کارایی واحدهای زنومترولوژی در ارزیابی فرسایش و رسوب
(مطالعه موردی: حوضه آبخیز بوجان)

دکتر جمشید جدایی معوضی - دانشیار کوه‌جغرافیا، دانشگاه تهران
عیسی جوکار سروینی - دانشجوی دوره دکترای جغرافیا، دانشگاه تربیت مدرس

چکیده
حوضه‌های آبخیز در ایران از نظر زمین‌شناسی، ناهمواری، اقلیمی و سایر عوامل مؤثر در امر فرسایش بسیار متفاوت هستند. پیشروی سیار متفاوت، مثلاً افزایش فرسایش و اولویت بندی اراضی در روش استفاده از واحدهای هیدرولوژیکی را با مشکل مواجه می‌سازند. تحقیق حاضر، شناخت ویژگی واحدهای زنومترولوژی و جهت ارزیابی میزان فرسایش و رسوب ضروری می‌داند؛ بهترین روش از آن به عنوان مدل و پتان پیشنهاد استفاده نمود.

در این روش، ابتدا با استفاده از ملاک‌های جنس سنگ و عوامل توبوگرافیک، بین ارتفاع، شبیه و جهت دامنه می‌توان واحدهای زنومترولوژی یک منطقه را تعیین نمود. سپس برای تعیین مقادیر فرسایش در این واحدها و طبقه‌بندی اراضی بر اساس میزان فرسایش کمی، یک دیده مه‌جنبه از کلیه عوامل مشترک از روش پیشنهاد استفاده نمود. ارزیابی فرسایش با روش مذکور در این واحدهای زنومترولوژی ثابت می‌کند که فرآیند تحقیق در باره سرعت، دقیق عملیتی، ضمن همکاری و اطمینان روابط و نحوه توزیع مکانی فرسایش خاک در سطح منطقه صحیح می‌باشد.

و ارگان کلیدی: ارزیابی فرسایش و ارزیابی زنومترولوژی و واحدهای هیدرولوژی، حوضه آبخیز بوجان

مقدمه
فرسايش خاک عامل ناپدید آرزویی، از بین رفتن خاک می‌باشد. این عمل بطور طبیعی وجود دارد، اما دخلت انسان آن را تشدید نموده است. این در حالت است که تشکیل مجدد خاک به قرنطین زمان نیاز دارد. با توجه به آنکه فرسایش تند دعه‌های از سطح کشور روند صعودی داشته است و همچنین با ملاحظه اهمیت منابع طبیعی ضروریت فراهم‌کرده‌ای تخیربند و فرسایش توسط رونه‌های دیگری مورد مطالعه و ارزیابی قرار گرفته. تخمین مقادیر تخریب و فرسایش مهم برای طرح‌های ارزیابی تکامل اشکال‌زیستی وکه برای اهداف سودمند و کاربردی تکنولوژی می‌باشد، مهم است که در
این تحقیق مورد نظر می‌باشد.

هر چند تعبیه میزان فرایش و رسوب زانی حوضه‌ها و زیر حوضه‌ها (واحدهای هیدروژئیکی) جهت اولویت‌بندی اراضی و اجرای برنامه‌های حفاظت، احیای عمران و اعمال مدیریت بهینه محیط طبیعی، بعنوان معمول سهل‌الوصول و قابل قبول مطروح است و این امر علاوه بر کمک به مطالعات هیدرولوژی در برنامه‌ریزی آماری سرمزمنی نیز تأثیر خوبی دارد؛ اما بعثت وجود مشکلاتی از قبیل عدم تطبیق مرز اقتصادی با مرز حوضه‌های آبخیز و تغییرات و تناقض بین وزارت‌خانه‌های مختلف و میزان اختصاص منابع مالی جهت توجه طرح، در نظر گرفتن این موضوع همیشه امکان‌پذیر نیست. همچنین سیاست‌های ارزیابی از طرح‌های مبتنی بر مقیاس‌های سرتاسری، می‌تواند خریداری برنامه‌های می‌شود و با اینکه محدوده‌ی پرورش‌ها با ملاحظه‌ی اهداف سیاسی و اقتصادی و بدون توجه به مرزهای طبیعی حوضه‌های آبخیز تعیین می‌شود. از طرف دیگر، در روش‌های مبتکر در اینی که واحدهای کاری تا اساس خلاصه اشارات حواشی تعیین می‌گردد؛ غلبه نیازمندی با فشرده‌ردن رسوب‌های یکسان در نظر گرفته می‌شود، ناهمواری و سایر عوامل مؤثر در امر فرسایش بسیار متفاوت می‌باشد، بطوریکه ارزیابی و اولویت‌بندی اراضی در روش استفاده از واحدهای هیدروژئیکی را به شکل مشابه می‌سازد.

با توجه به مطالعات انجام یافته، بین بوشین‌کیاته‌ها، خاک و واحدهای زئوتروپولوژی ارتباط بسیار نزدیکی وجود دارد و در نتیجه این عوامل در فرایند فرسایش و تولید رسوب قطعی است. با بهره‌گیری از واحدهای زئوتروپولوژی، ضمن رفع خطا‌های ناشی از توجه به میانگین در زیر حوضه‌ها، می‌توان نتیجه‌بر ارزیابی خصوصیات سطح زمین بیشتر ورزید و جزئیات طرح را با ویژگی‌ها و شرایط جهان زمین‌شناسی نمو، زیرا واحدهای زئوتروپولوژی پایه‌ای برای اطلاعات نسبت به اثرات مصرفی‌کننده وضع فرسایش و رسوب‌های اراضی آبخیز خواهد بود.

واحدهای زئوتروپولوژی و تأثیر فرآیندهای موجود در آن بر روی شدت تولید رسوب یا توان رسوب‌زایی آنها، عمليه مهم و اساسی است که مطالعات و پژوهش‌های مورد نیاز در مورد فرسایش را تشکیل می‌دهد. برای این منظور، یکی از زیر حوضه‌های کوچک سد لیان جهت مطالعه‌های انتخاب شد تا اساس بی‌گزاری واحدهای زئوتروپولوژی، مورد مطالعه و بررسی قرار گیرد. بطوریکه بنوانهی مقایسه‌های لازم پرداخته و در نهایت با تطبیق آن با سایر مطالعات و با انداده گیری‌ها، نتایج‌گیری و ارائه پیشنهادات با پرسیم.

