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 Abstract 
  Diffusivity equation commonly used for pressure distribution prediction in porous media results from 

substituting equation of state and continuity equation in Navier-Stokes momentum equation. From 
mathematical point of view this equation format shows infinite propagation speed for pressure pulse 
through porous media, which is physically impossible. This issue may caused by numerous assumptions 
that has been implemented for developing diffusivity equation. However, if we omit two main 
assumptions of steady state condition and constant velocity and consider linear approximation for 
velocity field, the pressure propagation differential equation would be hyperbolic which is called 
Telegraph Equation. The propagation speed is limited for this equation. 

In this work, these equations are compared in prediction of pressure pulse propagation in Cartesian 
coordination with different parameters. The results show that the telegraph equation has minor 
correction in some cases as: far distances from pressure pulse source, when the fluid has high viscosity 
and for the rocks with low porosity and permeability; so considering common parameters in 
hydrocarbon reservoirs, the diffusivity equation has sufficient accuracy for reservoir engineering 
applications. 
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Introduction 
    The diffusivity equation is applying for 
prediction of pressure pulse distribution in 
porous media by reservoir engineers. This 
equation is developed by using numerous 
simplifying assumption and substitution of 
equation of state and continuity equation in 
Navier-Stokes momentum equation. The 
mathematical form of this equation shows 
infinite propagation speed for pressure pulse 
through porous media, which is physically 
impossible. In the other words, based on the 
equation once the pressure pulse influences 
one point of the porous media, it would be 
entirely impressed. Since the fluid velocity 
is not higher than the velocity of sound, this 
phenomenon is physically meaningless and 
could not be expected a pressure pulse to 
influence a point earlier than this time. This 
problem may arise from various simplified 
assumptions used in the development of the 
equation. Several attempts are done to 
eliminate some of these assumptions. In this 
work, attempts that led to equations with 
limited propagation velocity are reviewed 
and then their behavior is compared with 
diffusivity equation. 

 

Review of pressure distribution 
equations and their development 
    Diffusivity equation that is also known as 
Darcy equation was used for describing the 
steady state and laminar motion of 
Newtonian fluid that flow in a rigid medium 
in isothermal conditions. In this equation, 
fluid is assumed to be single phase and no 
slippage occurs between rock and the fluid. 
The fluid and solid phases are chemically 
neutral so there is no attraction, departure or 
molecular forces in between. This equation 
is shown as 1. 

.׏ ሺk ׏Pሻ ൌ ௧μܥ߶
ப௉

ப୲
          (1) 

     The diffusivity equation is a parabolic 
second order differential equation with 
infinite propagation speed of pressure pulse 
through porous media, which is physically 
impossible. This error may be caused by 
numerous assumptions that have been 
implemented for developing diffusivity 
equation. 
This form of second order differential 
equation is used for description of various 
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physical properties such as mass transfer 
and electromagnetic although the intrinsic 
problem of infinite speed, always make it 
physically meaningless. In divergent 
sciences, different attempts are done to 
solve this restriction. For example, Joseph 
B. Keller [1] explains that the rate of 
component diffusion could not be more than 
one single molecule velocity so the infinite 
predicted velocity from diffusivity equation 
is not correct. He solved this paradox by 
using random walk concept and presents a 
new equation with finite propagation 
velocity for description of mass transfer. 
The equation that includes second order 
time derivative in addition to first order 
derivative is known as Telegraph equation. 
Mathematically, this is a hyperbolic second 
order partial differential equation with finite 
propagation speed. 
     After presenting Darcy equation and 
considering various simplified assumptions 
used in development of the equation, 
several attempts are done to eliminate some 
of assumptions and adapting theoretical 
equation with experimental results. For the 
first time Forcheirmer amend this equation 
by adding higher order term to the primary 
equation in 1782 [2]. These statements are 
expected to be appeared since the 
underlying microscopic equations of 
momentum balance are themselves 
nonlinear in the point velocity field. The 
term ρυሬԦυሬԦ, which represents the convective 
flux of momentum density, appears in the 
momentum balance equation. Just in 
parallel streamlines, the divergence of this 
tensor vanishes. The steady flow 
streamlines in most porous media are not 
parallel; so the nonlinear dependence of the 
pressure gradient appears. This nonlinearity 
is not dependent on the change of velocity 
field but just because of diverging and 
converging streamlines. Klinkenberg 
demonstrated that the permeability 
coefficient in Darcy’s law depends on the 
absolute pressure or, alternatively, on the 
density field [3]. However, because he 
neglected inertial terms of the Forcheirmer 
type, his correction coefficient could not be 

