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Abstract 
In this study, a three–layer \ artificial neural network (ANN) model was developed to predict the 

pressure gradient in horizontal liquid–liquid separated flow. A total of 455 data points were collected 

from 13 data sources to develop the ANN model. Superficial velocities, viscosity ratio and density ratio 

of oil to water, and roughness and inner diameter of pipe were used as input parameters of the network 

while corresponding pressure gradient was selected as its output. A tansig and a linear function were 

chosen as transfer functions for hidden and output layers, respectively and Levenberg–Marquardt back–

propagation algorithm were applied to train the ANN. The optimal topology of the ANN was achieved 

with 16 neurons in hidden layer, which made it possible to estimate the pressure gradient with a good 

accuracy (R
2
=0.996 & AAPE=7.54%). In addition, the results of the developed ANN model were 

compared to Al–Wahaibi correlation results (with R
2
=0.884 & AAPE=17.17%) and it is found that the 

proposed ANN model has higher accuracy. Finally, a sensitivity analysis was carried out to investigate 

the relative importance of each input parameter on the ANN output. The results revealed that the pipe 

diameter (D) has the most relative importance (24.43%) on the ANN output, while the importance of 

the other parameters is nearly the same. 
 

Keywords: Liquid–liquid flow, Pressure gradient, Oil–water separated flow, Artificial 

neural network. 
 

1. Introduction 
   Liquid–liquid flow in pipelines is a 

common phenomenon in the petroleum 

industry where mixtures of oil and water are 

transported in pipes for long distances. 

Geometrical arrangement of the oil and 

water in pipes is termed flow pattern (or 

flow regime) and is often divided into two 

main sub–flow regimes namely dispersed 

flow and separated/segregated flow. 

Dispersed flows are when there exist only 

one continuous phase with the other phase 

dispersed in it in the form of droplets. The 

separated flow patterns are further divided 

into stratified and annular flows. The 

stratified flow pattern is characterized by 

the heavier and lighter phases located at the 

bottom and top parts of the pipe, 

respectively. These phases are separated by 

an interface which can be smooth (stratified 

smooth), wavy (stratified wavy) or present 

droplets of one phase into the other phase 

(dual continuous flow). Also, in annular 

flow pattern one of the liquids forms an 

annular film on the pipe wall and another 

liquid flows in the center of the pipe. 

Annular flow regime occurs often when the 

viscosity of the oil is high, with a critical 

value of 0.035 Pa.s proposed by Xu [1] and 

if the density of the water is close to the 

density of oil [2,3] or if the pipe diameter is 

very small [4,5].  

   Pressure drop is an important parameter 

which plays a great role in the design and 

running of oil–water flow systems. 

Therefore this parameter needs to be 

estimated with a high degree of precision in 

order to execute certain design 

considerations. Pressure drop is affected by 

several variables, such as inlet conditions, 

fluids properties, conduit properties, etc. So, 

its accurate prediction is a very difficult 

task. Lockard and Martinelli [6] proposed 

the use of empirical parameters X and Ψ to 

predict the pressure gradients in gas–liquid 
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two phase flows. The relationship between 

X and Ψ were based on empirical 

correlations and curve fitting. The similarity 

method of Lockard and Martinelli [6] was 

used by many researchers [7–9] for liquid–

liduid flows. However, their results showed 

that this method has no sufficient accuracy 

to correlate the pressure gradient data, 

particularly for liquid–liduid flows. The 

most commonly used models for predicting 

the pressure gradient in two phase flows is 

two–fluid model (also called separated 

model or stratified flow model) and 

homogeneous model in separated and 

dispersed flows, respectively. 

  Several investigators [9–12] applied the 

two–fluid model for predicting the pressure 

gradient in liquid–liquid separated flows. 

Recently, Al–Wahaibi [13] developed a 

pressure gradient correlation for horizontal 

oil–water separated flow by fitting the 

Fanning friction factor to Angeli and Hewitt 

[9] pressure gradient data for both acrylic 

and steel pipes. Al–Wahaibi [13] correlation 

predicted the pressure gradient with higher 

accuracy than that predicted by the two–

fluid model. 