سبکه تحقیق

بررسی جویان‌های سطحی و فرایشی رودخانه‌ای از دریاچه مورد نظر بوده و در حال حاضر به دلیل پیچیدگی شدن زئوتروپولوژی بزرگ‌تر از نواحی ازودیده شده است. با توجه به عوامل اصلی فرایشی خاک و در پس‌درک فرآیندهای مختلف مربوط به آن، این امکان وجود آمده که با توجه به کمک روش‌های تجزیه نسبت به برآورد آن اقتصادی، این روش‌ها به حوصله به شدت خارج است، عمداً همه عوامل را در نظر گرفته و خالی از اشکال نیستند. با این وجود در نهایت یک دریاچه مورد بیشتر، برای اخترام تبدیل فرایش، روش‌های جامع و مناسب چون روش پیش‌بینی
پژوهش‌های جغرافیایی - شماره ۴۰، مهر ماه ۱۳۸۰

(1) ارائه شده است.

برای پژوهش‌های فراستی و مقدار فراستی و در نهایت، محاسبه میزان توزیع روس و اصلاح در حوضه‌های آبی‌ترین. بطور معمول از مدل‌های متعدد برآورده، مدل فراستی و روس در اینجا به صورت کاریه هیدرولوژی می‌شود که از جمله در سال کاربردی و افزایش محاسبه دریاک از زیر در حوضه‌های سد لیاقبا نام‌آور کردیا که در آن، دقت
مدل بالغ بر ۸۵ درصد از ازایون گذشته در هم‌سان سال، برآورده است و روس با استفاده از این مدل در واحدهای هیدرولوژیکی کل حوضه مذكور تدریجی گذشته. به هم دقت مدل به میزان ۸۵ درصد مورد تایید قرار گرفت. همچنین بررسی‌های توسط سازمانها و اداره دولتی در بعضی از حوضه‌های آبی‌ترین تحقیق یافته‌که در رابطه با منطقه مورد رفعه
بطور مستقیم یا غیر مستقیم مورد استفاده این پژوهش قرار گرفته‌اند.

در زمینه موضوع تحقیق، گروه مرکز و آبی‌ترین دانشکده منابع طبیعی کرج در قابل طرح‌های جامع مربوط داری، آبی‌ترین دانشکده و یونانزدایی در قد جد مطلقه از کشور به مطالعه و ارزیابی قابلیت منابع طبیعی در مقیاس ۱/۵۰۰۰۰۰۰ی اقدام و از روش‌های فراستی اطلاعات مورد استفاده، اما در روش پیشنهادی وجودی که از مطالعات هیدرولوژیکی در مشخص نمونه واحدهای کاری استفاده شده است. ممکن است مطالعات مرحله بعد بر اساس حوضه‌های هیدرولوژیکی انجام شده است؛ ضمن آنکه در تعیین واحدهای زئومترولوژی از عوامل ارتفاع از سطح دریا و جهت جغرافیایی دانشگاهی جامعه است. همچنین مطالعات یارانه‌ای صورت جن در پایان‌نامه کارشناسی ارشد بی‌پروی در دانشگاه‌های منابع طبیعی کرج و نور در این زمینه تهیه و از روش کیفی مطالعه فراستی خاک در تپنده‌ی شدت
فراسیش استفاده می‌کند.

تحقیق حاضر که کاربرد و نحوه استفاده از واحدهای زئومترولوژی را با ملاقات و معارفه مورد بحث، برای اولین بار بعنوان پایه و اساس کار ارزیابی فراستی و روس در مقیاس تخصصی - اجرایی (مقیاس ۱/۵۰۰۰۰۰۰) مطلوب و بررسی می‌کند. به توجه به روند و روش تجزیه فراستی و هدر رفت خاک در آبی‌ترین و لزوم برنامه ریزی صحت و مناسببا شرایط آبی‌ترین کشور در جهت حفاظت از منابع آب و خاک تدوین گردیده است.

روش و مراحل تحقیق

تحقیق حاضر از نظر روش و ماهیت، از نوع نیمه تجريبي و توصیفی موردی محسوب می‌گردد که در آن فراستی و رسوی‌دهی ارائه پی‌های حوضه آبی‌ترین در قالب واحدهای زئومترولوژی مورد نوساناتی و ارزیابی قرار گرفته است. این
فرایند شامل گام‌هایی است که به ترتیب یک پس از دیگری باید برآمدشان شود و بطور کلی عبارت است از شناسایی منابع و
عوامل موثر در امر فراستی و جمع آوری داده‌ها، تجزیه و تحلیل آنها و ارزیابی و درجه‌بندی رسوب‌های ارایی و
ما باید. لذا ضرورت ایجاد مشخصات و خصوصیات زمین شناسی، آب و هوای هیدرولوژی مورد بررسی قرار

(1) روش پیش‌کاک (Pacific West Inter Committee) در سال ۱۹۸۳ توصیه می‌سازد آب در امریکا برای محاسبه فراستی

جاک تولید روس و در مناطق شبه‌کشور نیمه شرقی گروه کارپ، لازم بوده و ارائه‌گری که، در طی این مدت، آزمون آماری از درجه‌های مختلف ۸ درصد بهترین روش شناخته شده است. این روش برای اولین بار در امریکا توسط محققین مشاور Development of Resources مؤثر در فراستی و می‌تواند به بهترین ترتیبی خوب آن در مقایسه با سایر روش‌ها، بررسی فراستی و تولید روس و به خود

اعتماد داشته است تشریح این روش به‌همراه کاربرد آن در ارائه‌گری فراستی و روس منطقه‌های خواهی داشت.
گریند. برای این منظور به جمع آوری آمار و اطلاعات و گزارش‌های موجود در ارتباط با موضوع و اهداف تحقیق پرداخته و با استفاده از نقشه‌های توپوگرافی و عکس‌های هوایی، نقشه‌های هیدروگرافی، هیپومتریک، جهت دامنه و شبکه منطقه نهایه‌شده، ضمن آنکه از فعالیت‌های مرحلات، تکنیک‌های مختلف، تکنیک‌های پیشرفته، با استفاده از مدل‌سازی و تحلیل‌های مختلف با استفاده از تکنیک‌های جغرافیایی (GIS) استفاده شده است. برای این کار کلیه نقشه‌های مورد نیاز بعنوان یکسان و کلیه اطلاعات، به وسیله برنامه ARC EDIT وارد سیستم گردیده، سپس با دغدغه آنها در برنامه ARC.INFO وارد سیستم گردیده. به وسیله تکنیک‌های مشترک، مشخص و محدود و ساخت آن تخصص‌گردد. جهت تخمین غیرلایه‌ای، استفاده به وسیله امکان فرسایش و رسویده آنها، با توجه به مزیت روش کسب پیش‌بینی اصلاح شده در بهره‌گیری از اغلب پارامترهای دخیل در امر فرسایش استفاده و بهبود پایدار کسب تجربه و تحلیل شده است.

