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Abstract 
The main point of this paper is to evaluate the perturbations in orbital elements of a low Earth orbiting 
satellite. The outcome of a numerical orbit integration process is the position and velocity vectors of 
satellite in an inertial coordinate system. The velocity and position vectors are converted into the 
corresponding orbital elements. Perturbations in a satellite motion affect the orbital elements in the sense 
of Keplerian motion. In this paper after introducing the perturbing forces acting on a satellite, the method 
of converting the position and velocity into the orbital elements is presented, and finally the perturbations 
in orbital elements of the low Earth orbiting satellite of CHAMP are evaluated. The numerical results 
show that, disregarding the geopotential perturbing forces, the air drag is the most predominant among 
other perturbing forces: rotational deformation, solar radiation, third body effect, solid Earth tide, ocean 
tide, and general relativity arranged by their magnitude respectively. 
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1 INTRODUCTION 
The geodetic satellites have two major missions, a 
satellite can be either used for positioning in 
geodesy or it can be employed as a sensor for 
measuring the external gravity field of the Earth. 
A majority of the positioning satellites are 
medium orbiting with altitude above 1000 km. 
Most of the satellites at 1000 km altitude are 
launched with the aim of remote sensing and 
imaging. The low Earth orbiting satellites (1000 
km or lower) are suitable for recovering the 
gravity field of the Earth. Because of their low 
altitudes, the perturbations in orbits are larger 
than the perturbations in higher orbits. Hence, 
they are detectable in orbit analysis for the gravity 
field determination. According to Kepler’s first 
law the satellite’s trajectory will be an ellipse, 
which the Earth is focused on, if the Earth gravity 
field resembles a central field. In the first 
approximation, the gravity field is central. Then 
the major force keeping the satellite in its orbit is 
the central gravitational force part due to the 
spherical Earth which drives the satellite into the 
Keplerian orbit. The remaining forces, i.e., the 
pertubing forces are driving the satellite out of the 
Keplerian orbit. Such forces are classified into 
two major groups as gravitational and non-
gravitational perturbing force, c.f., Eanes and 
Bettapur (1995), Seeber (2003), Hofmann et al 
(2001), Eshagh et al (2003), Eshagh (2003a), and 
Leick (1995). It can be seen that the gravitational 
perturbing forces due to the Earth have greater 

effects, hence larger and sensible due 
perturbations on closer satellites. The perturbation 
is defined to be the separation between a satellite's 
real orbit and the average Keplerian orbit, best 
fitting the real orbit. Precise evaluation of a 
perturbation requires the precise evaluation of the 
real orbit at first. CHAMP is a satellite orbiting 
500 km above the Earth at the moment. The 
perturbations are profound and measurable for the 
precise determination of the gravity field. Wolf 
(2000) has worked on some low Earth orbiting 
satellites of about 1000 km altitude, Su (2000) 
studied the GEO, MEO satellites and like GPS, 
GLONAS, Santos (1994) investigated the real 
time kinematics orbit improvements of GPS 
satellites for short and long baseline 
computations, Eanes et al. (1995) worked on 
geodynamics satellites, and Buffet (1985) studied 
the perturbations of orbital elements of the GPS 
satellites. All of these researchers have worked on 
the satellites of altitude larger than 800 km. In this 
research, the CHAMP satellite is considered for 
the investigation. Some of the gravitational and 
non-gravitational perturbing forces which are not 
effective in higher altitude, come in effect at the 
altitude of CHAMP. Eshagh and Najafi Alamdari 
(2003, 2005a, 2005b, and 2005c) have studied the 
numerical integration methods, orbital 
perturbations of low Earth orbiting satellites. 
They compared different numerical integration 
methods and forces acting on a low orbiting 
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satellite. They have also studied the CHAMP 
satellite orbit as a case study. Eshagh (2003a) 
continued studying the perturbations in the 
directions of radial, along track, and across track 
of a low orbiting satellite due to the gravitational 
and non-gravitational and non-central forces 
acting up on. Eshagh (2003b) investigated the 
numerical integrations in orbit determination and 
due errors in conjunction with the maximum 
degree and order of geopotential coefficients 
responsible for the perturbations. It was found 
that a geopotential model complete up to the 
degree and order of 30 suffices for the orbit 
integration using Runge-Kutta of the 4-th order. 
Also Eshagh (2005c) suggested a step variable 
method for the orbit integration.  