represented by a constant but tended toward 
a constant as the velocity decreased. 
Forcheirmer and Klinkenberg modification 
can be amalgamate to model both inertia 
and slip during steady flow. Fatt suggested 
that the cause of deviations of pressure 
transient data from the prediction of Darcy 
equation could be not only from selection of 
Darcy equation but also because of 
existence of dead-end pores [4].  On the 
other hand, Oroveanu and Pascal noted that 
the time derivative of the momentum 
density must be included in the equation of 
motion since it measures the local rate of 
momentum density variations. Their 
differential equation for pressure is the 
telegraph equation. However, the form of 
this equation predicts that the speed of 
pressure propagation through the pore 
structure is the same as that of the bulk fluid 
[5]. M. K. Hubbert attempted a derivation of 
Darcy’s law by volume averaging the 
Navier-Stokes equations. Since these 
equations represent momentum balance at a 
point within an open set of points 
containing the fluid itself, Hubbert’s volume 
averaging cannot lead to terms involving 
transfer of momentum between the fluid and 
the walls of the pores. Once these viscous-
tractions are lost by choosing a control 
volume containing only the fluid, they 
cannot be recovered by averaging the 
limiting point equations. 
     In 1967, Foster and Mc Millen 
developed complete averaging of linear 
momentum balance equation for a single-
phase fluid that flows through 
homogeneous, incompressible and porous 
media [7]. In this study, two main 
assumption of Darcy equation for 
Newtonian fluids are omitted. Main parts of 
the development path of this equation are 
presented as follow: 
The equations of linear momentum balance 
at a point in a continuum are: 
 

பρ୴ሬሬԦ

ப୲
൅ .׏ ρvሬԦvሬԦ ൌ െρgkሬԦ ൅ .׏ τԦԦ       (2) 

     Where  is density field, vሬԦ is fluid 

velocity field, ׏ is gradient operator, τԦԦ is 
stress tensor, kሬԦ is unit vector directed 
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upward and g is gravitational acceleration. 
For our purpose, consider a homogeneous 
fluid in a porous medium and imagine a 
region closed by the stationary surface S. let  
rԦ denote some representative point in this 
region and let V denote the volume of fluid 
contained within the region. Eq. 2 is first 
averaged over volume V, 
 

ଵ

V
׮

பρ୴ሬሬԦ

ப୲

 
V   dv ൅ ଵ

V
׮ .׏ ρvሬԦvሬԦ

 
V  dv ൌ

െ ୥୩ሬሬԦ

V
׮ ρ

 
V  dv ൅ ଵ

V
׮ .׏ τԦԦ  dv

 
V         (3) 

     Since the integral is independent of time 
the first term from right and the left side of 
the equation is simplified to time derivative 
of the Integrate value limited within the S. 
No loss in generality results if this 
momentum density and body force density 
is now associated at the representative point 
rԦ at time t. By the theorem of Gauss, the 
volume integrals involving divergences can 
be transformed into integrals over the 
surface, which bound the fluid. These 
surfaces are of two kinds: first, surface 
passes through pored containing fluid Sୣ 
and second the pore walls of the rock 
volume within the S, S୧ . Where < > implies 
a volume average. Eq. 3 may thus be 
expressed as  
 

பۃρ୴ሬሬԦۄ

ப୲
൅ ଵ

V
׭ dSୣሬሬሬԦ. ρvሬԦvሬԦ

 
S౛

 ൅ ଵ

V
׭ dSన ሬሬሬԦ. ρvሬԦvሬԦ

 
S౟

ൌ

െۃρۄgkሬԦ ൅ ଵ

V
׭ dSୣሬሬሬԦ.

 
S౛

τԦԦ  ൅  ଵ

V
׭ dSన ሬሬሬԦ.