   Some researchers attempted to model the 

gas–liquid two phase flow using artificial 

neural networks (ANNs) to predict the 

pressure drop, holdup or flow pattern. ANN 

techniques have been proposed as a 

powerful and computational tool to model 

and solve the complex problems in science 

and engineering [14–17]. Osman [18] 

presented an ANN model for predicting the 

pressure drop in horizontal and near–

horizontal gas–liquid flow. Osman and 

Aggour [19] developed a three layer back–

propagation neural network (BPNN) to 

predict the liquid holdup in horizontal gas–

liquid flow with a correlation coefficient (R) 

of 0.9896. Shippen and Scott [20] proposed 

a trained multilayer perceptron (MLP) 

neural network with 7 input variables (pipe 

diameter, superficial velocity of liquid and 

gas, density, viscosity and surface tension of 

liquid and no–slip liquid holdup) as a 

comprehensive model to predict the holdup 

in horizontal gas–liquid two phase flows. 

Holdup values predicted by their neural 

network had a correlation coefficient of 

0.985 for all data set. Malayeri et al. [21] 

trained a radial basis function (RBF) 

network for predicting the cross–sectional 

and time–averaged void fraction in gas–

liquid two phase flow at elevated 

temperature. Castillo et al. [22] developed 

an ANN model with coefficient of 

determination (R
2
) of 0.9722 to derive a 

void fraction correlation for modeling two–

phase flow mechanisms inside geothermal 

wells. Sharma et al. [23] used and compared 

three different types of ANN (feed–forward 

back–propagation (FFBP), Radial basis 

function (RBF), probabilistic neural 

network (PNN)) as flow pattern indicator 

for air–water flows based on the large 

amount of data available in the literature. 

Superficial velocity of the two phases, pipe 

diameter, and its inclination were selected 

as input variables of the ANNs. Al–Naser 

and M. Elshafei [24] utilized ANN using 

gas–water flow parameters such as 

superficial velocity of liquid and gas, 

pressure drop, liquid hold up and Reynolds 

number to identify four flow regimes. 

   Also, Shirley et al. [25] trained and 

compared four networks, FFBP, RBF, PNN 

and learning vector quantization (LVQ) for 

recognition of oil–water two–phase flow 

pattern in a horizontal conduit only based 

on one flow pattern map reported by Raj et 

al. [26]. They found that the PNN is the best 

network for this application. Dasari et al. 

[27] applied PNN to predict flow patterns of 

liquid−liquid two–phase flow through 

horizontal, inclined and vertical pipe line 

covering wide range of input data. 

Percentage accuracy in the prediction of all 

the flow patterns was obtained ≥90. 

   In this paper, an artificial neural network 

model is used for predicting the pressure 

gradient in horizontal liquid–liquid 

separated flow using a total of 455 data 

points collected from 13 experimental data 

sources [9–12, 28–35] available in the 

literature.  
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2. Development of artificial neural 

network model 
   Artificial neural networks (ANNs) are 

biologically inspired systems composed of 

many simple interconnected elements called 

neurons to functionality of biological 

neurons which are organized in layers and 

tied together with weighted connections 

corresponding to brain synapses. An ANN 

can have an input layer, an output layer, and 

one or more hidden layers in which each 

layer has a weight (w) and a bias (b) matrix. 

Multilayer perceptron (MLP) network is the 

most common neural network for modeling 

the most of the approximation function 

problems. The values of weights are set by 

using a random number generator. The 

inputs to each neuron from the previous 

layer are weakened or strengthened through 

their multiplication to weight values. At the 

each artificial neuron the sum of bias 

(activation thresholds) and previously 

weighted inputs passes through a suitable 

transfer (activation) function to determine 

its output [36]. There are various types of 

transfer function for artificial neural 

networks such as linear (purelin), 

logarithmic sigmoid (logsig), hyperbolic 

tangent sigmoid (tansig) and radial basis 

(radbas) functions. The MLP network learns 

the relationship between data using an 

algorithm known as “training” to modify 

weights of the neurons according to the 

error between the predicted and the actual 

values until the ANN learns the best 

relationship between inputs and outputs. A 

common algorithm for training the MLP 

network is feed–forward back–propagation 

(FFBP) algorithm. The fitting procedure 

from which the weights are determined is 

performed using a least–squared 

minimization routine in which the sum of 

the square of the errors between the 

calculated and the actual data is to be 

minimized.  

 

2.1. Neural network training and testing 

In this study neural network toolbox of 

MATLAB R2012b was employed to train 

the ANN. MLP network with the 

Levenberg–Marquardt back–propagation 

(LM–BP) algorithm which is very well 

suited to the training of the neural network 

was used to evaluate the method 

convergence [37]. MLP network usually has 

one or more hidden layers where one hidden 

layer is normally adequate to model non–

linear and complex functions [38].  

