرگ‌ترین مقدار به عمق متوسط ۵/۰ سانتی متر
- شحم با گاروآهن قلمی به عمق متوسط ۹/۴ سانتی متر
- شحم با گاروآهن قلمی به عمق متوسط (N&P) بادست
- دیسک زدن به عمق حدود ۱۵ سانتی متر
- زبر زدن جهت تنظیم ناحیه‌های شحم (N&P) بادست
- دیسک زدن به عمق حدود ۱۵ سانتی متر
- روتویون فرآیند جهت تنظیم ناحیه‌های شحم (N&P) بادست
- کاشت با خلبان کار بالایی به عمق ۴-۳ سانتی متر
- کاشت با خلبان کار بالایی به عمق ۴-۳ سانتی متر
- فلک زن با گارو آهن

کارهای بیشتر به شبکه

در تیمارهای اولیه تمام کود اوره در فروردین ماه سال بعد به زمستان گزار داده شد.

آبان ماه سال ۱۳۷۲ انجام شد. از فروردین ماه تا زمستان برداشت، مزرعه شش توت آبیاری شد.

آستانه متوسط در واحد سطح از نواری به میزان ۶۶/۲/۰ متر مربع که در تاریخ ۱۲ تیر ماه سال ۱۳۷۶ با یک کمیتا آزمایشی از قسمت مرغوبیه عملکرد نهایی پس از حذف حاشیه‌ها برداشت شده بود تکمیل گردید. سه نمونه از محصول برداشت شده از هر کرت بسته ۴۸ ساعت در آب و سرما ۰ تا ۲۰ درجه سانتی‌گراد پایین ترتیب داده شد. وزن خشک دانه تعين و عملکرد دانه بر اساس رطوبت درصد تطهیج گردید.

برای تعیین مقدار کاه در واحد سطح، مقدار نم متر مربع از
جدول 3 - مشخصات فنی ادوات خاکورزی و کاشت

<table>
<thead>
<tr>
<th>عرض (کار)</th>
<th>نوع ماشین</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1 - گاوآهن برگداندار</td>
</tr>
<tr>
<td>2/7</td>
<td>2 - گاوآهن قلمی</td>
</tr>
<tr>
<td>1/95</td>
<td>3 - خیش چی</td>
</tr>
<tr>
<td>2/41</td>
<td>4 - هرس شبقه (دیسک)</td>
</tr>
<tr>
<td>1/5</td>
<td>5 - خاک همزن (روتویاتور)</td>
</tr>
<tr>
<td>1/93</td>
<td>6 - گلفک</td>
</tr>
<tr>
<td>2/5</td>
<td>7 - خطی کار</td>
</tr>
<tr>
<td>2/7</td>
<td>8 - خطی کار نوام (با کولنیاتور)</td>
</tr>
</tbody>
</table>

سوار شونده، سه خیش، عرض پره مر خیش 29 سانتی متر نوع خیش عمومی
1
سوار شونده، 12 باروی انحصار دارد که در دو ردیف یا فاصله موتر 24 سانتی متر را روی شاسی قرار دارند، نوع تیغه نوک تیز باهنر 4 سانتی متر.
2
سوار شونده، 15 باروی صلب و راست که در دو ردیف با فاصله موتر 14 سانتی متر ریز شاسی قرار دارند، نوع تیغه ملنی نخک بالای 5 سانتی متر، مانند است که در منطقه نواز خاکورزی توانایی استفاده می‌شود.
3
سوار شونده، نوع ندوم 28بره، قطر شبقه‌ها 41 سانتی متر، پره‌های رگین جلو و کنگرداد و رحیم عقب به صاف
4
سوار شونده با 36 تیغه، 1/2 شکل که روی 7 فلایج قرار دارند.
5
کشیدنی، نوع کمری، قطر حلقه 53 سانتی متر و قطر بیان - حلقه 57 سانتی متر.
6
سوار شونده، 21 بارک که شبقه‌ها هستند، فاصله بین خطوط کاشت 1/19 سانتی متر
7
ساخت کشور دانمارک
8
کشیدنی، دارای سه ردیف بازی کولنیاتور که دور رضیف آن در قسمت جلو و په.Real در قسمت عقب ماشین قرار دارد، در پارک مجهز به تیغه نهایی گازی کوچک به عرض 10 سانتی‌متر است، پایه و دنبال در سه تیغه شیار بزرگ در سه رضیف در وسط هر ماشین قرار دارند، شیار بزرگ از نوع تیغه نهایی گازی کوچک، بزرگ و کوکر از منحنی منجرا در لوله سقوط مشترک مخلوط می‌شوند، فاصله بین خطوط کاشت 18 سانتی‌متر، ساخت کشور استرالیا
9