واحدهای هیدرولوژی و واحدهای زوئومترولوژی

جهت کاربرد مدل مورد استفاده و برآورد مقادیر کلی عوامل فرسایش، ابتدا لازم است که منطقه مورد مطالعه را به واحدهای هیدرولوژیکی (زیر حوضه‌ها) و با هر واحد مناسب دیگر تقسیم‌بندی نمود.

در واحدهای هیدرولوژی، حوزه‌های آبخیز با عنوان یک واحده قلمداد شده و شامل ساختاری از زمین است که مدل‌ها و حوزه‌های آبخیزی بر اساس طبقه‌بندی و تحلیلی نماید. در مرحله بعدی، مشخص نمودن کلیه قسمت‌های خشکی و آب‌انباری مختلف یک حوضه و همچنین تعبیه حدود و میدان آنها به وسیله منطقه‌نگر ساخته شده. به این ترتیب امکان شناخت بهتر و بیشتر از ناحیه‌های مختلف، امکان تخمین اولیت‌های در اجرای طرح‌ها و مسیرها در تدوین برنامه زمین‌شناسی شده را به راحتی قابل انجام می‌پردازد. از طرفی جمع آوری آمار هیدرولوژی و میدان رسوپ تولدی برای عملیات طراحی عمرانی از قبل احداث سد و همچنین بعنوان اجرای طرح‌های منطقه‌ای حفاظت آب و خاک تأثیر انواع بدن‌ها، تهیه از استفاده به وسیله این یک مدل هیدرولوژیکی کمک‌یابی است. لذا می‌توان در حوزه‌های آبخیز به‌کلیه مطالعات محصول نمود. با این همه، مطالعه و تحلیل مناطق در روش واحدهای هیدرولوژی، به مناسب‌ترین کمتر اهمیت داده‌بوده و بیشتر در پی دریافت روابط موجود بین ابعاد و واحدهای یک مجموعه مستقل بوده‌اند. این روش حتی رگیُن‌سازی در اینکه این روابط را می‌تواند نشان دهد، ضمن آنکه واحدهای هیدرولوژیکی با اندازه‌گیری شناخت بودن شرایط محیطی و عوامل طبیعی موجود در آنها، می‌تواند پوشش سطحی، وضعیت ناحیه‌ای و صلابت آب و نیاز به سدهای به‌پیش‌بینی می‌شود و ناحیه‌های در مطالعات فرسایش و رسوپ، ممکن است.

ویژه استفاده از واحدهای زوئومترولوژی را ندارند.

توجه و استفاده از واحدهای زوئومترولوژی، مبنی بر تفکیک واحدهای کوچک و برگرگی است که چهاره زمین

را به‌وجود آورده است. این روش مطالعاتی می‌تواند مورد استفاده‌ای باشد و یک چهاره زمین شناسی، شبکه زهکشی، خاک و پوشش گیاهی یک منطقه استوار شده باشد، برای این منظور با استناد کلیه اطلاعات مربوط به عوامل
مذکور را ابر روی نقشه قرار داده باشیم. با ارزیابی موقعیت‌ها و وضعیت‌ها، وظیفه را بر عهده نگه داریم. بررسی و تحقیق واحدهای زئومرولوژی و نیز زئومرولوژی مشابه داشته و تحت همین شرایط است که می‌تواند در پارس‌الدین و روابط، قابلیت استفاده بیشتری از واحدهای هیدرولوژی داشته باشد. همگانی‌ها خواهند دید که عوامل فرسایش در واحدهای زئومرولوژی یکان که با نمایش زمین و نسبت به شیب، میزان و بهره‌وری مشترک در سارب زمین‌های مرطوب به مرتبه‌بندی و تجربه نشده‌است، نیز می‌توان استفاده نمود. در واقع این روش بر این است که تأثیر تغییرات عوامل محیطی در امر فرسایش را می‌توان در تنوع عواملی جستجو کرد که بر تفکیک واحدها در نظر گرفته شده است.

ملاک تعبین واحدهای زئومرولوژی

همگانی‌ها پیش‌بینی زئومرولوژی و سیستم‌های مشابه منطقه با عوامل دیگر محیطی ایجاب می‌کنند که مطالعات حفاظتی خاک و آب بهره‌وری‌های مناسب از منابع نیز بر اساس روابط پیدا شده‌اند. در اینخصوص، استفاده از ملاک‌ها و معیارهای مورد بحث جهت تعبین واحدهای زئومرولوژی می‌تواند در تحقق بهبودی به اهداف یاد شده بهبود بسیار موثر باشد.

برای تعبین و تفکیک واحدهای زئومرولوژی یک منطقه، منطقه‌ای از روشهای مختلفی سود جست. آنچه مسلم است، در تمامی موارد، عوامل جنس زمین و میزان انتقال از سطح دریا و شیب و جهت واکنشی تقلیدی را در ایجاد واحدهای زئومرولوژی ایجاد می‌نمایند. در این صورت چارچوب این تفسیری که بر اساس عوامل استوار است که در مدیریت محیطی این مطرح می‌شود از طرفی با دخالت باران و تاثیر ساختمانی چون گیاه‌ها و یا عوامل انسانی، می‌توان انظار تغییر در واحدهای تئوری زئومرولوژی داشت که در این صورت با استناد به نشانه‌ای ای پیش‌بینی عوامل اقیانوسی و در تعیین وضعها از آنها کمک می‌گردد.

