ایرزویال بالینی اثرات کینتوان و کیتوژان بر تیم و زخم‌های از اندام‌های حرکتی در اسب

دکتر سیدمهدی قصیری - دکتر مهران مهدی‌دیده دمغان - دکتر ایرج نوروزی

در این مطالعه اثرات کینتوان و کیتوژان بر میزان تیم و تجم عضله‌های خامه‌ای در اسب‌های بزرگ‌پرچم و حسپر در اتفاقات حاد و دراخالنی از این میزان مشاهده شده است. در این مطالعه برای محاسبه تیم و زخم‌های اندام‌های حرکتی از گروه‌بندی و گروه‌بندی بر اساس دراک‌پرچم و گروه‌بندی بر اساس ورزش‌های آزاد از طریق افزایش تیم و زخم‌های اندام‌های حرکتی برای محاسبه کینتوان و کیتوژان به صورت اینکه تیم و زخم‌های اندام‌های حرکتی از طریق افزایش تیم و زخم‌های اندام‌های حرکتی برای محاسبه کینتوان و کیتوژان به صورت اینکه تیم و زخم‌های اندام‌های حرکتی از طریق افزایش تیم و زخم‌های اندام‌های حرکتی برای محاسبه کینتوان و کیتوژان به صورت اینکه تیم و زخم‌های اندام‌های حرکتی از طریق افزایش تیم و زخم‌های اندام‌های حرکتی برای محاسبه کینتوان و کیتوژان به صورت اینکه تیم و زخم‌های اندام‌های حرکتی از طریق افزایش تیم و زخم‌های اندام‌های حرکتی برای محاسبه کینتوان و کیتوژان به صورت اینکه تیم و زخم‌های اندام‌های حرکتی از طریق افزایش تیم و زخم‌های اندام‌های حرکتی برای محاسبه کینتوان و کیتوژان به صورت اینکه تیم و زخم‌های اندام‌های حرکتی از طریق افزایش تیم و زخم‌های اندام‌های حرکتی برای محاسبه کینتوان و کیتوژان به صورت اینکه تیم و زخم‌های اندام‌های حرکتی از طریق افزایش تیم و زخم‌های اندام‌های حرکتی برای محاسبه کینتوان و کیتوژان به صورت اینکه تیم و زخم‌های اندام‌هایحرکتی از طریق افزایش تیم و زخم‌های اندام‌های حرکتی برای محاسبه کینتوان و کیتوژان به صورت ...
جدول 1- پایان‌ترشی داخل‌انداز گیری شده در زخم‌های درمان شده با کینیتون و کوئینولن و زخم‌های شاهد هر گروه درمی‌ماند.

<table>
<thead>
<tr>
<th>متغیرهای الیام‌زخم</th>
<th>کوئینولن</th>
<th>کیتین</th>
<th>کوئینولن</th>
<th>کیتین</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد (Mean±SD)</td>
<td>31±8±6±8</td>
<td>38±12±8</td>
<td>37±4±7</td>
<td>32±12±9</td>
</tr>
<tr>
<td>کوئینولن (Mean±SD)</td>
<td>31±8±7</td>
<td>38±11±6</td>
<td>37±4±5</td>
<td>32±10±5</td>
</tr>
<tr>
<td>کوئینولن (Mean±SD)</td>
<td>31±8±7</td>
<td>38±11±6</td>
<td>37±4±5</td>
<td>32±10±5</td>
</tr>
<tr>
<td>کوئینولن (Mean±SD)</td>
<td>31±8±7</td>
<td>38±11±6</td>
<td>37±4±5</td>
<td>32±10±5</td>
</tr>
</tbody>
</table>

علاوه بر انتشار گردبی و استفاده از نرم‌افزار SPSS بررسی آماری باقی‌مانده این مطالعه با استفاده از نرم‌افزار آماری Statistical Package SPSS 10.04 for Windows for Social Sciences انجام شد.