1 - General purpose body
2 - Nordsien modle CLGHI 250
3 - Cultivator combined drill
4 - The John Shearer Trash Culti Drill
نتایج وبحث
آزمایش سال اول
اثر تیمار های خاکدوروزی بر عملکرد دانه بسیار معنی دار بود.
عملکرد دانه در روش های بی بزرگدان وزی و وز. کشک و بی بزرگدان وزی به ترتیب ۷۷ و ۷۲ درصد عملکرد دانه در تیمار خاکدوروزی مسوم بود (مشکل ۱). عملکرد دانه در روش خاکدوروزی مسوم بطور معنی داری نیز بر روی وز. کشک و بی بزرگدان وزی گزارش نشده است (جدول ۵). عملکرد دانه در تیمار وز. کشک نمایان کننده نمایانگر بر اثر عملکرات خاکدوروزی اولیه بی بزرگدان وزی (T۱) با وز. کشک که درون شکم و از اهمیت بسیاری دارد. عملکرد گردان، عملکرد گردان در تیمار T۲، T۳ و T۴ با وز. کشک به ترتیب ۱۵، ۱۰ و ۵

نتایج کلیدی
آزمایش سال دوم
رقمربیبی گیاه‌ها و بذر ریخته شده در سطح مزرعه مشابه سال اول و بحث پایه کند تیمارها عوض نگردید. در سال دوم برای بررسی اثر نوگل و عملکرات خاکدوروزی بر عملکرد گردان معمولی قیمی در تیمار T۲، T۳ و T۴. نتایج نشان داد که عملکرات خاکدوروزی با تغییر دوباره تایم منفی و ارجاع به نقطه مورد شناسایی از نظر آماری متفاوت محسوب نمی شد. در نتیجه، متوسط عملکرات در هر یک از تیمارها در ۴ هفته به نهایت برسید و استفاده خاکدوروزی از آب آوری و گازوری شدن خاک به ترتیب ۶ مهر ماه خاکدوروزی ثانیه در تاریخ ۱۶ آبان ماه و کاشت در تاریخ ۱۸ آبان ماه سال ۱۳۷۳ انجام گردید. در تیمار زرد و گیاه ناشی از تیمار T۲، T۳ و T۴ با نتایج منفی و مثبت کسته گرفته و نهایتاً در تاریخ ۱۷ آبان ماه سال ۱۳۷۳ انجام شد. در فروردین ماه تا زمان برداشت، مزرعه مشابه شکستگی نبود.

آزمایش سال چهارم
عملکرد دانه در واحد سطح از نویزی به مساحت ۷۲٪ مربوط در تاریخ ۱۶ تیر ماه سال ۱۳۷۴ که با کمک کمیاب آزمایشی از قسمت مربوط به عملکرد نهایی پس از حذف حاشیه هارداشت شده بود تمیز گردید. برای تمیز کردن گیاه که در واحد سطح، تعداد سه نیم متر مربع از وضع دو هفت مسوم دیگر هر کرت بطور تصادفی برداشت گردید. از هر نمونه ۱۰ گیاه (جمعاً ۱۰۰ گیاه) از هر گیاه به طور تصادفی جهت تمیز کردن گیاه قبل از نوک‌داری نموده شدند. مزرعه سایر موارد مشابه آزمایش سال اول انجام گردید.
جدول ۴- ترتیب اجرای عملیات زراعی شامل عملیات خاک‌ورزی و کاشت در تیمارهای مختلف خاک‌ورزی برای گندم قدس، در سال زراعی ۱۳۷۲-۷۳.