In the second section of this paper the 
perturbing forces are introduced after the method 
of integration is selected. Next, the method of 
converting position and velocity of a satellite into 
orbital elements are presented and finally the 
perturbations of orbital elements of a low Earth 
orbiting satellite are computed. 

 
 

2 PERTURBING FORCES ACTING ON 
A SATELLITE 
The equation of motion of a satellite is influenced 
by all the forces in action. The equation of motion 
of a near Earth satellite is described in an internal 
reference system of coordinates in the form of 
differential equations of accelerations. By 
integrating the perturbing accelerations, the 
position and velocity of the satellite at an instant 
of time is computed. The accelerations are 
divided into two major groups: gravitational and 
non-gravitational. 

 
 

2-1 GRAVITATIONAL ACCELERATIONS 

The gravitational accelerations consist of 
geopotential perturbing acceleration, solid Earth 
tide effect, ocean tide effect, rotational 
deformation of the Earth, third body effects, and 
relativistic effect especially general relativity for a 
low Earth orbiting satellite.  

 
 

2-1-1 GEOPOTENTIAL PERTURBATION 

The gravitational potential due to the Earth can be 
expressed in terms of a series of spherical 
harmonic functions. In a body fixed reference 
coordinates system, geoU  is modeled as in Rim 
and Schutz (2001). 
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where, eGM  is the gravitational constant 
multiplied by the mass of the Earth, ea is the 

mean equatorial radius of the Earth, lmlm S,C  are 
the normalized spherical harmonic coefficients, 

)Sin(Plm  is the normalized associated Legendre 
function, λθ ,,r  are the spherical coordinates of 
a computation point. 

 
2-1-2 SOLID EARTH TIDE 

The temporal potential variations stUΔ due to the 
solid tide can also be expressed in terms of the 
spherical harmonics with coefficients nmCΔ  and 

nmSΔ  as the temporal corrections to geopotential 

coefficients nmC  and nmS . They are expressed in 
terms of the tidal amplitude coefficients kH  as in 
Rim and Schutz (2001), Wolf (2000): 
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where for l-m even, the cosine term is used and 
for l-m odd, the sine term is used 
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where unlike the previous order, for l-m even the 
sine term is used and for l-m odd, the cosine term 
is used (Rim and Schutz, 2001). m0δ  is the 
Kroneker delta. The second love number 2K  is 
not a constant function. According to Wahr model 
it depends on the frequency of solid tide. 
 
2-1-3 OCEAN TIDE 
The ocean tide and its loading deformation 
potential otUΔ  as a perturbation due to the luni-
solar gravity field can also be expressed in terms 
of spherical harmonics, i.e., temporal variations in 
the geopotential coefficients (Rim and Schutz, 
2001 and Wolf 2000): 
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where klmklmlm B,A,F  are given as 
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where the required parameters are also given in a 
Global Ocean Tides Model. 

 
2-1-4 ROTATIONAL DEFORMATION 

Any changes in the angular velocity vector ω
r

 of 
the Earth will be producing a variable centrifugal 
force field resulting a deformation and as such a 
perturbation would occur in the Earth centrifugal 
potential. The variation of potential due to this 
effect can be written as in Rim and Schutz (2001): 
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mean angular velocity of the Earth, im  are small 
unit less quantities related to the polar motion and 
the Earth rotation. 