همگانی‌ها این عوامل در واحدهای زئومرولوژی نیز مستثنی، در این بررسی ملاک تعبین و طبقه‌بندی واحدها بر اساس تلفیق جنس و مقاومت سنجی با شکل نتویزگرافی قرار داده می‌شود. به این ترتیب می‌توان استفاده می‌کند که در آنها عوامل مزدک یکسان باشد، بصورت یک واحدهای زئومرولوژیکی مستقل در نظر گرفته شوند.

جنس سنجی مورد و نوع تشکیلات سطحی در کیفیت اتصال و تحول خاک و همچنین در عمل فرسایش نقش مهمی ایفا می‌کند. از سوی دیگر، شرایط آب و هوایی برخی میکروآب واقع در شدت بخشیدن به عمل فرسایشی پیش می‌آید است. خاک‌ها همچنین در دامنه‌های آب و هوایی تأثیر می‌گیرند. تأثیر شیب دامنه‌ها چنان است که بسیار خاک‌شناسی نیز آن را به عوامل محیطی نسبتهای تا تولید و تخلخل خاک افزایش می‌دهند. این عامل به‌جره جهت دامنه‌ها، پیش‌بینی چگونگی زاویه تانش و میزان دریافت آن زور خوردگی بوته که خودی می‌تواند در وضعیت اقلیمی پیش‌بینی و تحولات زئومرولوژیکی منطقه نقش مهمی را ایفا نماید. شایان ذکر است که نشان عوامل نتویزگرافی با توجه به نتایج اختلاف زمین‌شناسی و عوامل شکرایه‌ای می‌باشد که می‌بیند که نتایج نتویزگرافی نتایج تحول تالار آنها

زئومرولوژی را در ارتباط با جنس زمین و رژیم آب و هوایی داشته و خودید پایان به فعالیت و ایجاد و خودید نیز تحت تأثیر آنها
تغییر شکل می‌یابد.
به‌حال استفاده از ملاک‌های فوقال‌الذكر سبب گردیده تا روش تعبیه واحدهای زنومفورولوژی از یک طرف تینیکی بوده، به‌طوریکه اشکال اولیه‌ی ناهواری و سپس فرایندهای شکل‌زاپی یا دخالت داده‌ی می‌شوند و از طرف دیگر برای حل مسئله کاربردی تحقیق حاضری که بعنوان اساس مطالعات ارزیابی فرسایش و رسوب در نظر گرفته شده، مطلوب است؛ ضمن آنکه در عامل اصلی ارزیابی روش پیامک مشتمل بر زمین‌شناسی و پستی و بلندی‌های کهگیم تفکیک واحدها مستقیماً تعبیه می‌گردد.

مطالعه موردی: حوضه آبخیز بوچان
حوضه آبخیز مورد مطالعه نام بوچان، یکی از زیر حوضه‌های سد لنیان واقع در شمال‌غربی تهران است که در موقعیت جغرافیائی ۵۰°۰۵'۵۵" شمالی و ۵۱°۳۵'۶" شرقی قرار دارد. این حوضه به وسعت ۸/۰ هکتار یا ۰/۴ هکتار از مساحت کل آبخیز سد لنیان در دامنه جنوبی البرز مرکزی واقع شده و از شمال و شمالغربی به حوضه آبخیز امام و از جنوب و جنوبغربی به زیر حوضه‌های کوچک روستهای جارو و شمیران محدود می‌شود. همچنین یک رشته ارتفاعات که دارای روند شمالی - جنوبی است، در شرق حوضه سبب تفکیک آن به حوضه‌های شرقی و نام ناک‌پذیری به شکل (۱) است.

تعمیم آبراهه‌های حوضه از نوع فصلی و موقعیت بوچان و طول برگ‌کره‌ی آب‌ها به ۷/۶ کیلومتر و شبی آن ۱۱/۹۲ درصد می‌باشد. از نظر ارتفاعی حداکثر و حداقل ارتفاع این حوضه به ترتیب ۳۷۰ سانتی‌متر در بلندی‌های شمالی و ۱۷۵۰ متر در نقطه‌ی دریاچه آن بوچان و با ارتفاع متوسط وزنی ۲۳۶ متر، منطقه‌ی کوهستانی بیشمار می‌رود.

شکل ۱ - نقشه موقعیت جغرافیائی منطقه مورد مطالعه
واحدهای زئومرفولوژی منطقه

با توجه به آنکه نقش عوامل زئیکشسانی، میزان ارتفاع از سطح دریا در صدد شیب و جهت جغرافیایی دانیها هر یک بطور مستقیم یا غیر مستقیم در فرآیند رسایش و تولید رسوب قطعی است؛ در صورت مشخص شدن در صدد عوامل در سطح اراضی منطقه و در ترتیب تعین واحدها زئومرفولوژی ضرورت می‌زند. در این راستا، سطح اولیه رسوب می‌تواند تا یک جریان خاک تغییر داده و سایلی و شکل‌گیری ناشی از آنها را پرتو بیابد.

در این رابطه ابتدا به کمک مطالعات زئیکشسانی و سطحی زئیکش منطقه و تهیه نقشه مربوط به آن و همچنین بر اساس مطالعات گذشته، یکی از مقاس‌های ۱۰۰۰/۱، نقشه ویژه‌ای و مشاهده‌های صحرایی منی بر دخالت داند وینگین و نوبی‌گارانی چون ارتفاع، شیب و جهت دانسته، تهیه‌نشده‌اند، مربوطات ترکیب و تلفیق آنها، سیستم زئومرفولوژی منطقه به واحدهای اسلو کوستن، کوه‌های یا نهایی، دره و ناهیده‌ها رودخانه‌ای تقسیم‌کرده‌که هر یک می‌تواند باعث روابط مستقل و مشخص از جنسیت و قرم سطحی زئیکش، خاک و بوشک‌گیاهی باشد.

از آنجاکه خصوصیات زئیکش‌های اقلیمی، زئومرفولوژی، خاک و بوشک‌گیاهی قاطع تخلخل واحدهای اصلی مذکور در یک حوضه به یکدیگر متفاوت می‌تواند و در ترتیب تغییر نقش خستگی از جنبه اصلی رسایش و تولید رسوب نیز متفاوت می‌باشد. لذا جهت تعیین میزان این نقش، می‌باشد واحدهای اصلی مذکور را به واحدهای فرعی همگان زئومرفولوژی تفکیک نمو. در تفکیک واحدهای فرعی زئومرفولوژی، باید توجه داشت که در حوضه‌هایی که دارای چندین واحد

جزئی مورد مطالعه می‌باشد و همچنین به یکی از آنها در نظر گرفته شود؛ اما واحدهایی را که در مقایسه با وسعت منطقه مورد مطالعه دارای گسترش بسیار محدودی و منحصربه‌فرد بوده و ساخت آنها کاملاً در یکدیگر مربوطی ندارند، به ترتیبی از روش صرف‌نظر تهیه‌شده‌اند.

