Introduction
During the last 25 years, the frequency of life-threatening infections has increased dramatically among cancer patients, transplant recipients, patients with AIDS and patients receiving broad-spectrum antibiotic, corticosteroid and cytotoxic drugs (Anaissie, McGinnis and Pfaller, 2003). Numerous risk factors have been known that can impair mechanisms of host defense, predisposing them to serious diseases (Kournikakis et al., 2003). For these reasons, the widespread efforts were made to identify immune modulator agents to combat these infections. Among these agents, herbal medicine has been noticed by some investigators (Patwardan and Hopper, 1991; Wagner, 1999; Constantine, 2000; Ang-Lee, 2001; Ernst and Pittler, 2002). Herbal medicines have been used since ancient times as drugs for the treatment of a range of diseases (Brown, 1996; Wagner, 1997; Masshour and Frishman, 1998; Gardiner and Kemperky, 2000) and represented stimulatory effects on the function of innate and acquired immunity (De Simone, 1993; Barbour, Hamadeh and Hilan, 1996; Lai and Roy, 2004). The goal of this study was to identify the effects of some Iranian herbal essences including Z. multiflora, G. pelargonium, Myrth and Lemon on the function of immune system.

Materials and Methods
Herbal Essences
Four essences including Z. multiflora, G. pelargonium, Myrth and Lemon were obtained from Barij Essence Company (Kashan, Iran).

Evaluation of the effects of Zataria multiflora, Geranium pelargonium, Myrth and Lemon essences on immune system function in experimental animals

Khosravi,A.R.1*, Franco,M.2, Shokri,H.1, Yahyaraeyat,R.1

1Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
2Department of Pathology, School of Medicine and Immunology Division, UNESP, Botucatu, Brazil

(Received 23 October 2005 , Accepted 22 April 2006)

Abstract: The effects of some Iranian herbal essences have been evaluated on the function of immune system using experimental animals. Rabbits received Zataria multiflora, Geranium pelargonium, Myrth, Lemon essences and normal saline (control group), 6 times with 6 days of interval. Five days after the last injection of the essences, Candida albicans antigens were injected into all the animals. Phagocytosis and killing assays and lymphocyte transformation test (LTT) were carried out on blood samples. The cellular immunity was significantly stimulated against C. albicans antigens and Con-canavalin A (Con-A) mitogen in animals that injected subcutaneously with Z. multiflora and G. pelargonium in comparison with the control group, whereas Myrth essence had no considerable effect and Lemon essence suppressed the cellular responses. Zataria multiflora, Myrth and Lemon essences stimulated innate immunity when injected subcutaneously, whereas G. pelargonium essence had no significant effect. Humoral responses to Candida antigens were significantly decreased in animals injected with Lemon essence as compared to other essences (p< 0.05).

Key words: Candida albicans, zataria, Geranium, immunostimulation, innate immunity.
Animals

Fifty male and female rabbits, 1000-1800 g, were obtained from Razi Institute. Animals were maintained in 5 rabbit cages, under standard conditions, in the Center of Laboratory Animals Maintenance of Faculty of Veterinary Medicine. The animals were fed daily with an approved protocol. The animals were divided into 10 groups of 5 rabbits; each group was administrated as follows:

A₁: rabbits were injected subcutaneously with *Z. multiflora* essence

A₂: rabbits were gavaged orally with *Z. multiflora* essence

B₁: rabbits were injected subcutaneously with *G. pelargonium* essence

B₂: rabbits were gavaged orally with *G. pelargonium* essence

C₁: rabbits were injected subcutaneously with *Myrth* essence

C₂: rabbits were gavaged orally with *Myrth* essence

D₁: rabbits were injected subcutaneously with *Lemon* essence

D₂: rabbits were gavaged orally with *Lemon* essence

E₁: rabbits were injected subcutaneously with sterile saline

E₂: rabbits were gavaged orally with sterile saline

The whole rabbits were injected subcutaneously and orally with doses of essences, 0.2 g / Kg, 6 times with 6 days of interval. Control group received sterile saline with the same dose and same routes. Bleeding of animals was done in 2 stages: 1 day before administering essences and 3 days after the last administration of essences. Blood was collected from marginal vein of the rabbits and a portion of blood was kept into heparinized tubes and the rest was stored into sterile tubes for obtaining serum.

