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Abstract 
Decline curve analysis has some advantages over transient well test analysis in which it is not required 

to shut-in the well and also wellbore storage effects do not exist. Few studies have been done on decline 
curve analysis of naturally fractured reservoirs but there are even some limitations with available 
models. On the other hand well test could be expensive and in some operational conditions shutting the 
well to obtain reservoir parameters is almost impossible. Therefore, investigating the applicability of 
homogenous reservoir decline models for production data analysis of naturally fractured reservoirs is 
necessary. In this paper the most important decline models have been used to evaluate reservoir 
parameters in three Iranian naturally fractured reservoirs and the results have been compared to transient 
well test analysis. A useful and applicable procedure is also introduced to correct the initial production 
data when they do not have necessary conditions. The results show that Agarwal-Gardner and 
Blasingame type curves predict acceptable values for permeability compared to transient well test 
analysis while Fetkovich type curve cannot predict accurate values. Determined skin values in all wells 
of the three studied reservoirs are negative. Negative values can be considered to be affected by existing 
fracture networks in the vicinity of producing wells and also periodic well stimulations. The results also 
show that Neglecting produced condensates of gas condensate reservoirs with Liquid-Gas Ratio (LGR) 
less than 100 bbl/MMscf cannot significantly affect decline curve analysis results. 

 

Keywords:Decline curve analysis, Naturally fractured reservoir, Permeability, Skin factor, 
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Introduction 
Pressure transient data can be costly and 

may not be available for many wells, while 
well production data is routinely collected. 
In the absence of pressure transient data, 
decline curve analysis (DCA) can be used to 
predict reservoir parameters from available 
production data. 

Arps [1]developed the empirical standard 
exponential, hyperbolic and harmonic 
decline equations.Fetkovich constructed 
log-log type curves, which combine all 
equations developed by Arps with the 
analytical constant pressure solutions of 
slightly compressible fluids[2, 3]. 
Traditional Arp’s equation and Fetkovich 
type curve assume highly idealized 
production conditions such as constant 
bottom-hole pressure. They also neglect the 
variations of producing fluid properties with 
pressure change [4, 5]. Carter [6] presented 
a new set of type curves developed 

exclusively for the analysis of gas rate data. 
He noted that the changes in fluid properties 
with pressure significantly affect decline 
curve analysis results. The most important 
changes are the variations of gas viscosity-
compressibility product, μgcg [7]. 

Palacio and Blasingame [8, 9, and 
10]presented a new solution based on 
definition of a material balance like time 
function which allows modeling of actual 
variable rate/variable pressure drop 
production conditions. Variations of the 
producing fluid properties were considered 
in the type curves and they also contain 
derivative functions, similar to those used in 
the well test analysis to help the matching 
process while applying type curves. 

Anash et al. [11] followed the work of 
Carter and proposed three functional forms 
to describe the viscosity-compressibility 
product (μgcg) as a function of pressure. 
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A useful and applicable procedure is also 
introduced to correct the initial production 
data when they do not have all necessary 
conditions to perform decline curve 
analysis.  
 

Limitations of production data 
analysis of naturally fractured 
reservoirs 

Investigations done on naturally 
fractured reservoirs show that analysis of 
production data using available decline 
models of naturally fractured reservoirs is 
usually impossible due to the following 
reasons: 
 Decline models of naturally fractured 

reservoirs are not applicable in practical 
conditions and they cannot model real 
production data with acceptable 
accuracy. For example,the variations of 
fluid properties with pressure or changes 
of well bottom-hole pressure with time 
have not been considered in any model. 
Therefore, it can be said that a perfect 
and reliable decline model for naturally 
fractured reservoirs has not yet been 
developed. 

 As mentioned before, the production 
trend of naturally fractured reservoirs 
exhibits two decline rate periods and a 
constant one between them. It is worth 
noting that some of naturally fractured 
reservoirs show production trend of 
homogenous reservoirs. 

 In order to analyze production data using 
decline type curves of naturally fractured 
reservoirs, values of  and  which are 
determined by transient well test analysis 
must be available, while exact values of 
these parameters are rarely determined.  
 

Case studies 
Naturally fractured gas condensate 
reservoir “A” 

“A” naturally fractured gas condensate 
reservoir is located in south west of Iran. 
Pressure and production trends indicate that 
there are extended fracture networks 
through the reservoir. PVT tests have shown 
almost unchanged fluid composition 

through the reservoir and initial Liquid-Gas 
Ratio (LGR) is 12 bbl/MMScf. The 
reservoir has 30 active producing wells and 
there is a complete production history for all 
wells. 
 