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>عملیات صحرایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁ T₂ T₃</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>× × ×</td>
</tr>
<tr>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>× × ×</td>
</tr>
<tr>
<td></td>
<td>لولرزدن</td>
</tr>
<tr>
<td></td>
<td>پخش کود فسفات با دست</td>
</tr>
<tr>
<td></td>
<td>دیسکدن زباله با عمق حدود ۱۰ سانتی‌متر</td>
</tr>
<tr>
<td></td>
<td>روتیوانر زدن با عمق حدود ۶ سانتی‌متر</td>
</tr>
<tr>
<td></td>
<td>کاشت با خلط کار غلظتی با عمق ۴ سانتی‌متر</td>
</tr>
<tr>
<td></td>
<td>کاشت با خلط کار توم با کولیوانر</td>
</tr>
<tr>
<td></td>
<td>کاشت با خلط کار توم با کولیوانر (بدون بازوی کولیوانر)</td>
</tr>
<tr>
<td></td>
<td>مرزکشی</td>
</tr>
<tr>
<td></td>
<td>پخش نصف کود زباله قبل از آیپیری</td>
</tr>
</tbody>
</table>

۱. کود فسفات به صورت محلول با دوز در عمق کاشت فیل داده شد.

۲. برای حلول‌گیری از جمع شدن کاه و کش در ولای شیار بار کشیده در تیمار‌های خاک‌ورزی قبل از کاشت، کاه و کش با خلف برکت و باریک جمع آوری و از زمین خارج شد.

باقی‌های محصول قابلی، رقابت علف‌های هرز و بوزه در بخار آسانتر نمود، به‌طوری که بین تکرار های تیمار بی‌خاک‌ورزی علایه بزرگ‌تر. عوامل علف کنت نازی به گیاه و دستی به منظور جلوگیری از تسلط علف‌های هرز (بوزه‌ها، خاک‌پر و مانند) در سطح کرتها باید نمود. عوامل نامربوط بودن سیز مواد خشک به دلایل مالی، سم‌مور و البته به دلیل افزایش میزان مصرف محصول در بقایا با حاکم (۱۳۲ و ۲۲)، تسلط علف‌های هرز در مرزه،
جدول 5 - مقایسه میانگینهای عملکرد دانه در واحد سطح، طول سنبله و تعداد دانه در سنبله گندم قفس در شیوه های خاک ورزی در سالهای زراعی 1373-1374 و 1375-1376

<table>
<thead>
<tr>
<th>شیوه خاک ورزی</th>
<th>عملکرد دانه (کیلوگرم در هکتار)</th>
<th>تعداد دانه در سنبله</th>
<th>طول سنبله (سانتی متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1374</td>
<td>1375</td>
</tr>
<tr>
<td>36/ab</td>
<td>v/3a</td>
<td>8/4ab</td>
<td>774.1a</td>
</tr>
<tr>
<td>32/vb</td>
<td>v/4a</td>
<td>9/5abc</td>
<td>739.3a</td>
</tr>
<tr>
<td>33/1b</td>
<td>v/2a</td>
<td>8/5abc</td>
<td>731.5a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>721.3ab</td>
<td>806.5a</td>
</tr>
<tr>
<td>30/vb</td>
<td>v/3a</td>
<td>8/vab</td>
<td>811.9a</td>
</tr>
<tr>
<td>20/5a</td>
<td>v/5a</td>
<td>8/9a</td>
<td>664.5b</td>
</tr>
<tr>
<td>33/vb</td>
<td>v/4a</td>
<td>5/4c</td>
<td>506.3c</td>
</tr>
</tbody>
</table>

* اعداد هر ستون که دارای جمله‌ای جداگانه یا تفاوت آماری بی‌پایه آزمون چند دامنه‌ای دانک در سطح احتمال 5% تفاوت ندارند.
شکل 1- عملکرد دانه گندم پایه قدس در تیمارهای خاک ورزی در سال‌های زراعی ۱۳۷۲-۷۳ و ۱۳۷۶ نسبت به خاک ورزی موسوم به تیمارهای T۱، T۲، T۳ و T۴ (شخص با گاوانه بی‌برگدانار، دیسک، دزد، و دیسک دزد) تغییر هنگام کاهش (T۱) و تغییر ۱۵/۱ سانتی‌متر (T۳) در سال‌های باران‌دار به مقدار حداقل بوده‌است.

در تیمارهای خاک ورزی بی‌دیسک و تیمارهای بی‌خیشات، وزن اکتشاف و بی‌خاک ورزی بوده، ولی تفاوت معنی‌داری بین وزن بی‌خاک ورزی نبوده است. عملکرد دانه در تیمارهای بی‌خیشات نسبت به تیمارهای دیسک و دزد کاهش نشان داده شد.