 
S౟

τԦԦ       (4) 

     Providing there is no slip at the pore 
walls, the integral of ρvሬԦvሬԦ over the external 
surface may be expressed again as volume 
integrals, i.e. 
ଵ

V
׭ dSୣሬሬሬԦ. ρvሬԦvሬԦ

 
S౛

ൌ

 ଵ

V
. ׏  ׮ ρvሬԦvሬԦ dv ൌ

 
V . ׏   (5)         ۄρvሬԦvሬԦۃ

ଵ

V
׭ dSୣሬሬሬԦ. τԦԦ 

 
S౛

ൌ  ଵ

V
. ׏  ׮ τԦԦ  dv ൌ

 
V . ׏  ۄ τԦԦۃ    (6)  

     Therefore, we can rewrite the equation as 
follow: 
பۃρ୴ሬሬԦۄ

ப୲
൅ .׏ ۄρvሬԦvሬԦۃ ൌ െۃρۄgkሬԦ ൅ .׏ ۄτԦԦۃ ൅

 ଵ

V
׭ dSన ሬሬሬԦ.

 
S౟

τԦԦ           (7) 

     We choose to study the compressible 
Newtonian fluid. The stress tensor for this 
fluid has the following form. 
 

 

τԦԦ ൌ μሺ׏vሬԦ ൅  ሺ׏vሬԦሻTሻ ൅  

൫η െ 2
3ൗ  μ൯ሺ׏ . vሬԦ ሻ ıԦԦ െ p ׏ ቀTr vሬԦሬԦቁ ıԦԦ  (8) 

 

     That in the equation  is shear viscosity 

coefficient,  is bulk viscosity coefficient, ıԦԦ 
is two dimensional unit tensor, ሺ׏vሬԦሻT is 

transpose of ׏vሬԦ, �ሬሬሬԦሬሬሬԦ is strain tensor, Tr �ሬሬሬԦሬሬሬԦ is 
trace of strain tensor (sum of diagonal 
elements) and P is pressure. Considering 
more details that is presented in [7] the 
average stress tensor is as follow: 
 

.׏ ۄτԦԦۃ ൌ  μ ׏ଶۃvሬԦۄ ൅  ൫η ൅ 1
3ൗ  μ൯ ׏ ሺ׏ .  ሻۄvሬԦۃ

െ ۃ׏P(9)           ۄ 
 

     Next, the integral must be evaluated over 
the internal surface. Let nሬԦ be the unit 
normal at a point on the internal surface, 
reckoned positive pointing into the fluid, 
and let n measure distance along this vector. 
It follows that dSనሬሬሬԦ ൌ  െdS୧nሬԦ . We have at 
any point on the internal surface: 
 

. ׏ vሬԦ|S౟
ൌ ப୴౤

ப୬
ቚ

S౟
    (10-1) 

vሬԦ|S౟ ׏
ൌ  nሬԦ ப୴ሬሬԦ

ப୬
ቚ

S౟
     (10-2) 

ሺ׏ vሬԦሻT|S౟
ൌ  ப୴ሬሬԦ

ப୬
nሬԦቚ

S౟
     (10-3) 

    Denoting 
S౟

V
 by 1/L (L being a 

characteristic length of the medium) the 
equation of 8 can be rewrite as follow: 
 

ଵ

LS౟
׬ dSనሬሬሬԦ 

S౟
 . τԦԦ ൌ  െ ଵ

L
 ൜ μ

S౟
׬  dSనሬሬሬԦ 

S౟
 ப୴ሬሬԦ

ப୬
൅

 μ
S౟

׬  dSనሬሬሬԦ 
S౟

 ப୴౤

ப୬
 nሬԦ ൅ 

൫ηିଶ
ଷൗ  μ൯

S౟
׬  dSనሬሬሬԦ 

S౟
 ப୴౤

ப୬
 nሬԦ െ

 ଵ

S౟
׬  dSనሬሬሬԦ 

S౟
 p nሬԦቅ ൌ  െ ଵ

L
 ቄμ  ۃப୴ሬሬԦ

ப୬
S౟ۄ

൅

 ൫η ൅ 1
3ൗ  μ൯ ப୴౤ ۃ

ப୬
S౟ۄ

 െ S౟ۄp nሬԦۃ 
ቅ     (11) 

     The average equations of hydrostatic 
balance are obtained only if the normal 
surface force ۃp nሬԦۄ averaged over the 
internal surface vanishes. This term should 
also vanish during fluid motion since 
otherwise traction independent of viscosity 
appears. Combining equations 9 and 11 
with equation 7, 
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பۃρ୴ሬሬԦۄ