 
2-1-5 THIRD BODY EFFECT 
This perturbing gravitation implied by a third 
body, e.g., the Moon or the Sun, is easily 
describable in a geocentric Cartesian coordinates 

system. It is the gravitational acceleration exerted 
on the satellite by the third body minus the 
acceleration exerted on the Earth by the same 
body (Rim and Schutz, 2001, Buffet, 1985 and 
Seeber, 2003): 
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where, ir  is the position vector of the third body 

number i, iM  is the mass of third body, iΔ  is the 
position vector of third body from the satellite. 
This equation is written in an inertial coordinate 
system. 

 
2-1-6 GENERAL RELATIVITY 
The general relativity perturbation on the near 
Earth satellite can be modeled as in McCarthy 
(1990) and Santos (1994): 
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where, C is  the speed of light in the geocentric 
frame, r,r &rr  are the geocentric satellite position 

and velocity vectors, eGM  is  the gravitational 

constant for the Earth and γ,β  are the 
parameterized post-Newtonian (PPN) parameters. 

 
2-2 NON-GRAVITATIONAL ACCELE- 
RATIONS 
Among the non-gravitational forces, the 
atmospheric drag and solar radiation pressure will 
be considered as follows: 

 
2-2-1 ATMOSPHERIC ACCELE RATION 

When a satellite is orbiting around the Earth, it 
collides with the Earth's atmosphere. Hence a 
friction between the satellite and the atmosphere 
is produced. As a result a deceleration of satellite 
occurs. It is proportional to the satellite velocity 
and density of the atmosphere. When the velocity 
is increased, the acceleration is increased  
too. Since the atmospheric density at low altitude 
is increased, the acceleration of the satellite  
when passing on the perigee is increased. In  
the apogee, the deceleration is reduced. As a 
result, the satellite trajectory becomes more 
circular. This effect of course, depends on the 
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shape and orientation of the satellite. Anear Earth 
satellite of an arbitrary shape moving with a 
velocity of vr  in an atmosphere of density ρ  will 
experience drag forces. The drag acceleration is 
formulated as in Rim and Schutz, (2001) and 
Seeber (2003) 
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where, rV
r

 is the satellite velocity relative to the 

atmosphere, m is the mass of satellite, dC  is the 
drag coefficient specific to the satellite and A is 
the cross-sectional area of the main body 
perpendicular to rV

r
. 

 
 

2-2-2 SOLAR RADIATION PRESSURE 
The solar radiation pressure or force is towards 
the satellite from the Sun. It is inversely 
proportional to the mass of the satellite. If the 
satellite is light and large then it is more affected. 
If the satellite is heavy and small it is less affected 
by the solar radiation. The satellite is constructed 
of materials that carry different refectories 
therefore modulation of such perturbation is very 
complicated. The sun radiates a constant amount 
of photons per unit of time. The radiation pressure 
is characterized as a momentum flux having an 
average value of 26 m/N1056.4 −×  (Rim and 
Schutz, 2001), The direct solar radiation pressure 
from the sun on a satellite is modeled as in Rim 
and Schutz (2001): 
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m
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where, P is the momentum flux due to the sun, η  
is the reflectivity coefficient of the satellite, A is 
the cross-sectional area of the satellite normal to 
the sun,  m is the mass of the satellite, ν  is the 
eclipse factor ( 0ν =  if the satellite is in full 
shadow , 1ν =  if the satellite is in full sun, and 

1ν0 <<  if the satellite is in partial shadow.) 
and û  is the unit vector pointing from satellite to 
the sun. The reflectivity coefficient η  represents 
the average value over the whole satellite rather 
than the virtual surface reflectivity in the conical 
or cylindrical shadow models for the Earth. 

 

3 POSITION AND VELOCITY TO 
ORBITAL ELEMENTS CONVERSIONS 
The integrated position and velocity of the 
satellites in the inertial space is converted to the 
orbital elements. The orbit period T reads as  

GM
aπ2T

3
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where a is the major semi-axis of the orbit. There 
are three fundamental vectors h,e

rr
, and nr , 

Seeber (2003), shown in Figure 1, characterizing 
the motion of the satellite, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Fundamental vectors, (Eshagh and Najafi 
Alamdari, 2003). 