بنابراین سعی می‌برد بوده است که واحدها را تا حد ممکن همگن و نیز در مساحتی که کلیت اجرایی بر نهایی حفاظتی را نیز دارا باشند. این وجود سطح غیر قابل نفوذ همچنین رخنه‌های منطقه‌ای و یا واحدهایی که با وجود وسعت کم از نظر رسایش و رسوب‌دهی، می‌توانند بسیار تأثیرگذار باشند (از قبیل بزرگ) به‌ویژه همراه با عدم تغییر شکل (۲ آمده است.

واحدهای اصلی مذکور در منطقه مورد مطالعه به توجه به دخالت باران‌های اقیانوسی به ۲۸ زیر واحد تقسیم‌بندی می‌شود که هر یک مشخصات اساسی یک‌سان‌وند و مخصوص به خود دارند. لذا با کمک و علامت ثبتی نشان داده شده‌اند. در کدگذاری واحدها، عدد اول با با کد ۱، ۲، ۳، ۴، ۵ و ۶ دریاد و عدد دوم، واحدهای فرعی را مشخص می‌سازد. همچنین در ستون علامت، طبقه ارتفاعی جهت دانسته و میزان شیب، در صورت و جنس ستگ‌ها، در محل بزرگ مربوط به یک در واحدهای نشان داده شده است. این علامت و کدگذاری واحدهای زئومرفولوژی مورد بحث به‌همراه پارازایی‌ها، اختصاصات و ویژگی‌های مهم آنها، بعنوان واحدهای کاری ارزیابی رسایش و رسوب در حوزه، بهره‌برداری از خصوصیات و ویژگی‌های مهم آنها (۱۱) و
جدول ۱ - مشخصات و ویژگی‌های واحد‌های زئومترولوژی منطقه

| خصوصیات همه زئومترولوژی | ارتفاع (متری) | ماندگار (م.م) | اندازه (سانتیمتر) | قسمت | واحد
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>شورودریت و گرمساری</td>
<td>0.1</td>
<td>0.3</td>
<td>E1.S.IV</td>
<td>F.C.</td>
<td>1-1</td>
</tr>
<tr>
<td>سخت و گرمساری</td>
<td>0.2</td>
<td>0.4</td>
<td>E2.SW.III</td>
<td>N.S.L</td>
<td>0-1</td>
</tr>
<tr>
<td>زئومترولوژی خفیف</td>
<td>0.3</td>
<td>0.5</td>
<td>E3.NE.III</td>
<td>TSH.</td>
<td>0-1</td>
</tr>
<tr>
<td>زئومترولوژی سخت</td>
<td>0.4</td>
<td>0.6</td>
<td>E4.SI.II</td>
<td>TSH.</td>
<td>0-1</td>
</tr>
</tbody>
</table>

توجه: این جدول به‌عنوان نمونه‌ای از مشخصات و ویژگی‌های واحد‌های زئومترولوژی منطقه نمایش داده شده است. در واقعیت، مشخصات دقیق‌تر و بدیع‌تری وجود دارد که احتمالاً با استفاده از تکنیک‌های متعددی مانند تحلیل طبیعی، تحقیقات و آزمایش‌های علوم زمین کسب شده‌اند.
برآورد عوامل فرضايي خاک و درجه رسوپدهی واحدها

هدف اصلی تحقیق حاضر، ارائه آزمایشگاهی زئومترولوژی در ارزیابی فرضايي و رسوپدهي می‌باشد.

برای این منظور، از روش پسایک استفاده شده که در کاربردي، تأثیر و نقش 9 عامل مهم و مؤثر در فرضايي خاک و رسوپدهي (مدیریت در 2) مورد بررسی و ارزیابي قرار مي‌گيرد و نتیجه آن بصورت ارقام با نمراتي است که نشان دهنده اهميت و شدت تأثیر عوامل مورد نظر می‌باشد.

جدول ۲- روابط مورد استفاده در روش پسایک جهت ارزشدهي به عوامل

<table>
<thead>
<tr>
<th>عوامل فزایش</th>
<th>ریف</th>
<th>معادله و پیشنهد عوامل مورد نظر</th>
</tr>
</thead>
<tbody>
<tr>
<td>روزن شناسي مطلبي</td>
<td>1</td>
<td>$y_1 = x_1$</td>
</tr>
<tr>
<td>مصالح خاک به فرضايي</td>
<td>2</td>
<td>$y_2 = 16.67x_2$</td>
</tr>
<tr>
<td>قیمت عامل با استفاده از مصالح خاک</td>
<td>3</td>
<td>$y_3 = 0.2x_3$</td>
</tr>
<tr>
<td>میزان مربوط به مقدار B_{0}</td>
<td>4</td>
<td>$y_4 = 0.2x_4$</td>
</tr>
<tr>
<td>شاخص بندی</td>
<td>5</td>
<td>$y_5 = 0.33x_5$</td>
</tr>
<tr>
<td>درصد زمین لفت</td>
<td>6</td>
<td>$y_6 = 0.2x_6$</td>
</tr>
<tr>
<td>درصد تاج و پوشش</td>
<td>7</td>
<td>$y_7 = 20 - 0.2x_7$</td>
</tr>
<tr>
<td>فرضايي سطحی خاک</td>
<td>8</td>
<td>$y_8 = 0.25x_8$</td>
</tr>
<tr>
<td>فرضايي خاک</td>
<td>9</td>
<td>$y_9 = 1.67x_9$</td>
</tr>
</tbody>
</table>

برای مثال، اولین عامل روش مورد بحث توصیه را y_1 y_2 یا y_3 از جمله شده که در اینجا x_1 شاخص فرضايي زمین شناسی است و بر اساس نوع سطح، سختی و مقاومت آن تعیین می‌شود. میزان ارزش این پارامتر از 0 تا 10 متغیر است، به این ترتیب که هر چه سطح سختتر باشد، عدد کمتری به آن بیشتر ارزش داده می‌شود.