ப୲
൅ .׏ ۄρvሬԦvሬԦۃ ൌ െۃρۄgkሬԦ ൅ μ׏ଶۃvሬԦۄ ൅

൫η ൅ 1
3ൗ  μ൯׏ሺ׏. ሻۄvሬԦۃ െ ۄPۃ׏ െ μ

Lమ ۃ ப୴ሬሬԦ

பLD
S౟ۄ

െ

 ൬
ηାଵ

ଷൗ  μ

Lమ ൰ ப୴౤ ۃ

பLD
S౟ۄ

         (12) 
 

     Where LD is the dimensionless distance 
n/L. With the exception of the last two 
terms on the right-hand side, equation 12 is 
formally identical to the Novier-Stokes 
equations and, if the control volume shrinks 
to a point within a pore, two equations 
converge. 
 
 

Steady motion 
     For steady flows in homogenous porous 
media, the derivative of the product of 
momentum and the density field vanishes 
and any change in velocity would be 
neglected. The only remaining term in 
equation 12 is as equation 13. 
 

0 ൌ െۃρۄgkሬԦ െ  (13)       ۄPۃ׏
 

    But if we just neglect second order 
derivative and vn gradient, the equation 
would be as 14. 
 

0 ൌ െۃρۄgkሬԦ െ ۄPۃ׏ െ μ

Lమ ۃ ப୴ሬሬԦ

பLD
S౟ۄ

    (14) 
 

    The quantity ۃ ப୴ሬሬԦ

பLD
S౟ۄ

 is a vector with the 

dimension of velocity. Since one vector can 
always be mapped into another by a 2-
tensor, we may write 
 

ۃ ப୴ሬሬԦ

பLD
S౟ۄ

ൌ φTሬሬԦሬሬԦ .  (15)        ۄvሬԦۃ
 

    Here  is the void fraction and φ ۃvሬԦۄ is 
the usual Darcy velocity. Thus, the 
momentum balance for a steady flow is  
 

െۃ׏Pۄ ൌ െۃρۄgkሬԦ െ φμTሬሬԦሬሬԦ

Lమ S౟ۄvሬԦۃ
      (16) 

 

     where 
TሬሬԦሬሬԦ

Lమ ൌ RሬሬԦሬሬԦ is the resistivity tensor of 

the medium. So, the equation 16 will be 
converted to 17. The permeability K is the 
reciprocal of R. 

െۃ׏Pۄ ൌ gkሬԦۄρۃ ൅ φμRሬሬԦሬሬԦ . ൌ ۄvሬԦۃ gkሬԦۄρۃ ൅
φμ .ۃ୴ሬሬԦۄ 

KሬሬԦሬሬԦ                     (17) 

     In homogenous media RሬሬԦሬሬԦ is equal to its 
multiple of the unit 2-tensor and the traction 
always parallels the average velocity. So 

RሬሬԦሬሬԦ ൌ RıԦԦ where R is a constant value; so: 
 

െۃ׏Pۄ ൌ gkሬԦۄρۃ ൅ φμۃvሬԦۄ  
ൌ gkሬԦۄρۃ  ൅ φμ

୩
 (18)        ۄvሬԦۃ

 

     Equation 17 becomes the generalized 
form of Forcheirmer’s law when R or the 

components of RሬሬԦሬሬԦ are expanded in a Taylor’s 
series in the powers of |ۃvሬԦۄ|. Furthermore, 
the possible dependence of R and the 

components of RሬሬԦሬሬԦ on ۃρۄ provide a basis for 
the Klinkenberg correction. 
 

Non-steady motions 
     In contrast to the relatively simple form 
that equation 18 takes for steady flows, in 
principle all terms must be considered for 
the more general situation. It becomes 
important to exercise caution in neglecting 
parts of the momentum balance. However, 
for petroleum reservoir porous media the 
small value of L insures that the viscous 
traction will continue to dominate equation 
12. For instance the term of μ׏ଶۃvሬԦۄ is of the 

order of 
μTሬሬԦሬሬԦ

Lమ  just if the velocity varies in  ۄvሬԦۃ

the order of ۃvሬԦۄ over a distance comparable 
to L. For most transient flows no such 
abrupt changes occur. Terms in the spatial 
derivatives of velocity and those arising 
from dilatation are again neglected since 
these are small if the fluid is only slightly 
compressible or is a perfect gas. 
 