Preparation of *C. albicans* Antigens: *Candida albicans* standard strain (CI2) was cultured on sabouraud glucose broth (Merck Chemical Co.,

Table 1. The results of lymphocyte transformation test (LTT) in rabbits.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Lymphocyte</th>
<th>Mean ± Standard deviation</th>
<th>Stimulation Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con-canavalin A (Con-A)</td>
<td>Group A₁</td>
<td>712.3±10.7</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>Group A₂</td>
<td>414.1±28.7</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>Group B₁</td>
<td>618.6±42.5</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>Group B₂</td>
<td>428±94.1</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Group C₁</td>
<td>411.7±18.4</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>Group C₂</td>
<td>385.2±12.6</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Group D₁</td>
<td>455.1±44.7</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Group D₂</td>
<td>312±15.3</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Group E₁</td>
<td>485.2±11.2</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>Group E₂</td>
<td>498.9±49.2</td>
<td>3.8</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>Group A₁</td>
<td>619.3±12.1</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Group A₂</td>
<td>362.7±14.2</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>Group B₁</td>
<td>567.9±18.7</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Group B₂</td>
<td>312.7±11.5</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>Group C₁</td>
<td>428.6±43.2</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Group C₂</td>
<td>381±69.9</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>Group D₁</td>
<td>419.7±99.5</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Group D₂</td>
<td>307.2±97.4</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>Group E₁</td>
<td>316.6±12.1</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>Group E₂</td>
<td>328.2±18.4</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Darmstadt, Germany). The yeasts were washed 3 times with sodium phosphate buffer (PBS) and disrupted by sonication method (dr. hielscher, GmbH, UP 200s). The antigens were suspended with PBS and centrifuged at 26000 × g for 2.5 hours. The supernatant was separated and concentrated using dialysis bag (cut off: 0.2, Sigma Chemical Co., St. Louis, USA). The antigens were maintained at freezing conditions. Five days after the last administration of essences, a certain dose of the antigens was inoculated subcutaneously, 3 times and intramuscularly, the last time, to all rabbits. After one week, in order to evaluate the humoral immunity, bleeding was carried out again.

ELISA Test: ELISA test was used for the detection of specific anti *Candida*-IgG antibody using *Candida* antigens, rabbit sera, before and after immunization and anti rabbit IgG conjugated with horse radish peroxidase.

Lymphocyte Transformation Test (LTT): Heparinized blood samples were mixed with RPMI (50:50, Sigma Chemical Co., St. Louis, USA) and then transferred to tubes containing Ficoll (Sigma Chemical Co., St. Louis, USA). After centrifugation, cloudy layer containing lymphocytes was separated, diluted with RPMI and the volume of lymphocytes was reached up to 1 ml. Percentage of live cells was determined using Trypan Blue (Sigma Chemical Co., St. Louis, USA). Then, lymphocytes were counted by neobar glass. Next stages were carried out according to standard methods and using Con-A mitogen.

Phagocytosis and Killing Assays: Killing of *C. albicans* by the animal neutrophils was tested as follows: 1) Dilution of neutrophils in 1 ml of sample: diluted suspension of 2000 cell /ml was prepared using saline, RPMI and neobar glass; 2) 20 μl of each serum was added to the suspension of saline and RPMI of the same animal; 3) Suspension of 2000 cell /ml of *C. albicans* cells was prepared using sterile saline; 4) 1 ml of neutrophil suspension of each animal was added to 1 ml of *C. albicans* suspension and then the total suspension, which contained neutrophil / *C. albicans*, was incubated at 37 C for 2 hours; 5) After incubation, 500 μl of each suspension was cultured on sabouraud glucose agar and maintained at 30°C for 72 hours and then *candida* colonies were counted.

Statistical Analysis: Chi-square (X^2^) and Student t- tests were used to assess the statistical analysis.

Results

Table 1 shows that subcutaneous administration of essences stimulated the LTT responses, whereas oral administration had no effect. *Zataria multiflora* and *G. pelargonium* essences elevated LTT responses to *Candida* antigens and Con-A mitogen, whereas *Lemon* and *Myrth* essences suppressed LTT responses to mentioned antigens. In respect to stimulation index, significant differences were observed between group A1, B1 and other groups (p<0.001). As shown in Table 2, subcutaneous administration of *Z. multiflora*, *Myrth* and *Lemon* essences had more stimulatory effects on phagocytosis of *C. albicans* by neutrophils in comparison with *G. pelargonium* essence and subcutaneous administration had more enhancing effect on phagocytosis than the oral procedure. Regarding oral administration, there was an effect on phagocytosis only in group A2. There were

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10 - 49</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50 - 99</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>≥ 100</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
significant enhancing effects on humoral responses in A1, A2, B1, B2 and C1 groups in comparison with other groups (p<0.05), whereas C2, D1 and D2 groups had suppressive effects (Table 3).