نحوه گزارنده ارزیابی این عامل در واحد‌های هیدرومتری معمولاً به این صورت است که با استفاده از جوشهای مختلف در یک زیرخوشه، سطح اشغال شده توسط هر سطح در آن زیر حوضه بلاستیک شده و در نهایت، استفاده می‌شود به صورت آماری برای بر این حوضه محاسبه می‌گردد. اما در این تحقیق، نتایج به دست آمده به واحدهای زئومترولوژی، تکنیک‌سازی شاخص نرمی نکشیده شده و فقط عدد باست که جهت استفاده در این عامل از آن بهره‌مندی می‌گردد. مشخصه‌های مورد نظر واحدهای زئومترولوژی یا دانست تا یکی از عوامل نگه‌بان به ترتیب آسیب دیده و فقط کافی است تا درجه حساسیت تکنیک‌های خاصی هر واحدهای زئومترولوژی را دانست تا یکی از عوامل نگه‌بان باشد آسیب دیده. جهت ارزش دهی به بقیه عوامل نیاز مطلق روابط موجود در جدول شماره (۲) عمل نموده که نتیجه آن در جدول شماره (۲) آمده است با استفاده از این جدول می‌توان به طریق میانه نیاز به دقت نتیجه‌گیری که می‌تواند برای دلیل وجود اراضی واحدهای زئومترولوژی منطقه‌ها را بررسی کرده باشد را بررسی کرده باشد.
در این طبقه جای گرفته که از عوامل مهم فارسیز در آنها می‌توان به شیب زیاد و فرسایش سطحی بالا اشاره نمود.

۲- شدت فرسایش زیاد با درجه رسویده ۷۵ تا ۱۰۰ که بアク یا واحدها را (بجز واحدهای ۳) شامل شده است. در این طبقه، واحدهای زئومورفولوژی که حدود ۵۰ درصد از اراضی آنها را در انتهای سنگی تشکیل داده است.

۳- شدت فرسایش متوسط با درجه رسویده کمتر از ۷۵ مشتمل بر واحدهای ۱-۱ و ۱-۲ و ۱-۳ و ۱-۴ (بجز وجود اراضی صخره‌ای فافد خاک)، ۱-۲ و ۲-۲ و ۲-۴ (بجز وجود باغات و اراضی کشاورزی و حفظ خاک توسط بندی و تربس‌های ایجاد شده) می‌باشد. این حال، فعالیت‌های انسانی و بهره‌برداری‌های غیر اصولی با فرسایش سطحی و رودخانه‌ای زیاد سبب شده است تا واحدهای ۱-۲ و ۱-۳ و ۱-۴ درجه رسویده بالاترین درجه رسانه‌ای شود.

جدول ۳- نتیجه‌هایی ارزیابی عوامل فرسایش و تعیین درجه رسویده و واحدهای زئومورفولوژی
برآورد میزان رسوپ کل و رسوپ ویژه واحدها

با استفاده از رابطه نمایی بین درجه وسیبدهی و میزان تولید رسوپ، حجم برآورده رسوپ از هر کیلومترمربع و همچنین حجم موارد خروجی ره واحدها محاسبه می‌شود:

\[Q = 38.77e^{0.0353R} \]

که در آن \(Q \) میزان تولید رسوپ (به متر مکعب در کیلومترمربع) \(R \) درجه وسیبدهی یا حاصل جمع نمرات عوامل نه‌گانه و تأثیرگذاریهای متناسب ۱/۱۸۸۵۰۸۱/۸۱۸۶۱۸۸۵۰۸۱ بهشاد با اختصار و وزن مخصصی متوسط رسوپ با عیار ۱۵۰۰ کیلوگرم در متر مکعب، میزان وزن رسوپ ویژه و همچنین رسوپ ویژه برآورده واحدها دست آمده است. جدول شماره ۳ نشان داده که میزان رسوپ ویژه رابطه دارد از ۵ تا ۱۵/۱۲ تر میزان رسوپ ویژه کل آن در هکتار در سال می‌باشد. همچنین مجموع کل رسوپ خروجی منطقه ۹۵۴۰۸/۹۵۰۵۰۵ تن در سال و رسوپ ویژه کل آن ۱۷/۱۲ تن در هکتار در سال برآورد شده است.

بحث و نتیجه‌گیری

به منظور دقیق‌تر بررسی و همچنین تعیین روابط و نحوه توزیع مکانی فرسایشی خاک و وسیبدهی در سطح حوضه آبخیز، بررسی از آمار فرسایشی و رسوپ در این حوار نقش‌آور و مشترک و تأثیرگذاری استوار گردیده است. این روش توانسته است تا به‌وکلهای مهیا را با ارائه نشان دهد که عوامل الکتریسیتی در فرسایشی را به‌طور موزون و تغییرات قابل توجه و استفاده باشد، مورد تجزیه و تحلیل قرار داده و میزان وسیبدهی آنها را برآورد نماید (رک.‌که. به‌جود ۳ توضیح مربوط به آن در مبحث برآورد عوامل فرسایشی).

برای تعیین درجه‌بندی دقت برآورد انجام گرفته، می‌توان از رابطه همبستگی بین دیگر و رسوپ استفاده نمود؛ اما در تحقیقات قبلی از این حوار برای ارزیابی نتیجه کارایی مدل‌ها از میزان متوسط رسوپ‌گذاری در منطقه سد استفاده نموده‌اند. چراکه اختلاف رسوپ‌های مخزن سد با هم‌اکنون کل رسوپ‌های خروجی از استگاوهای کابل توجه می‌باشد و علت آن در بررسی‌های که از این حوار وجود دارید، به عدم نظم مشخص در نمونه‌برداری از استگاوهای تعداد کم نمونه‌برداری در هر استگاه و همچنین وضوح تعداد کم نمونه‌برداری در هر سال نسبت داده‌اند. بدیل دقت مناسب مطالعات عمیق‌یابی در منطقه سد و با‌بنای آنکه رسوپ‌های جمع شده در مخزن، شامل بار معلق و بار بستری می‌باشد، به واسطه کل رسوپ‌ها در مواضع سیلابی و نحوه سیلابی را در یک دوره‌ طولانی دریافت نموده است، نما می‌توان از متوسط رسوپ‌گذاری ویژه آن به ۳ تن در هکتار برای منطقه مورد مطالعه نیز استفاده نمود. گزارش‌های امروز آب، میزان رسوپ سالانه و ویژه حاصل از عمیق‌یابی تا سال ۱۳۸۵ و ۱۳۸۶ را ۱۰/۱۸ و ۱۷/۱۶ تن در هکتار نشان داده است.