பۃρ୴ሬሬԦۄ

ப୲
ൌ െۃρۄgkሬԦ ൅ െۃ׏Pۄ െ μ

Lమ ۃ ப୴ሬሬԦ

பLD
 S౟      (19)ۄ

 

    Now, two vector fields, 
பۃρ୴ሬሬԦۄ

ப୲
 and ۃvሬԦۄ 

exists in the equation as well as the scalar 

field ۃρۄ. Writing the ۃ ப୴ሬሬԦ

பLD
S౟ۄ

in the direction 

of, 
பۃρ୴ሬሬԦۄ

ப୲
 and ۃvሬԦۄ by 2-tenssor of  TሬሬԦሬሬԦ and WሬሬሬԦሬሬሬԦ 

those could be the function of ۃρۃ , ۄvሬԦۄ , ப
ۄρ୴ሬሬԦۃ

ப୲
 

and 
பۃρ୴ሬሬԦۄ

ப୲
 : 

ۃ ப୴ሬሬԦ

பLD
S౟ۄ

ൌ  φTሬሬԦሬሬԦ . ۄvሬԦۃ ൅ WሬሬሬԦሬሬሬԦ . பۃρ୴ሬሬԦۄ

ப୲
      (20) 
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    By substituting 20 in 19 and rearranging 
we have: 

ቀTሬሬԦሬሬԦ ൅ μ

Lమ WሬሬሬԦሬሬሬԦቁ பۃρ୴ሬሬԦۄ

ப୲
ൌ െۃρۄgkሬԦ ൅ െۃ׏Pۄ െ

φμTሬሬԦሬሬԦ

Lమ  (21)          ۄvሬԦۃ
 

     For an isotropic medium, just main 
values of T and W are considered and 12 
results. Just in case of small values of ۃvሬԦۄ 

and 
பۃρ୴ሬሬԦۄ

ப୲
 and when T and W are the week 

function of  we can make this assumption. 
 

ቀT ൅ μ

Lమ Wቁ பۃρ୴ሬሬԦۄ

ப୲
ൌ െۃρۄgkሬԦ ൅ െۃ׏Pۄ െ

φμT

Lమ  (22)          ۄvሬԦۃ
 

     Letting vf denote the speed of sound 
through the fluid in question and ۃρۄ଴ the 
average density of some standard state, we 
then set NA the dimensionless number, 
which reflects the topology of the pore 
structure.  
 

μW

Lమ ൌ μ

౥୩ۄρۃ
భ
మ V౜ 

 NA       (23) 

 

     T/L2 is also replaced by R=1/k and for 
the sake of brevity, let Ψ ൌ 1 ൅

ቆ μ

౥୩ۄρۃ
భ
మ V౜ 

 NAቇ the equation of 22 is 

converted to 24. 
 

பۃρ୴ሬሬԦۄ

ப୲
ൌ െۃ׏Pۄ െ φμT

Lమ  (24)                              ۄvሬԦۃ
 

     In this stage using continuity equation 
and equation of state ۃρvሬԦۄ is omitted and the 
equation of 25 results. 

ψ
பమۃPۄ

ப୲మ ൌ ۄPۃଶ׏ ൅ φμ

୩
. ׏   (25)           ۄvሬԦۃ

 

     To proceed further a series of 
approximations must be made. Assume that 
 are almost statistically ۄvሬԦۃ and ۄPۃ
uncorrelated and using mathematical 
operation that is presented in [7] the 
following equations will be result for 
slightly compressible and perfect gas. 

ψ C ۃρۄ଴
பమۃPۄ

ப୲మ ൅ φμC

୩
 பۃPۄ

ப୲
ൌ  (26)     ۄPۃଶ׏

ψ Y பమۃPۄ

ப୲మ ൅ φμ

୩ۃPۄబ
 பۃPۄ

ப୲
ൌ  (27)  ۄPۃଶ׏

 

     However, since Y ൌ
బۄρۃ

బۄPۃ
 and C are 

compressible, the groups 
୩

φμC
 and 

୩ۃPۄబ

φμ
 have 

the dimensions of diffusion coefficients, 

which are 
Lమ

୲
. The groups ψ C ۃPۄ଴ and ψ Y 

have dimensions of reciprocal velocity 

squared, which are 
୲మ

Lమ . 
      