 

Tabel 1. Details of data bank used for developing the ANN model. 

Source μo/μw ρo/ρw D (mm) ε (mm) No. of data points 

Al–Wahaibi et al. [28] 5.5 0.828 14 0.01 37 

Al–Yaari et al. [29] 1.57 0.78 25.4 0.01 32 

Angeli and Hewitt [9] 1.6 0.801 24 0.01 26 

Angeli and Hewitt [9] 1.6 0.801 24.3 0.07 33 

Chakrabarti et al. [10] 1.3 0.787 25.4 0.01 67 

Elseth [30] 1.64 0.79 56.3 0.01 55 

Nädler and Mewes [31] 28 0.841 59 0.01 27 

Ravi et al. [32] 12 0.789 10.2 0.01 12 

Rodriguez and Oliemans [11] 7.5 0.783 82.8 0.07 23 

Trallero [33] 29.6 0.85 50.13 0.01 72 

Valle and Kvandal [34] 2.3 0.794 37.5 0.01 10 

Yiping et al. [12] 3.5 0.84 26.1 0.07 33 

Yousuf [35] 12 0.875 25.4 0.01 28 

Range 1.3 ˗ 29.6 0.78 ˗ 0.878 10.2 ˗ 56.3 0.01 ˗ 0.07 Total = 455 
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Figure 1. Schematic representation of the developed single hidden layer ANN model. 

 

Therefore, a single hidden layer network 

was used to obtain an accurate prediction in 

this study. For output layer neurons a linear 

transfer function were used, while for 

hidden layer neurons a tansig transfer 

function was applied. The network were 

designed and trained using 455 

experimental data points collected from 13 

sources of experimental data available in the 

literature which their details are presented in 

Table 1. 

   Superficial velocity of water (usw) and oil 

(uso), viscosity ratio (μo/μw) and density ratio 

(ρo/ρw) of oil to water, inner diameter (D) 

and roughness of pipe (ε) were chosen as 

input variables of the network, while 

corresponding pressure gradient was 

selected as its target. Topology of the 

proposed network is shown in Figure 1. 

   As the raw input data must be 

preprocessed to convert them into a suitable 

form [39], all data were scaled to a similar 

magnitude in the range of [–1,1]. The input 

database were randomly divided into three 

sets: 65% (296 data points), 15% (68 data 

points) and 20% (91 data points) of the data 

points were used as training, validation and 

testing data sets, respectively. The training 

data set was used to develop and adjust the 

weights and the biases in the network, the 

validation data set was used to ensure the 

accuracy and the generalization of the 

developed network during the training 

process, and the testing data set was used to 

examine the final performance of the 

network. 

   The total number of neurons in the input 

and output layers is equal to the number of 

input and output variables, respectively, 

while the optimal number of neurons in the 

hidden layer is normally not known at the 

start of the neural network training and 

depends on the complexity of the problem. 

Thus, it is estimated by trial–and–error 

method. The optimal number of neurons in 

the hidden layer was estimated through 

minimizing mean squared error (MSE) of 

testing data set defined as: 
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of this single hidden layer MLP network 

was obtained with 16 neurons in the hidden 

layer. The performance of the developed 

optimal network model was evaluated by 

calculating coefficient of determination (R
2
) 

and average absolute percent (AAPE) error 

defined as: 
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   Where 
ExpY in Eq. 2 is the average of the 

experimental values. The results of the 

developed optimal network on training, 

validation and testing data are represented 

in Figures 2 and 3 and Table 2. 

 

 
Figure2: Scatter plot of the ANN model predicted versus experimental values for training data set. 

 

 
3: Scatter plots of the ANN model predicted versus experimental values for validation and testing data 

sets. 
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Table2. Performance comparison of the ANN 

model for training, validation and testing data. 

Data set R
2
 AAPE (%) 

Training 0.998 7.12 

Validation 0.986 9.37 

Test 0.994 7.57 

 

As can be seen from them, the developed 

network has very good prediction for all 

data sets. 