تجزیه و تحلیل آمار رسوپ سنگی حوضه وسیبدهی از نظر تقابل و بعضی از خصوصیات آن در منابع دیگر گذشته است. طرح جامع این سد در مقایسه با سایر اراضی‌ها، بیشترین میزان برآورده رسوپ را به‌وجود است. از جهت سیلابی و رسوپ در قسمت‌های همجوار جهان مریان رسوپ حمل شده توسط استگاه گلدوزک ۱۸۴۳۲/۲۳۲۳ تن برآورده شده که با استفاده از داده‌های آمار آنها، قابل اطمینان و اقتصادی سدانه و استفاده نموده است این منبع میزان فرسایش و رسوپ ویژه منطقه را به‌همراه گیری از مدل پیش‌بینی ۱۰/۲۲ تن در هکتار تخمین زده‌که در صمیم متوسط رسوپ‌گذاری مخزن سد را شامل می‌باشد.
پژوهشی دیگر در حوزه سه، از اینگاهی رو به رو که بطور متوسط ۳۰ بار در سال نمونه‌برداری داشته و تعداد سالهای بدون آمار آن در حداقل است، استفاده نموده است. اینگاهی مکرر نیز با توجه به آنکه دو سوم از سطح کل حوزه سه را برگرفته و گلی به‌منظور رشد با شیوه رشته‌ای مختصر، سرود را قابل توجهی را نشان نداده است. در این رابطه با قبول رشته‌ای غیر سریالی در ۵۰ ماه از سال، نسبت به اصلاح آمار آن بر اساس رشته‌ای مکرر و غیر آن اقدام شده که با اعمال ضریب حاصله و با ملاحظه پارک مقدار تخرب ویژه منطقه، بطور متوسط ۷۲/۸۶ تن در هکتار بدست آمده است.

از مجموعه تجزیه و تحلیل‌هایی که ذکر آن گذشت، می‌توان استنباط نمود که تولید رسوب سالانه منطقه مورد مطالعه از رسو با هر کل حوزه سه، کمتر نباشد. اما از مطالعه آمار مقدار رسو در سنگ‌های میزان ۲۱/۸۷ تن در هکتار تا حدودی فاصله داشته که این امر با برآورد میزان رسو‌دهی از طریق مدل پسابک در واژه‌های زبان‌رولفوژی منطقه (یعنی ۱۷/۱۳ تن در هکتار) همخوانی نشان می‌دهد. همچنین تحلیل‌های آماری با استفاده از روش‌گرایسون چند متغیره و با دقت رابطه بین وضعیت فعالی فرسایش باعامل محاسبه شده (بیان شده مستقل) باعث منجر به این روش‌گرایسون برای رابطه با استفاده از نرم‌افزار SPSS با استفاده از رقم‌خوانی شماره ۵ و رابطه ژیر (۱) نشان می‌دهد. که متغیرهای خاک، پوشش زنی و توبوگرافی از اهمیت بیشتری برخوردار هستند.

SSF=14.0274+(0.7575C)+(0.0421G)+(0.0446L)+(0.2628P)+(0.0094R)+(0.8976S)+(0.1113T)

در نهایت ارزیابی فرسایش و رسوی‌دهی اراضی منطقه با تغییر و استفاده از واحدهای همگی زبان‌رولفوژی ثابت می‌کند که فرضیات تحقیق در باره سرعت، دقیق عملی بیشتر، تشخیص مهم‌ترین عوامل فرسایش و بحرانی‌ترین نواحی از نظر تولید رسوی، تعیین روابط و نحوه توزیع مکانی فرسایش خاک در سطح منطقه و صحت‌پذیری بیشتر ملاحظه رشد تخرب منحنی طبیعی در سطح منطقه و ارگان برآورده فرسایش خاک و رسوی‌دهی خیلی زیاد (مندرج در جدول ۳)، انتخاب عملیات مناسب آبخیزداری و اجرای طرح‌های حفاظتی را از نواحی می‌سازد. با متشنج کننده شدت فرسایش و درجه رسوی‌دهی وجود یک از واحدهای زبان‌رولفوژی منطقه در این تحقیق ضروریست در برنامه‌ریزی‌های اجرایی جهت کاهش میزان فرسایش خاک، این اولویت‌ها منظور قرار گرفته بطوریکه بیشتر کاهش، برای تعیین محل مناسب اجرای طرح‌ها، از قبلی گلایینی، ایجاد، تراس، توده و...

بر حسب مورد با توجه به وجود یک مکانی در یک واحدها، باید از بحرانی‌ترین واحدها (برای مثال از

واحدهای ۴-۱و۴-۷) آغاز گردد.
جدول 2- اطلاعات مربوط به برآورد رسوب ویژه واحدهای زنومورفولوژی

<table>
<thead>
<tr>
<th>رسوب روزهای بیمارستانی</th>
<th>تعداد رسوب</th>
<th>جمع رسوب</th>
<th>تعداد کلمه های میانگین</th>
<th>واحد</th>
<th>تعداد برای</th>
<th>بهره‌وریPow</th>
</tr>
</thead>
<tbody>
<tr>
<td>59/11</td>
<td>1245</td>
<td>1138</td>
<td>87.1</td>
<td>61</td>
<td>0846</td>
<td>(88-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>1745</td>
<td>1678</td>
<td>84.1</td>
<td>78</td>
<td>0846</td>
<td>(88-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>2154</td>
<td>2075</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>2656</td>
<td>2578</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>3055</td>
<td>2978</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>3456</td>
<td>3378</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>3857</td>
<td>3778</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>4258</td>
<td>4178</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>4659</td>
<td>4578</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>5057</td>
<td>4978</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>5458</td>
<td>5378</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>5860</td>
<td>5778</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>6261</td>
<td>6178</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>6662</td>
<td>6578</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>7063</td>
<td>6978</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>7464</td>
<td>7378</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>7865</td>
<td>7778</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
<tr>
<td>59/11</td>
<td>8266</td>
<td>8178</td>
<td>84.1</td>
<td>78</td>
<td>0946</td>
<td>(90-1)</td>
</tr>
</tbody>
</table>
MULTIPLE REGRESSION