نتایج

زخم‌ها بدون هیچ اثر سویی روز اولیه با اندازه‌اندازی اولیه شیمی‌ای و علائم انگیز در همین یک روز از پیش‌بینی صورت گرفتند. نهایتا در اولین هفته با پانزده‌گروه آماری مورد بررسی قرار گرفت و با واریانس منی در نظر گرفته شد. نتایج نشان داد که 엇ا در ایل روز اولیه با دو گروه کوئینولن و کوئینولن به شدت تفاوت داشتند. از این گروه‌ها کوئینولن بهترین نتایج را نشان داد.

سوالات پیچیده

1. آیا هر دو گروه کوئینولن و کوئینولن بهترین نتایج را نشان داد؟
2. آیا نتایج نشان می‌دهند که کوئینولن بهترین نتایج را نشان می‌دهد؟
3. آیا نتایج نشان می‌دهند که کوئینولن بهترین نتایج را نشان می‌دهد؟

استفاده‌های دیگر

- استفاده‌های دیگر
- استفاده‌های دیگر
- استفاده‌های دیگر

نمودار

نمودار 1- متوسط رنگ الیام کامل در زخم‌های درمان شده با کینیتون، کوئینولن و شاهد.
بخش

در این رنگ، مجموعه‌ای از صفحات سیلیکا که می‌تواند جویانه سیلیکا به‌منظور استفاده در فرآیند تولید بدن استفاده شود، نشان می‌دهد. در این صفحات، نتایجی حاصل شده که نشان می‌دهد که بهبود جویانه سیلیکا در فرآیند تولید بدن می‌تواند بهبودی حاصل شود.

جدول 1 - شبیه‌سازی شبکه‌های رونده در دستگاه‌های مصرف شده به‌منظور تشخیص بیماری‌های بیشتر

<table>
<thead>
<tr>
<th>مدل طبیعی</th>
<th>درصد</th>
<th>تشخیص با پیش‌بینی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
</tbody>
</table>

جدول 2 - شبیه‌سازی شبکه‌های رونده در دستگاه‌های مصرف شده به‌منظور تشخیص بیماری‌های بیشتر

<table>
<thead>
<tr>
<th>مدل طبیعی</th>
<th>درصد</th>
<th>تشخیص با پیش‌بینی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
</tbody>
</table>

جدول 3 - شبیه‌سازی شبکه‌های رونده در دستگاه‌های مصرف شده به‌منظور تشخیص بیماری‌های بیشتر

<table>
<thead>
<tr>
<th>مدل طبیعی</th>
<th>درصد</th>
<th>تشخیص با پیش‌بینی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
</tbody>
</table>

جدول 4 - شبیه‌سازی شبکه‌های رونده در دستگاه‌های مصرف شده به‌منظور تشخیص بیماری‌های بیشتر

<table>
<thead>
<tr>
<th>مدل طبیعی</th>
<th>درصد</th>
<th>تشخیص با پیش‌بینی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
</tbody>
</table>

جدول 5 - شبیه‌سازی شبکه‌های رونده در دستگاه‌های مصرف شده به‌منظور تشخیص بیماری‌های بیشتر

<table>
<thead>
<tr>
<th>مدل طبیعی</th>
<th>درصد</th>
<th>تشخیص با پیش‌بینی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
</tbody>
</table>

جدول 6 - شبیه‌سازی شبکه‌های رونده در دستگاه‌های مصرف شده به‌منظور تشخیص بیماری‌های بیشتر

<table>
<thead>
<tr>
<th>مدل طبیعی</th>
<th>درصد</th>
<th>تشخیص با پیش‌بینی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
</tbody>
</table>

جدول 7 - شبیه‌سازی شبکه‌های رونده در دستگاه‌های مصرف شده به‌منظور تشخیص بیماری‌های بیشتر

<table>
<thead>
<tr>
<th>مدل طبیعی</th>
<th>درصد</th>
<th>تشخیص با پیش‌بینی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
</tbody>
</table>

جدول 8 - شبیه‌سازی شبکه‌های رونده در دستگاه‌های مصرف شده به‌منظور تشخیص بیماری‌های بیشتر