 

2.2. Comparison of the ANN model and 

Al–Wahaibi correlation results 

   Al–Wahaibi [13] developed a pressure 

gradient correlation for horizontal oil–water 

separated flow by fitting the Fanning 

friction factor to Angeli and Hewitt [9] 

pressure gradient data for both acrylic and 

steel pipes and modified the friction factor 

proposed by Zigrang and Sylvester [40] for 

single phase flow. The Al–Wahaibi pressure 

gradient correlation [13] was proposed as 

follows:  

 
0.8
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Where 2.4 is a dimensional coefficient 

fitting parameter in

0.2
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, um is the 

mixture velocity in m/s, D is the pipe 

diameter in m and m  is the mixture density 

in kg/m
3
 given as: 

 

   m w w o oH H
                              

(5) 

 

Where w  and o  are water and oil 

density, respectively, and Hw and Ho are 

water and oil holdup, respectively, given by: 
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Where Qw and Qo are volumetric flow rates 

of water and oil, respectively. Likewise, fcor 

presented in Eq. 4 is friction factor for two–

phase oil–water flow given as:  
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Where   is the wall roughness ( 51 10 m 

for the acrylic pipe and 57 10
 
m for the 

steel pipe) and Rem is mixture Reynolds 

number defined as:  

 

m m
m

m

u D
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
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Where m  was proposed average mixture 

viscosity similar to Dukler et al. [41] 

average viscosity correlation: 

 

   m w w o oH H
                             

(9) 

 

Where w  and o  are the water and oil 

viscosity, respectively. 

   The accuracy of predicted results from 

Al–Wahaibi correlation was compared to 

ANN model results for all data points (see 

Figures 4 and 5 and Table 3). 

As can be seen in Figures 4 and 5, the 

proposed ANN model has higher accuracy 

than Al–Wahaibi correlation. Coefficient of 

determination (R
2
) and average absolute 

percent error (AAPE) between the all data 

predicted by ANN and the experimental 

data were obtained 0.996 and 7.54%, 

respectively, while those were obtained as 

0.884 and 17.17%, respectively, from Al–

Wahaibi correlation. As are shown in Table 

3 the accuracy of pressure gradient 

prediction of the developed ANN model for 

all experimental data base obtained from 

different sources is higher than Al–Wahaibi 

correlation, except for Valle and Kvandal 

[32]. In addition, it seems that Al–Wahaibi 

correlation has no good accuracy for pipes 

with diameter smaller than about 20 mm. 

Exact reproducing of acquired results using 

the trained ANN model is impossible, 

unless the same weight and bias values and 

transfer functions of the developed ANN 

model are used. For this reason, weight and 

bias matrix of the proposed ANN model are 
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reported in Table 4 to allow other 

investigators to reproduce the results and 

make appropriate use of the ANN model, in 

which k is the number of input variables, j is 

the neuron number in the hidden layer and i 

is the number of the output variables. 
 

3. Sensitivity analysis   
   A sensitivity analysis was carried out to 

identify the degree of importance of input 

variables on the model outputs based on the 

weight magnitude of the trained network. 

For this purpose, Garson equation [42] was 

applied as follows: 
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Table3. Comparison of the accuracy of the developed ANN model and the Al–Wahaibi correlation against 

experimental database obtained from different sources. 

Source 
AAPE (%) 

Proposed ANN model Al–Wahaibi correlation 

Al–Wahaibi et al. [28] 3.4 20.88 

Al–Yaari et al. [29] 4.67 10.9 

Angeli and Hewitt [9] acrylic 4.69 16.71 

Angeli and Hewitt [9] steel 3.7 6.86 

Chakrabarti et al. [10] 10.82 20.29 

Elseth [30] 3.32 5.86 

Nädler and Mewes [31] 5.68 16.88 

Ravi et al. [32] 8.87 89.87 

Rodriguez and Oliemans [11] 14.52 15.09 

Trallero [33] 8.61 24.37 

Valle and Kvandal [34] 4.04 2.6 

Yiping et al. [12] 8.03 10.68 

Yousuf [35] 4.74 10.33 

All experimental data points 7.54 17.17 

 

 
Figure4. Scatter plot of the ANN model predicted versus experimental values for all data 

 

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

P
re

d
ic

te
d

 p
re

ss
u
re

 g
ra

d
ie

n
t

(P
a/

m
)

Experimental pressure gradient (Pa/m)

R2 = 0.996

AAPE = 7.54%



 
  138                                                                          Journal of Chemical and Petroleum Engineering, Vol. 49, No.2, Dec. 2015 

 
Figure5. Scatter plot of the Al–Wahaibi correlation predicted versus experimental values for all data. 