Discussion

In recent years, different factors have been known that can compromise individual's immune defenses, predisposing them to serious and fatal infections (Anaissie, McGinnis and Pfeller, 2003). These factors including cancers, organ transplantation, chemotherapy, corticosteroid therapy, broad-spectrum antibiotic therapy, immunodeficiency syndromes and other underlying diseases have been increased remarkably (Kournikakis et al., 2003). Regarding the above mentioned points, the use of immune modulators either as a prophylaxis and/or as part of a treatment regimen may represent a broad spectrum approach to protect human or animals when exposed to a pathogenic challenge. Immune modulator agents can increase the specific and nonspecific components of the immune system (De Simone, 1993; Barbour, Hamadeh and Hilan, 1996; Lai and Roy, 2004). One class of extensively studied immune modulators is herbal medicines, which has been noticed by some investigators (Patwardan and Hopper, 1991; Wagner, 1999; Constantine, 2000; Ang-Lee, 2001; Ernst and Pittler, 2002). Immunity can be boosted by immune-enhancing herbs such as Garlic, Echinacea, Licorice and Ginseng (Yoshida, 1997; Li, 2000; Burger, 2001; McIntyre, 2002). In this study, the effects of Iranian herbal essences including Z. multiflora, G. pelargonium, Myrth and Lemon were studied on the function of immune system. The results of this study indicate that in animals, which were injected subcutaneously with Z. multiflora and G. pelargonium, cellular immunity responses to Candida antigens and Con-A mitogen were significantly stimulated in comparison with the control group, whereas Myrth essence had no considerable effect and Lemon essence suppressed significantly cellular immune responses. Subcutaneous injection of Z. multiflora, Myrth and Lemon essences stimulated the innate immunity (killing and phagocytosis), whereas G. pelargonium essence had no significant effect on this part of immunity. In comparison with other essences, humoral responses to Candida antigens were significantly decreased in animals, which were injected subcutaneously with Lemon essence. It has been found that subcutaneous injection of essences had more stimulatory effects on immune system than the oral administration route. In this study, the animals were challenged with 0.2 g/kg of each essence and it seems that the study should be continued with different doses in the future. According to the results, Z. multiflora and then Myrth and G. pelargonium seem to be immunostimulatory agents since they have positive effects on innate and acquired immunity.

Acknowledgments

This work was supported by the Research Council of the University of Tehran.
References

2. Churchill Livingstone, Philadelphia, USA, pp. 3-16.
ارزیابی اثرات اساسهای آویشن شیرازی، زرینیوم بلار گونیوم، مورد و لیمو بر روی عملکردهای سیستم ایمنی در حیوانات آزمایشگاهی

علیرضا خسروی ۱، اصله ال شکری ۱، رامک یحیی رعیتی ۱
۱ مرکز تحقیقات تازه گذاری، دانشکده دامپروری، دانشگاه تهران، تهران، ایران.
ارتیش پاتولوژی و دانشکده پزشکی بوتکو، برزیل

دریافت مقاله: ۱ آبان ماه، ۱۳۸۲، پذیرش نهایی: ۲ اردیبهشت ماه، ۱۳۸۵

اثرات تعدادی از اساسهای گیاهی ایرانی بر عملکردهای سیستم ایمنی حیوانات آزمایشگاهی ارزیابی شدند. خرکوشها اساسهای آویشن شیرازی، زرینیوم بلار، لیمو و درمان فیتالین (گروه کنترل) ۴ بار به فواصل ۹ روز در رفتارکنند. آنلی انسانی کبدی آلوکس و روپس از جریان انسانی فعالیت را گرفتند. حیوانات در حیاط یکینی گردیدند. در حیوانات گروه ژرنجی زرینیوم و زرینیوم تزریق شده بودند. این حیوانات به عنوان مورد عادی در بر این آنلی انسانی کبدی آلوکس و میتزا قانونی زدند. در مقایسه با گروه شاهد تحریک شدند در حالیکه اساسهای مورد تأثیر قابل توجهی نداشتند. انسانی ليومیاکسول مورد را اردکوب کرد. تزریق زیر ژنی به آنلی انسانی آویشن، مورد و لیمو باعث تحریک انسانی شد در حالیکه اساسه زرینیوم آنلی انسانی دارد نداشت. پاسخ‌های هم‌مرحل در بر این آنلی انسانی کبدی در حیوانات تزریق شده به انسانی لیوم نسبت به سایر انسانی (p<0.05) بطور معنی‌داری کاهش یافت. بودند.

واژه‌ها: کلیدی: کانادی آلوکس، آویشن، زرینیوم، تحریک انسانی، انسانی دانی.