Denoting the general diffusion coefficient 
by D and the general velocity by va, the 
equations will become: 
 

ଵ

୴౗
మ  பమۃPۄ

ப୲మ ൅ ଵ

D
 பۃPۄ

ப୲
ൌ  (28)                      ۄPۃଶ׏

 

D ൌ  ቐ

୩

φμC
 for slightly compressible liquid 

୩ۃPۄబ

φμ
                          for perfect gases

  

ଵ

୴౗
మ  ൌ  ൜

ψ C ۃρۄ଴    for slightly compressible liquid 
ψ Y                                    for perfect gases

  

The velocity of sound through a slightly 
compressible gas is as equation 29 and the 
isothermal velocity of sound through a 
perfect gas is as equation 30. Therefore, the 

physical interpretation of 
୴౜

మ

୴౗
మ ൌ ψ is the 

ratio of the speed of sound in a bulk fluid to 
the speed of sound through the pore 
structure of a porous medium containing 
this fluid. 
 
 

VL ൌ ଵ

൫C ρబ൯
భ 
మ
                                             (29) 

V୥ ൌ ଵ

Y
భ
మ
                                                           (30) 

    

   The result equation is a special form of 
hyperbolic equation that is known as 
telegraph equation. Comparing the equation 
with the general form of hyperbolic 
equation, it is found that the velocity of 
pressure pulse penetration is limited and 
equal to va. Therefore, it can be seen that 
Foster removed the infinite propagation 
speed in diffusivity equation by omission of 
two main assumptions of Darcy equation. 
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Comparison of diffusivity equation 
and telegraph equation 
     In the next step after analytical solution 
of both equations in Cartesian coordination, 
their prediction of pressure distribution is 
compared. 
     The one-dimensional equation of 
diffusivity in Cartesian coordination and its 
boundary condition is as follow: 
 

 
பమΔP

ப୶మ ൌ ଵ

஽

பΔP

ப୲
                                           (31) 

BC:           ∆P ൌ 0 , t ൌ 0 

                   t ൐ 0      ൜
∆P ՜ 0   , x ՜ ∞
∆P ൌ P଴     , x ൌ 0     

     

     The solution of this equation is possible 
with different methods such as separation 
parameters and Laplace transforms and 
would be as equation 32. 
 

∆P ൌ P଴erfc ቀ ୶

ଶ√D୲
 ቁ                                (32) 

    
  Now, we consider one dimensional 
telegraph equation in Cartesian coordination 
and its boundary condition. 
 
 

பమ∆P

ப୶మ ൌ ଵ

୴౗
మ  பమ∆P

ப୲మ ൅ ଵ

D
 ப∆P

ப୲
                             (33) 

BC:    ∆P ൌ 0  , 
ப∆P

ப୲
ൌ 0, t ൌ 0 

           t ൐ 0      ൜
∆P ՜ 0   , x ՜ ∞
∆P ൌ P଴     , x ൌ 0  

 

     The solution of this equation is possible 
via Laplace transform and Riemann 
equation and is as equation 34. 
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୲
౮

౬౗

 dtቑ               (34) 

 

     Where Y1 is Bessel function of the 
second kind of first order and Hሺt െ ୶

୴౗
ሻ is 

Heaviside function defined by 
 

H ቀt െ ୶

୴౗
ቁ ൌ ቐ

0 , t ൏ ୶

୴౗

1 , t ൐ ୶

୴౗

                          (35) 

     Thus, the solution as given by equation 
34 shows that a time lag exists between 
initiating a disturbance and its arrival at a 
down-stream point x. This time lag is given 
by 

୶

୴౗
. It is thus quit clear that the quantity va 

is indeed the propagation speed of pressure 
pulse through the pores of the medium. 
     For using telegraph equation in addition 
to the ordinary known parameters it is 
necessary to know the propagation speed of 
sound in porous media va. Foster in [8] 
addressed the result of experiments that is 
done in 6 different reservoir rock sample 
with gas as fluid sample. He calculated the 
va for each test. The speed of sound is 
change from 20 to 1600 cm/sec in different 
experiments. In this work we use these 
values for comparing the solution of two 
equations in different conditions. The 
experimental result from [8] is presented in 
table (1).  