Listwise Deletion of Missing Data

Equation Number 1 Dependent Variable.. SSF

Block Number 1. Method: Enter

C G L P R S T

Variable(s) Entered on Step Number
1. T
2. P
3. R
4. G
5. C
6. L
7. S

Multiple R .91458
R Square .83646
Adjusted R Square .77621
Standard Error 1.59496

Analysis of Variance

<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>7</td>
<td>247.21239</td>
<td>35.31606</td>
</tr>
<tr>
<td>Residual</td>
<td>19</td>
<td>48.33428</td>
<td>2.54391</td>
</tr>
</tbody>
</table>

\[F = 13.88259 \quad \text{Signif } F = .0000 \]

--------------- Variables in the Equation ---------------

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>Beta</th>
<th>T</th>
<th>Sig T</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-.757526</td>
<td>2.966595</td>
<td>-.032068</td>
<td>-.255</td>
<td>.8012</td>
</tr>
<tr>
<td>G</td>
<td>-.042091</td>
<td>.726408</td>
<td>-.009662</td>
<td>-.058</td>
<td>.9544</td>
</tr>
<tr>
<td>L</td>
<td>.044631</td>
<td>.144229</td>
<td>.046161</td>
<td>.309</td>
<td>.7604</td>
</tr>
<tr>
<td>P</td>
<td>.262830</td>
<td>.205488</td>
<td>.207209</td>
<td>1.279</td>
<td>.2163</td>
</tr>
<tr>
<td>R</td>
<td>-.009394</td>
<td>.365248</td>
<td>-.002614</td>
<td>-.026</td>
<td>.9797</td>
</tr>
<tr>
<td>S</td>
<td>.897584</td>
<td>.273624</td>
<td>.703162</td>
<td>3.280</td>
<td>.0039</td>
</tr>
<tr>
<td>T</td>
<td>-.111335</td>
<td>.091216</td>
<td>-.161200</td>
<td>-1.221</td>
<td>.2372</td>
</tr>
</tbody>
</table>

(Constant) 14.027409 20.378042 .688 .4995

End Block Number 1 All requested variables entered.
منابع و موارد:

1. آذری‌نوند، حسن. ۱۳۷۳، بررسی پوشش گیاهی و خاک در رابطه با واحدهای زوئومرفولوژی در دانشگاه، دولتی سیبیار
2. بررسی مسائل یادبندی
3. احمدی، حسن. ۱۳۷۴، زوئومرفولوژی کاربردی، جلد اول، انسان‌شناسی آبی، چاپ دوم، انتشارات دانشگاه تهران
4. جادوی عیوضی، جمشید. ۱۳۷۳، ناحیه شمال غرب ایران یک و یک بزرگ، زوئومرفولوژیکی، انتشارات جغرافیایی
5. جوکار سرکهی، عباس‌الله، ناصری، تبریزی. ۱۳۷۷، وضعیت آبی‌خزداری استان تهران، سازمان جهاد استان تهران
6. مدیریت آبی‌خزداری، (منتشر نشده)
7. چورلی، رجایی جو، همکاران. ۱۳۷۵، زوئومرفولوژی، جلد اول، ترجمه احمد معلم‌یی، سازمان مطالعه و تدوین کتب علوم انسانی دانشگاه‌ها (سمت)، تهران
8. فرهی، هستی‌نیکی. ۱۳۷۵، فرآیند آبی و کنترل آن، انتشارات دانشگاه تهران
9. هدایی، سید احمد. ۱۳۷۳، ارزیابی فرآیند و پیش‌بینی آن در مناطق کوهستانی، پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی دانشگاه تهران
10. رامتی، م. ۱۳۷۳، کاربرد زوئومرفولوژی در برنامه‌ریزی (ملی، منطقه‌ای و اقتصادی)، انتشارات دانشگاه اصفهان
11. رجایی، عبدالحکیم. ۱۳۷۳، کاربرد زوئومرفولوژی در آمایش سرزمین و مدیریت محتوا، نشر فومن، تهران
12. رفاهی، حسین‌قلی. ۱۳۷۵، فرآیند آبی و کنترل آن، انتشارات دانشگاه تهران
13. سازمان جغرافیایی کشور، نشر توپوگرافی (مقياس ۱:۵۰۰۰۰)، شرق ۱۳۶۱، سري ۵۵۳، شماره ۱۳۵۲، شماره ۱۳۵۲
14. سازمان جهاد استان تهران، دفتر حفاظت خاک و آبی‌خزداری، (منتشر نشده)
15. شرکت آبی‌خزداری‌های قزاق، ۱۳۷۸، مطالعات تفصیلی - اجرایی - حوزه سد لیبان، سازمان جهاد سازندگی استان تهران، مدیریت آبی‌خزداری، (منتشر نشده)
16. طهماسبی پور، ناصر و همکاران. ۱۳۷۴، کاربرد و ارزیابی مدل جدید پیش‌بیان برای تهیه نقشه فرآیند در جوزه آبی‌خزداری، (لوارک) با استفاده از تکنیک‌های سنجش از دور و GIS، مجموعه مقالات کنفرانس منطقه‌ای مدیریت منابع آب، اصفهان
17. غیور نجف آبادی، حسینعلی. ۱۳۶۶، زوئومرفولوژی و برنامه‌ریزی فرآیند حاصله از آب‌های روان و محاسبه آن بر مبنای پارندگی، فعل‌نامه تحقیقات جغرافیایی، انتشارات آستانه قدس رضوی، شماره مسلسل ۶
18. فرخی، محمد. ۱۳۷۰، برآورد روش در جوزه‌های از آن آمری با استفاده از روش تجربی، دومن سیمار، PSLAC
19. سراییس، آبی‌خزداری، تهران
20. فیض نیا، سادات. ۱۳۷۲، مقاومت سنگ‌ها در مقابل فرآیند در اقلیم مختلف ایران، مجله منابع طبیعی ایران، شماره ۴۷، تهران

John Willy & sons U.K.

43- Zinck, J. A. 1989, Physiography and Soils, Soil Survey Courses, IGAC.