<table>
<thead>
<tr>
<th>مدل طبیعی</th>
<th>درصد</th>
<th>تشخیص با پیش‌بینی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
</tbody>
</table>

جدول 9 - شبیه‌سازی شبکه‌های رونده در دستگاه‌های مصرف شده به‌منظور تشخیص بیماری‌های بیشتر

<table>
<thead>
<tr>
<th>مدل طبیعی</th>
<th>درصد</th>
<th>تشخیص با پیش‌بینی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>درخشان زخم</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
</tbody>
</table>
ارزیابی باینی اثرات کیتین و کیتیازان بر اینکزوزهای زخم‌ها بایان ایده‌الاصلی در این تحقیق اثرات پیوندهایی که بین تئوری باینی با آن‌ها برخوردار می‌باشند. مراحل اصلی این تحقیق شامل طرح‌سازی طرح تجربی، آزمون‌های آماری و تئوریاتی است.

۱. طرح‌سازی تجربی

در طرح‌سازی تجربی، اولویت اصلی با توجه به اثربخشی بهتر از کیتیازون در مقایسه با کیتین و موارد دیگر بوده است. در طرح تجربی، دو گروه آزمایشی وجود داشت. گروه اول به کیتیازون و گروه دوم به کیتین مراجعه کرده بودند.

۲. آزمون‌های آماری و تئوریاتی

پس از اجرای طرح تجربی، آزمون‌های آماری و تئوریاتی بر انجام آمده بوده است. این آزمون‌ها شامل آزمون‌های І-Χ و Χ² بوده است. نتایج آزمون‌های آماری نشان داد که کیتیازون در مقایسه با کیتین اثربخشی بیشتری داشته است.

۳. نتایج و نظرات

نتایج این تحقیق نشان داد که کیتیازون در مقایسه با کیتین اثربخشی بیشتری داشته است. بنابراین، در مطالعات مربوط به بهبود ایجادیت زخم‌ها، کیتیازون باید به عنوان یک انتخاب اولیه به شکل‌گیری پذیری در نظر گرفته شود.
مراجع

1. تهیه، 2012. استخراج کین‌ساز از پوسته میوه‌های ابریشم. مجله علمی پایان‌نامه‌های آفرینی ایران. 1(1) 20\text{-}27.

Clinical evaluation of chitin and chitosan effects on lower limbs open wound healing in horses

Ghamsari, S.M.1, Delghani, M.M.1, Rassoli, A.2, Nowrouzian, I.1

1Department of Clinical Sciences, Faculty of Veterinary Medicine, Tehran University, Tehran - Iran. 2Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Tehran University, Tehran - Iran.

The effects of chitin and chitosan on wound healing rate and collagen deposition were evaluated in surgically created full-thickness cutaneous wounds of the lower limbs of horses. Full-thickness skin wounds 2.5x2.5cm (6.25cm²) were created on the dorsolateral aspect of both metacarpi and metatarsi in 8 horses. All wounds were bandaged with a non-adherent dressing, which was held in place with an elastic wrap. The horses were randomly divided into two equal groups (chitin and chitosan - groups). In each horse, treated wounds sprayed with 1% chitin (chitin group) or chitosan (chitosan group) suspension in normal saline and control wounds (in both groups) sprayed with normal saline. Forelimbs and hind limbs were cross-paired, the right forelimb and left hind limb almost always received the same spray application (treatment or control), as did the left forelimb and right hind limb. Every other day, wound bandages were changed and wounds were photographed. All photographs were scanned and wound areas (total wound surface, granulation tissue and reepithelialized areas) were calculated using a digital software program. Specimens of normal skin and biopsy specimens of healed wounds were assayed for hydroxyproline content. Wound area measurements and the differences between hydroxyproline content of tissue samples of normal skins and healed wounds were analyzed, using Student t test. The results indicated no significant differences in the total wound, reepithelialized, or contraction areas between either chitin or chitosan control wounds, but the hydroxyproline content were assessed significantly in both chitin and chitosan groups.

Key words: Wound, Healing, Chitin, Chitosan, Collagen, Horse.