 
Table 1: Tests condition and results from [8] 

C
ore lengh(cm

) 

A
verage pressure 

(dyne/cm
2) 

t(sec) 

V
a (cm

/sec) 

V
iscosity(poise) 

P
orosity  %

 

K
 

(cm
2) 

T
est 

7.6 1.083E6 0.005 210 1.84E-4 21 0.47E-8 1 
7.7 1.083E6 0.005 538 1.84E-4 24.1 2.29E-8 2 

11.4 1.083E6 0.003  1390 1.84E-4 30.8 10.22E-8 3 
6.9 1.083E6 0.001 1560 1.84E-4 21.6 4.68E-8 4 
5.5 1.083E6 0.003 492 1.84E-4 19.9 1.06E-8 5 
5.5 1.083E6 0.007 206 1.84E-4 13.3 1.05E-8 6 
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     In the first stage the solution of both, 
telegroph and Darcy, equation is presented 
in the lentgh of the core at a difined 
moment. 
     Figures (1) to (6) are presents the 
pressure profile in the lentgh of the cores 
which their parameters are presented in 
table (1). In all the tests the existance of 
Heaviside equation in telegroph equation 
cause the pressure propagation front to be 
specified like a jump in the profile. 
However the Darcy equation impress whole 
core length in the earliest moment.  
    The speed of propagation in the 2nd test is 
more than 1st test this might be because of 
higher permeability of the rock. This case is 
also applicable for the 3rd test with the 
highest value of rock permeability and high 
propagation speed. In the 4th test although 
the rock permeability is lower than the 3rd 
test but because of condensed rock with 
lower porosity the propagation speed is 
higher. In this test considering the high 
propagation speed the pressure profile is 
shown at t=0.001. 
    In the second stage the outlet pressure of 
a core, that is calculated via both equations, 
is shown passing time after applying a 
pressure accretion from 0 to 31 psi in the 
inlet of the core to demonstrate the effect of 
changing different parameters. 
 

 
 
 
 

 
Figure 1:Comparsion of diffusivity and telegroph 

equation for test 1 

 
 

Figure 2: Comparsion of diffusivity and telegroph 
equation for test 2 

 
 

 
 

Figure 3: Comparsion of diffusivity and telegroph 
equation for test 3 

 

 

 
 

Figure 4: Comparsion of diffusivity and telegroph 
equation for test 4 
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Figure 5: Comparsion of diffusivity and telegroph 

equation for test 5 
 
 

 
Figure 6: Comparsion of diffusivity and telegroph 

equation for test 6 
 
Core length     
     Figures (7-1) and (7-2) are showing the 
outlet pressure of a core calculation via both 
Darcy and telegraph equations in two 
different cores with length of 11 and 50 cm, 
respectively. Other parameters those are the 
same for both cores are presented in table 
(2). Figure (7-3) is demonstrating the 
difference between two equations for each 
core. Rumination the results of equations 
indicates that two equations are approach 
together as the core length enlarged. So we 
can say that the error of using Darcy 
equation is going down as the distance rises. 
And also it express that the correction of 
telegraph equation become insignificant as 
time passes. 
 

 
Table 2: Applied parameters for investigation of 

core length effect on pressure distribution 
 

10 d K 

30 % Porosity 
0.02 cp Viscosity 

10  ,  50 cm L 
0 Initial Pressure (psi) 

31 Pressure Difference (psi) 

 

 
Figure 7-1: Comparsion of diffusivity and 

telegroph equation in 10 cm core 

Figure 7-2: Comparsion of diffusivity and 
telegroph equation in 50 cm core 

 

 
Figure 7-3: Diffusivity and telegroph equation 

differece in 10 cm core and 50 cm core 
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Permeability 
     Figures (8-1) and (8-2) are showing the 
outlet pressure of a core calculation via both 
Darcy and telegraph equations in two 
different core permeabilities 100 md and 
1D, respectively. Other parameters those are 
the same for both cores are presented in 
table (3). Figure (8-3) is demonstrating the 
difference between two equations for each 
core. Rumination the results of equations 
indicates that the results of two equations 
are approach together as the permeability 
decrease. So we can say that the error of 
using Darcy equation is low in the 
petroleum reservoirs permeabilities. As we 
also saw in experimental results the 
propagation speed is higher in high 
permeable rocks. The effect of passing time 
can be seen in these curves too. 
 