 

where h
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 the angular momentum of satellite and 
n
r

 in the direction of the ascending node given as 
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where Z
r

 is the unit vector along Z-axis of the 
inertial XYZ-system, the perigee vector er  is 
given in Seeber (2003) as 
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with the three vectors e,n,h
rrr

 given  above, the 
orbital elements are derived as in Seeber (2003): 
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where f the true anomaly is related to the mean 
anomaly M  through  

fcose1
fcoseEcos

+
+

= ,                                     (22) 
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Seeber (2003), Hofmann et al. (2001), and the 
semi major axis is computed by the following 
relation  

2e1
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For an inclination between 0 and 90 a satellite 
motion is towards the east and it is called a direct 
motion. For an inclination between 90 and 180 the 
motion is oriented westward and it is called a 
retrograde motion. 

 
4 NUMERICAL INTEGRATION 
The second order differential equations of motion 
in the Earth’s central gravity field are  
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Eshagh and Najafi Alamdari (2003). 
Equation (26) is the system of differential 

equations of motion of a satellite in the central 
field. For the real field, the perturbing 

accelerations are added into the last three 
equations. For more details refer to the Eshagh 
and Najafi Alamdari (2003). 
 
5 NUMERICAL RESULTS 
One essential mission of a geodetic satellite is to 
determine the gravity field of the Earth. Such 
satellite usually have near polar orbit with very 
low and close to the Earth’s surface in order to 
detect and sense the gravity field features better. 
The German geo-scientific satellite CHAMP 
(Challenging Mini satellite Payload) was 
launched in summer 2000 into an almost circular 
near polar orbit. Its altitude is about 454 Km. and 
inclination of 87.3 Deg. The period of one 
revolution of this satellite around the Earth is 
about 16 minutes. This satellite has the following 
advantages. The satellite is continuously tracked 
by maximum 12 GPS satellites simultaneously. 
CHAMP experiences an enhanced gravitational 
signal because of the low altitude. The direct on-
orbit measurements of the non-gravitational 
satellite accelerations replace the insufficient 
models of air density and radiation pressure. The 
precise orbit of CHAMP is determined by 
combining the numerical integration method and 
GPS observations, namely the high-low technique 
of satellite-to-satellite tracking is used. 

According to Figure 2, the perturbation in the 
semi major axis of the orbital ellipse has a 
periodic behavior. It changes about 20000 m 
during one revolution. Also, the inclination of the 
orbit changes of about 14 seconds and twice in 
one revolution. The right ascension of ascending 
node has a secular behavior as well as a periodic 
change with low amplitude. It changes about 1.5 
minute during one revolution. Perigee argument 
has a periodic variation as well as a simple 
secular. Variations up to 10 degree can be seen in 
this element. Eccentricity has a complex behavior 
it seems to have two types of periodic variations. 
Its maximum change is about 0.0004. Mean 
anomaly of the satellite has periodic variations 
and it changes maximum 15 degree in one 
revolution. Comparing GPS satellite and 
computations according to Buffet (1985) one can 
see that the semi major axis of GPS satellites is 
changing about 2000 m in one revolution. The 
same behaviors of orbital elements of GPS 
satellites and CHAMP satellite can be seen but 
the magnitude of variations differ from each 
other.  

Figure 3 shows the perturbations due to the 
solid Earth tide. The semi major axis of satellite 
has a periodic behavior and it changes about 1  
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Figure 2. The Behavior of Keplerian Element due to the geopotential perturbation up to degree and order 30. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Perturbation due to the solid earth tide in orbital elements in 1 revolution. 
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meter in one revolution. The solid Earth tide 
changes the inclination of the orbit about at about 
4.5× 410−  equivalent to about 2 seconds in one 
revolution. The right ascension of the ascending 
node has also periodic variations. It changes about 
3 degrees in one revolution of the satellite. The 
argument of perigee changes faster. Eccentricity 
seems to have secular variations. The mean 
anomaly has complex behavior and it is not easily 
interpreted, but its variations reach 10 seconds. It 
should be mentioned that the solid Earth tide does 
not much affect the medium height and 
geostationary satellites. 