عملکرد دانه در واحد سطح در شیوه شیمیایی گاوانه بی‌برگدانار به مقدار ۲۲/۶ سانتی‌متر (T۱) و تغییر ۱۵/۱ سانتی‌متر (T۳) و تغییر تفاوت معنی‌داری داشت، ولی تفاوت معنی‌داری بین تغییرات شیمیایی و شیمیایی دانه در شیوه تفاوت معنی‌داری نبوده است. عملکرد دانه در شیوه T۴ در رابطه با خیشات با کاهش (T۱) و تغییر ۱۵/۱ سانتی‌متر داشت. البته در رابطه با وزن کاهش بین تفاوت معنی‌داری حداقل بود.

آزمایش سال دوم
عملکرد دانه در واحد سطح بطور سپردن معنی‌داری نبود.

تأثیر سیستم‌های خاک ورزی قاره‌گلفت. میانگین عملکرد دانه در روش‌های شیمیایی گاوانه بی‌برگدانار در تیمارهای بی‌خیشات و بی‌داشت در سال‌های باران‌دار به ترتیب ۱۷۸، ۱۷۶ و ۱۷۵ درصد عملکرد دانه در تیمار خاک ورزی موسوم به T۱ بود. (شکل ۱). عملکرد دانه در سیستم خاک ورزی موسوم به T۱ بطور معنی‌داری بیشتر از روش‌های شیمیایی شیمیایی
عمک‌رزی نسبت به تیمار خاک‌وزی مرسوم در همان سال (در این دو سال به ترتیب 95 و 94 درصد بود. عملکرد همیشه با خیچیچی از 95/17 درصد کاهشی، 10 سانتی‌متر تکیه داده شد و جهت دفع عملکردی نسبی دانه‌ای به ترتیب 92/5 درصد کاهشی، 8 درصد بود. تحقیقات دهان در مدت 8 (8) شان می‌گذارد که سطح سطحی (به عمق 12 سانتی‌متر) هر هَم‌هَر با مصرف کمی کود از 5 کیلوگرم در هکتار موجب کاهش عملکرد در بیشتر سال‌هاشه است. همین‌طور (21) گزارش نموده که با استفاده مقاومت خاک در بیمار دردایدهای کم خاک‌وزی (شحیم با گیاه آه، قلمی به عمق 10 سانتی‌متر) اگرچه از رشد رشد نه‌گروهی نمی‌کند، ولی هنگامی که با شرایط خیلی خاک در بیمار ترکیب شود، ممکن است کاربردی را در جنگل آب و خاک مه‌پیش محدود نموده و نهایتاً خاک‌وزی تختی رشد حصول گردد. دانو کود اضافی به تیمار وزی کاشت، عملکرد نسبی دانه‌ای 77 درصد در سال اول اجرا در طرح به 86 درصد افزایش داد.

عملکرد دانه در تیمار 3/ای سال همیشه کم است. این 10 درصد از این سال‌ها در طرح به 86 درصد افزایش داد.

شحم با گیاه آه رگردار، قلمی و خیچیچی به ترتیب 80 و 18 درصد کاهش دانه داد. اگرچه این تعداد دانه در هر سال افزایش می‌دهد، در جریان حرارتی اضافه در سال دوم مانند بود پایداری در تاریخ 19 دیماه 1373 ادامه داشت. بیشترین نسبت به فلک بالا گردید. قدرایی بودن بودن بزرگ‌ترین روند تازه دانه‌ها در سال دوم. درصد 87 درصد به 86 درصد افزایش داد.

وضع ندارنگ کوچک‌ترین بودن انتظار داشتن ها در سال دوم است. محققین درصد دو درصد تیمارها به ترتیب از 83 و 88 درصد در سال اول به 87 و 95 درصد در سال دوم افزایش یافت. در جریان حرارتی اضافه در سال دوم مانند بود پایداری در تاریخ 19 دیماه 1373 ادامه داشت. بیشترین نسبت به فلک بالا گردید. قدرایی بودن بودن بزرگ‌ترین روند تازه دانه به درصد 87 درصد به 86 درصد افزایش داد.