 
Table4. Weights and biases of the optimal ANN topology. 

Neuron 
Hidden  layer Output  layer 

Weights (j,k) Biases (j) Weights (i,j) Bias(i) 

j wj,1 wj,2 wj,3 wj,4 wj,5 wj,6 bj w1,j b1 

1 0.100756 –1.07841 1.002267 –2.64697 –1.50143 0.885123 –3.95651 –0.62978 0.938946 

2 –2.37284 –1.25205 1.227268 –0.73326 4.567173 –1.20966 1.124103 0.641389 

 

3 0.940672 –3.26921 –0.17716 3.922392 –0.21616 –1.68233 –2.20592 1.599259 

 

4 –3.12513 –1.61818 –5.86737 –0.64546 –1.00819 1.443973 0.571192 –0.34633 

 

5 0.940099 0.460423 3.895193 1.52139 –1.16866 –1.67258 –4.47733 –2.65837 

 

6 4.130977 0.973065 2.415612 –0.98918 –1.96657 2.925324 –1.21452 0.964506 

 

7 0.533085 –1.42444 2.325002 –0.03876 –2.11424 –1.92917 –4.15096 0.475042 

 

8 0.806095 0.587852 –1.39918 –0.23092 –0.76923 0.217276 –1.27264 3.464686 

 

9 3.922877 1.050652 –2.95362 1.981989 2.077173 –0.87049 0.641505 0.290049 

 

10 –2.26633 –1.36202 3.5711 0.304896 2.254906 0.18226 1.034913 0.242732 

 

11 –0.77642 2.978848 1.443499 –3.4489 –0.0282 1.979905 3.516165 1.839387 

 

12 –0.56674 3.157595 1.623307 –1.43994 4.163803 1.37621 2.805941 0.178576 

 

13 2.439082 1.076698 –1.86869 –1.61801 0.462946 0.85186 5.205034 –0.39629 

 

14 –3.31565 –1.96467 2.527963 2.495823 5.410379 2.56447 –2.89956 –0.35702 

 

15 0.488302 1.4565 –1.21186 –1.04279 0.241925 0.356546 4.848856 –0.57041 

 

16 –3.09124 3.360507 0.937642 –0.72155 –5.60284 –1.44391 –1.86815 –0.27157 
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Where Im is the relative importance of the 

mth input variable on the output variable, 

IW is the connection weights between the 

input neurons k and the hidden neurons 𝑗, 
and LW is the connection weights between 

the hidden neurons 𝑗 and the output neuron 

i, respectively. Table 5 shows the relative 

importance (%) of each input variable on 

the ANN output. 

 

Table5. Results of the sensitivity analysis for 

evaluating the effectiveness of the input variables 

on the ANN output. 

Input 

variables 

Relative importance 

(%) 

usw 
14.96 

uso 
16.37 

D 
24.43 

μo/μw 
16.92 

ρo/ρw 
14.20 

ε 
13.12 

 

   As can be seen from Table 4, the pipe 

diameter (D) is the most important input 

variable (24.43%) of the ANN model, while 

other parameter have nearly the same 

important and there is no significant 

difference between the degree of 

importance of them. However, apart from 

the mentioned variables, the pressure 

gradient can be affected by other parameters 

such as wettability characteristics of pipe 

materials [9], interfacial tension of the oil–

water [35] and sub–flow regimes. 
 

4. Conclusion 
By using a total of 455 data points collected 

from 13 data sources, a neural network 

model was developed to predict the pressure 

gradient in horizontal liquid–liquid 

separated flow, regardless of its sub–flow 

regimes. The superficial velocities of oil 

and water, viscosity ratio and density ratio 

of oil to water, roughness and inner 

diameter of pipe were adopted as input 

parameters of the multilayer perceptron 

neural network (MLP–NN). The pressure 

gradient with a good accuracy (R
2
=0.996 & 

AAPE=7.54%) was estimated using the 

optimal topology of the ANN. In addition, 

the accuracy of the developed ANN model 

was compared to Al–Wahaibi correlation 

and the results demonstrated that the 

proposed neural network model has better 

performance than Al–Wahaibi correlation 

having R
2
=0.884 and AAPE=17.17%. 

Finally, a sensitivity analysis carried out on 

the optimal trained ANN revealed that the 

pipe diameter has the most relative 

importance (24.43%) on the ANN output. 
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