Figure 4 shows the third body effect on orbit 
of low Earth satellites. The variations of the semi 
major axis are periodic and the maximum 
variation is about 0.7 meter in one revolution, the 
inclination has the secular behavior. The right 
ascension of ascending node behavior is periodic. 
The perigee argument has also periodic behavior 
and maximum change of about tow seconds can 
be seen in one revolution. The eccentricity seems 
to have also periodic variation. The mean 
anomaly has complex behavior. It seems to have 
secular and periodic variations as well. 

Figure 5 shows the general relativity effect in 
the orbit of low Earth orbiting satellite. The  
 

perturbations are though small. The results may 
be contaminated by the integration errors. The 
maximum variation is about 0.08 m in the semi 
major axis, the right ascension of ascending node, 
mean anomaly, and eccentricity elements seem to 
have periodic variations. Perigee argument has 
complex behavior of secular and periodic 
variation, but interpretation of behavior of the 
semi major and inclination is complicated. 

Figure 6 shows the ocean tide effects on the 
orbit. The effects on the orbital elements are very 
small as in the case of general relativity. As can 
be seen the semi major axis of the satellite varies 
about 0.2 meter in periodic fashion. 

Figure 7 shows the effects of the rotational 
deformation of the Earth. The effect on the semi 
major axis of the orbital ellipse is about 3 m in 
one revolution. As one can see, most of the orbital 
element behavior is more or less periodic except 
the right ascension of the ascending node which 
has secular variation. Now let us now consider 
two main non-gravitational forces, namely the 
solar radiation pressure and the air drag. Of 
course it should be mentioned that the thermal 
effect and the Earth radiation pressure are 
classified as non-gravitational forces but their 
computations are very complicated. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The perturbation due to the third bodies in orbital elements in 1 revolution. 
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Figure 5. The perturbation due to the general relativity in orbital elements in 1 revolution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The perturbation due to the ocean tide in orbital elements in 1 revolution. 
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Figure 7. The perturbation due to the rotational deformation in orbital elements in 1 revolution. 

 
Figure 8 shows the variations on the elements 

due to the solar radiation pressure. The semi major 
axis of the orbital ellipse, inclination, right 
ascension of ascending node, and the mean 
anomaly of the satellites have periodic behavior 
whereas the perigee and eccentricity variations 
are secular. 

Air drag is reducing the size of the semi major  

of orbital ellipse continually. As seen in figure 9, 
it is secularly reduced by 6 m in one revolution. 
Perigee argument, eccentricity, and mean 
anomaly have periodic treatment, and inclination 
and right ascension of ascending node treats as 
secular. The summary of the above numerical 
results are presented in table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. The perturbation due to the solar radiation pressure in orbital elements in 1 revolution. 
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Figure 9. The perturbation due to the air drag in orbital elements in 1 revolution. 

 
 

Table 1. Perturbing accelerations and orbital elements. 