وضع ندارنگ کوچک‌ترین بودن انتظار داشتن ها در سال دوم است. محققین درصد دو درصد تیمارها به ترتیب از 83 و 88 درصد در سال اول به 87 و 95 درصد در سال دوم افزایش یافت. در جریان حرارتی اضافه در سال دوم مانند بود پایداری در تاریخ 19 دیماه 1373 ادامه داشت. بیشترین نسبت به فلک بالا گردید. قدرایی بودن بودن بزرگ‌ترین روند تازه دانه به درصد 87 درصد به 86 درصد افزایش داد.

وضع ندارنگ کوچک‌ترین بودن انتظار داشتن ها در سال دوم است. محققین درصد دو درصد تیمارها به ترتیب از 83 و 88 درصد در سال اول به 87 و 95 درصد در سال دوم افزایش یافت. در جریان حرارتی اضافه در سال دوم مانند بود پایداری در تاریخ 19 دیماه 1373 ادامه داشت. بیشترین نسبت به فلک بالا گردید. قدرایی بودن بودن بزرگ‌ترین روند تازه دانه به درصد 87 درصد به 86 درصد افزایش داد.
جدول ۶- مقایسه میانگین‌های وزن خشک کاه در واحد سطح، شاخص برداشت و ارتقاء گیاه در زمان برداشت گندم قدس در شیوه‌های خاک‌ورزی در سال‌های زراعی ۷۳-۷۲ و ۷۴-۷۳.

<table>
<thead>
<tr>
<th>وزن خشک کاه (گرم در متر مربع)</th>
<th>شاخص برداشت (سانتی متر)</th>
<th>ارتقاء گیاه در زمان</th>
<th>شیوه خاک‌ورزی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۷۲</td>
<td>۱۳۷۳</td>
<td>۱۳۷۴</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شاخص برداشت</th>
<th>ورودی‌های</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۲/۱۱</td>
<td>۸۱/۱۱</td>
</tr>
<tr>
<td>۷۴/۱۲</td>
<td>۷۳/۱۲</td>
</tr>
<tr>
<td>۸۳/۱۳</td>
<td>۸۷/۱۳</td>
</tr>
<tr>
<td>۸۵/۱۴</td>
<td>۸۹/۱۴</td>
</tr>
</tbody>
</table>

* اعداد هر ستون که دارای حرف‌های یکسانی هستند تفاوت آماری بین آنها از دامنه آزمون چند دامنه ای دانکن در سطح احتمال ۵% ندارند.
REFERENCES


Effects of Direct-Drilling, Non-Inversion and Conventional Tillage Systems on Yield of Irrigated Winter Wheat

A. HEMAT AND A. ASADI KHASHOUI
Assistant Professor, Department of Agricultural Machinery, College of Agriculture, Isfahan University of Technology and Technical Assistant, Isfahan Agricultural Research Center, Isfahan, Iran.
Accepted 29 Jan. 1997

SUMMARY

To take advantage of conservation tillage systems (including direct-drilling and non-inversion tillage) in Iran, it is important to have final crop yield. In 1993-94 and 1994-95 growing seasons, effects of different tillage systems on irrigated winter wheat (Qods cultivar) yield, were evaluated in the Kabootarabad Research Station located 40 km southeast of Isfahan. In this study, conventional tillage (based on moldboard plow), non-inversion (tined-implement) tillage (based on chisel plow and a locally-made implement called khishchee) and direct-drilling (including till-plant and no-till) systems were used. Seven treatments using these systems were designed. A randomized complete block design with four replications was used. The experiments were conducted on a clay loam soil. The differences between the yields were statistically significant. The results showed that the conventional tillage and no-till systems produced the highest and lowest yields, respectively. No-till yields were significantly less than both the conventional and non-inversion treatments in both years, whereas chisel plowing and conventional yields were not significantly different. Plowing depth reduction up to 15 cm in non-inversion tillage treatments did not show any significant reduction effect on the crop yield, but tilling depth of 10 cm did reduce the yield. Adding 67.5 kg ha⁻¹ more urea to the till-plant and no-till treatments in the 2nd year resulted in relative yield (with respect to conventional treatment) increases of 11 and 0%, respectively. Results indicated that irrigated winter wheat production under no-till management in Isfahan region may not be feasible without substantial yield reduction. A reduced tillage system that is 15-cm chisel plowing appears to be a viable management alternative to conventional practices.