Table 3: Applied parameters for investigation 
of core permeability effect on pressure 

distribution 
 

100 md , 1d K 

30 % Porosity 
0.02 cp Viscosity 
10  cm L 

0 Initial Pressure (psi) 
31 Pressure Difference (psi) 

 

Table 4: Applied parameters for investigation 
of core porosity effect on pressure distribution 

 

1d K 

10% ,30 % Porosity 
0.02 cp Viscosity 
10  cm L 

0 Initial Pressure (psi) 
31 Pressure Difference (psi) 

 
 

 
Figure 8-1: Compersion of diffusivity and 

telegroph equation for k=1D 
 

Figure 8-2: Compersion of diffusivity and 
telegroph equation for k=100md 

 
 

 
 

Figure 8-3: Diffusivity and telegroph equation 
differece for k=100md and k=1D 

 

Porosity 
     Figures (9-1) and (9-2) are showing the 
outlet pressure of a core calculation via both 
Darcy and telegraph equations in two 
different core porosities 30% and 10%, 
respectively. Other parameters which are 
the same for both cores, are presented in 
table (4). Figure (8-3) is demonstrating the 
difference between two equations for each 
core. It is clear that the error of using Darcy 
equation decreases as porosity increases. 
 

Viscosity 
     In the last part in figures (10-1) to (10-3), 
the effect of viscosity is investigated on the 
behavior of Darcy and telegraph equations 
that shows the difference between two 
equations is ample in low viscosity fluids. 
In the other word, the error of Darcy 
equation is more severe in gas fields. 
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Figure 9-1: Compersion of diffusivity and 

telegroph equation for φ=30% 
 
 

 
Figure 9-2: Compersion of diffusivity and 

telegroph equation for φ=10% 
 
 

 

 
Figure 9-3: Diffusivity and telegroph equation 

differeces for φ=10% and φ=30% 
 

 
 
 
 
 
 
 

 
 

Table 5: Applied parameters for investigation of 
fluid viscosity effect on pressure distribution 

1d K 

30 % Porosity 

0.01 , 0.1 cp Viscosity 

10  cm L 

0 Initial Pressure (psi) 

31 Pressure Difference (psi) 

 
 

 
 
 

 

 
Figure 10-1: Compersion of diffusivity and 

telegroph equation for µ=0.01 cp 
 

 

Figure 10-2: Compersion of diffusivity and 
telegroph equation for µ=0.1 cp 
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Figure 10-3: Diffusivity and telegroph equation 
differece for µ=0.1 cp and µ=0.01 cp 

 
Conclusion 
     The Darcy diffusivity equation that is 
used to anticipate pressure distribution in 
porous media has the limitation of infinite 
propagation speed of pressure pulse from 
mathematical point of view. In fact, this is 
physically impossible since the movement 
of pressure pulse cannot be faster than 
fluids molecules speed. This limitation may 
caused by several simplifying assumtions 
that have applied during Darcy equation 
development. Neveretheless, with omittion 
of two main asumptions of steady state 
condition and constant velocity and 
considering linear approximation for 
velocity field the pressure propagation 
differential equation would be hyperbolic 
equation calls Telegraph equation. The 
propagation speed is limitted for this 
equation and is equal to sound velocity that 
is theoritically is equal to maximum fluid 
velocity. 
      

     In this work, the results of these 
equations which are compared with a step 
function are put into a simulation core. In 
the other word, the pressure is dropped from 
P0 to zero. The investigations are based on 
analytical solution of the differential 
equation in Cartesian coordination. The 
experimental parameter of sound velocity 
through porous media is taken from already 
performed work done by Foster. 
     The achieved results show that the speed 
of sound is a function of fluid and porous 
media characteristics and it is higher in rock 
that is more compact. Moreover, in the 
same porosity, the higher the permeability 
and fluid viscosity, the larger the sound 
speed. However, more experiments 
recommended for gaining more accurate 
conclusion.  
     In all the tests, the existance of 
Heavinside equation in Telegroph equation 
solution causes the pressure propagation 
front to specify like a jump in the profile.  
The difference between two pressure 
equations shows that the difference is higher 
in early time but it becomes very small 
when time passes and in long cores in far 
distance from pressure pulse source.  
    By changing the rock and fluid 
parameters, it is noticeable that the 
correction of Telegraph equation is small 
comparing to the Darcy equation when the 
fluid has higher viscosity and for the rocks 
with low porosity. In the other word, 
however the Darcy equation has a physical 
limitation but its results is still reasonable in 
compare with Telegraph equation for 
conventional reservoir engineering 
applications. 
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