 a i Ω  ω  e M 

Geopotential 
Acceleration 

20000 m, 
Periodic 

3108.3 −×o  
Periodic 

o5.1  
Secular 

o10  
Complex 

0004.0  
Complex 

o15  
Periodic 

Solid Tide 0.5 m 
Periodic 

4105.5 −×o  
Periodic 

o3  
Periodic 

3101.1 −×o  
Periodic 

m104 7−×  
Secular 

3101.1 −×o  
Complex 

Third body 0.8 m 
Periodic 

5103 −×o  
Secular  

5101.1 −×o  
Secular  

3105.2 −×o  
Periodic 

7105.2 −×o  
Periodic 

3105.2 −×o  
Complex 

General relativity 0.08 m 
Periodic 

8107 −×o  
Periodic 

8104 −×o  
Periodic 

4102.1 −×o  
Complex 

9102 −×o  
Periodic 

51012 −×o  
Periodic  

Ocean tide 0.2 m 
Periodic 

7105.2 −×o  
Periodic 

7106 −×o  
Secular 

4102 −×o  
Periodic 

8107 −×o  
Secular 

4102 −×o  
Periodic 

Rotational deformation 3.5 m 
Periodic 

5102 −×o  
Periodic 

4106.1 −×o  
Secular  

3105.3 −×o  
Periodic 

7105 −×o  
Periodic 

3104 −×o  
Complex 

Solar radiation 2 m 
Periodic 

5102.1 −×o  
Periodic 

4106 −×o  
Periodic 

3105.2 −×o  
Secular 

6102.1 −×o  
Secular 

41012 −×o  
Periodic  

Air drag 6 m 
Secular  

7105 −×o  
Complex 

6107 −×o  
Secular  

3105.4 −×o  
Periodic 

7104.1 −×o  
Periodic 

3105.2 −×o  
Periodic 

 
 

The Table 1 shows the maximum values of the 
perturbations in orbital elements due to each one 
of the disruptive accelerations. The word complex 
means a combination of secular and periodic 
variations. As one can see from the table, the 
geopotential acceleration has the largest effect. 

The semi major axis of the orbital ellipse has 
periodic variations under almost all of the 
perturbing accelerations except the air drag. The 
inclination’s behavior is secular for the third body 
effect, and for the rest of the acceleration it is 
periodic. The right ascension of the ascending 
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node acts periodically for solid tide, general 
relativity, and solar radiation, but it acts as secular 
for the rest of the accelerations. Perigee argument 
has just secular variation due to the solar 
radiation. The eccentricity behaves periodically 
for geopotential, the third body, general relativity, 
rotational deformation, and air drag. The mean 
anomaly usually varies periodically but it is 
secular for some disturbing forces.  

 
6 CONCLUSIONS AND RECOMMEN- 
DATIONS  
In this paper the perturbing accelerations acting 
on a low Earth orbiting satellite were investigated 
using the second-order vector differential 
equations of motion of a satellite. The output of 
numerical integration process is the position and 
velocity vector of the satellite. The perturbations 
were calculated and presented on either a satellite-
centered coordinate system or on the orbital 
elements. According to the numerical studies one 
can see that the geopotential accelerations affect 
the semi major axis of CHAMP satellite in about 
20000 m, which is much larger in comparison 
with other satellites. As an example, this value is 
about 2000 for GPS satellites in one revolution. 
The behaviors of the perturbations are the same 
with other satellites but their magnitudes are 
different. As one can see in table 1, the 
geopotential acceleration has the largest effect. 
The semi major axis of the orbital ellipse has 
periodic treatment for all perturbing acceleration 
except the air drag. The inclination’s behaviour is 
secular under the third body effect, but periodic 
under the rest of the accelerations. The right 
ascension of the ascending node acts periodically 
for solid tide, general relativity, and solar 
radiation, but it acts as secular for the rest of the 
accelerations. Perigee argument has just secular 
variation due to the solar radiation. The 
eccentricity acts periodically for geopotential, 
third body, general relativity, rotational 
deformation, and air drag. The mean anomaly 
usually varies periodically but it is secular for 
some disturbing forces. The effects of the general 
relativity and the ocean tide are small. Their 
numerical values are contaminated with 
computation noises. In such cases, it is 
recommended to use a more accurate integration 
method for precise applications. Usually the 
Störmer-Cowel predictor-corrector algorithm of 
11-order is used for this purpose. For computing 
more precise orbit the integrated orbit should be 
constrained with GPS observations of satellite 
positions. Usually the Kalman filter scheme is 

better to use in which the transition matrix of the 
filter is evaluated using linearized equations of 
motion. But using the numerical integration 
method as a predictor is suggested and the 
corrector is based on GPS observations. Also, one 
can test the accuracy of the orbit integration 
scheme by analyzing the variance. In terms of 
magnitude, the perturbations of a low orbiting 
satellite can be arranged as the geopotential 
perturbation, air drag, rotational deformation, 
third body effect, solid Earth tide, ocean tide, and 
the general relativity. 
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