

-

*

$$f(e) = 1.125 \exp(-(e-2.5)^2 / 0.25)$$

•

()

Email:ahaghighi@semnan.ac.ir

•

*

$$[-] g(p_i) = \int_{e_{\min}}^{e_{\max}} k(p_i, e) f(e) de$$
()

(

)

f(e)

k(p,e)

.

77.5 $1 mbar < P_i < 1000 mbar$

•

)

((

$$1\frac{Kcal}{mol} < e < 4\frac{Kcal}{mol}$$

:

$$\theta(P_i,T) = \int_{e_{\min}}^{e_{\max}} \frac{k_0 \exp\left[\frac{e}{RT}\right] P_i}{1 + k_0 \exp\left(\frac{e}{RT}\right) P_i} .F(e) de$$

F(e)

$$\theta(P_i,T)$$
 k_0
. T P_i

: $k(e, P_i, T) = \frac{K_0 \exp\left[\frac{e}{RT}\right] P_i}{1 + K_0 \exp\left(\frac{e}{RT}\right) P_i}$ () K_0 R

:[-] $f = \left\{ A^{T}A + \gamma I \right\}^{-1} A^{T}g.$ $:g \qquad :I \qquad :A$ λ ()

:

λ

.

(k0)								
Type	Double peak		Triple peak					
туре	Non overlaped	Overlaped	Non overlaped	Overlaped				
equi space	3.136E-09	4.306E-09	1.752E-08	1.874E-09				
Non equi space	1.120E-08	2.343E-09	7.107E-09	2.856E-09				

.

:

.(K	»				:		
(equi space)								
Noise		oiso	Double		Triple			
		0150	Non overlapped	Overlapped	Non overlapped	Overlapped		
	0.10%	2.000E-03	2.986E-09	8.652E-08	4.863E-09	5.362E-09		
	0.50%	1.000E-02	1.011E-08	3.076E-07	1.002E-07	5.856E-08		
	1%	2.000E-02	1.906E-08	6.395E-07	1.554E-07	1.409E-07		
	3%	6.000E-02	3.392E-07	1.681E-05	3.739E-07	7.051E-07		
	5%	1.000E-01	6.091E-07	4.460E-05	6.715E-07	1.836E-04		
	10%	2.000E-01	1.094E-06	2.125E-04	1.127E-04	5.921E-04		
	20%	4.000E-01		1.013E-03				

. «

»

(Non equi space)								
Noise		Double		Triple				
		Non overlapped	Overlapped	Non overlapped	Overlapped			
0.10%	2.000E-03	3.775E-08	1.217E-07	2.683E-08	4.588E-08			
1%	2.000E-02	8.162E-07	1.964E-06	1.539E-06	1.329E-06			
3%	6.000E-02	1.871E-06	4.288E-06	3.889E-06	3.047E-06			
5%	1.000E-01	2.632E-06	6.034E-06	5.473E-06	4.288E-06			
10%	2.000E-01	3.704E-06	8.914E-06	7.700E-06	6.335E-06			
20%	4.000E-01			1.084E-05				
30%	6.000E-01			1.317E-05				
50%	1.000E+00			1.681E-05				

.

:

cv

.....

:

Non Overlapped double peak

Non overlapped triple peak

•

Non overlapped triple peak

.

() % -**Overlapped double peak** % .(()) **Overlapped double peak** -% (()) Non overlapped triple peak (() %) Non overlapped triple peak % ()% % (()) % . Overlapped triple peak -% .(()) **Overlapped triple peak** -. .(())

Non overlapped double peak

-

.....

.

•

1 - Russell, B. P. and Levan, M. D. (1994). "Pour size distribution of BPL activated carbon determined by different methods." *Carbon, ELSEVIER*, Vol. 32, No. 5, PP. 845-855.

- 2 William, H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling, (1992). *Numerical Recipes* (*The art of scientific computing*), 2nd Ed.
- 3 Szombathely, M. V., Brauer, P. and Jaroniec, M. (1992). "The solution of adsorption integral equations by means of the regularization ,ethod." *Journal of Computational Chemistry*, Vol. 13, No. 1, PP. 17-32.
- 4 Glob and Loan. (1996). Matrix computation, Third edition.
- 5 Venkatesh, P. K. (2000). "On tikhonov regularization." Physica A, Elsevier, Vol. 284, PP. 448-460.
- 6 Merz, P. H. (1980). "Determination of adsorption energy distribution by regularization and a characterization of certain adsorption isotherms." *Journal of Computational Physics*, Vol. 38, PP. 64-85.
- 7 Hansen, O¹., Fischer, S². and Ramlau, R³. (2003). *Regularization of mellin–type inverse problems with an application to oil engineering*. 1- Johannes Gutenberg–University Mainz and 2- University of Bremen.
- 8 Lamm, P. K. (2000). Variable-Smoothing Regularization Methods for Inverse Problems, Michigan State University, East Lansing, MI 48824-1027, USA.
- 9 Doung, D. Do. (1998). Adsorption Analysis: Equilibria and Kinetics, Imperical college press, Singapore.
- 10 Ahmadian, H., Mottershead, J. E. and Friswell, M. I. (1998). "Regularization methods for finite element model updating." *Mechanical systems and Signal Processing, AP*, Vol. 12, No. 1, PP. 47-64.
- 11 Yagola, A. and Titarenko, V. (2000). Numerical methods and regularization techniques for the solution of ill-posed problems, Department of Mathematics, Faculty of Physics, Moscow State University Moscow 119899 Russia.
- 12 Yeun, Y. S., Lee, K. H., Han, S. M. and Yang, Y. S. (2001). "Smooth fitting with a method for determining the regularization parameter under the genetic programming algorithm." *Information Sciences*, Elsevier, Vol. 133, PP. 175-194.

1 - Gaussian Distribution 2 - Local adsorption isotherm 3 - Generalized cross validation

:p) C

р

(

:C