Naturally fractured gas condensate 
reservoir “B” 

“B” naturally fractured gas condensate 
reservoir is an anticline with NW-SE axis in 
south west of Iran. Close agreement of 
pressure measurements in different wells at 
the same time periods is indicative of good 
areal communication through the fracture 
networks all over the reservoir. Several 
PVT analyses for different wells indicate 
unchanged PVT properties with depth and 
through the reservoir area. Initial LGR is 
7.3 bbl/MMScf and there are 24 production 
wells in the reservoir. 
 

Naturally fractured oil reservoir “C” 
“C” is a naturally fractured oil reservoir 

in south west of Iran. This reservoir rock is 
mostly carbonate and it was proven that 
there are extended fracture networks 
through the reservoir. The reservoir has 3 
active producing wells. Transient well test 
analysis results of the three reservoirs are 
shown in Table 1. 

 
 

Table 1:   Well test results of the three studied 
reservoirs 

Well 
No. 

k, md Skin 

2A 124 3.45 

8A 6 -1.09 

9A 7 -3.5 

14A 54.8 -3.95 

16A 35 -0.88 

27A 24.16 -3.035 

1B 16.202 -0.418 

12B 20.36 2.38 

20B 22.8293 -4.717 

1C 320.602 -10.02 

2C 263.979 -8.53 

3C 208.365 -11.35 
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Data preparation procedure 
In order to prepare appropriate data, 

following steps were taken for each well: 
 Converting wellhead flowing pressure to 

bottom-hole flowing pressure 
considering well geometry using 
BeggsandBrill pressure loss correlation. 

 Initial screening of production data. 
 Selection of decline periods in 

production data. 
 Identification and elimination of errors 

and/or anomalies in the selected 
production data. 

 Smoothing production data using 
MATLAB software. 

 Time re-initialization of the selected 
production data. 

 Modification of initial reservoir pressure 
that depends on the type of the reservoir: 
 

1. Naturally fractured gas reservoirs: 
There is a linear relation between reservoir 
pressure and time in both gas reservoirs. 
“Least square interpolation technique” was 
used to determine the linear functional 
relation, and then reservoir pressure at the 
beginning of selected production data was 
used instead of initial reservoir pressure. 
 

2. Naturally fractured oil reservoir: 
Following steps were done: 
 Combining material balance equation 

and oil flow equation presented by Dake 
(1978) we have: 

p

N

bNcbp

q p

psstpss 



11    (1) 

where: 
)( wfi ppp 

 
   (2) 

and 











2

4

2

12.141

waA
A

oo
pss

rC

A

e
Ln

kh

B
b

  (3) 

 Plot of pq /  vs. PN p / ; will yield a 

straight line with y-intercept as pssb/1 . 

 Calculating average reservoir pressure (it 
was used instead of initial reservoir 
pressure) from Dake’s oil flow equation: 
 

psswf qbpp      (4) 

 Determination of well temperature by 
calculating average value of bottom-hole 

temperatures from reported temperature 
survey tests. 

 Determination of average porosity and 
water saturation in well drainage area 
using well petrophysical data. 

 Fetkovich type curve assumes constant 
bottom-hole flowing pressure, so in order 
to use this type curve, average value of 
bottom-hole flowing pressures in the 
selected production data was used. 
 

Based on software recommendation, if 
LGR of gas condensate reservoirs is more 
than 100 bbl/MMScf condensate volumes 
must be converted to equivalent gas 
volumes and recombined with gas rate 
stream; otherwise the contribution of 
condensates is insignificant. LGR of two 
naturally fractured gas reservoirs were 12 
bbl/MMScf and 7.3 bbl/MMScf, therefore 
produced condensates were neglected [18]. 

Finally, production data were imported 
into the software and the analysis were 
performed for each well using Fetkovich, 
Blasingame and Agarwal-Gardner type 
curves. 

Steps of preparing appropriate data and 
applying different decline type curves on 
production data of well 3A are shown in 
figure 3. 
 

Results and discussion 
Determined values of permeability and 

skin factor for the three studied reservoirs 
are shown in Table 2 to Table 4. Relative 
error percent values of the determined 
permeability in comparison with transient 
well test analysis results are also shown in 
Table 5. 
Comparison of decline curve analysis 
permeability (kDCA) with transient well test 
permeability (kwelltest) shows that Fetkovich 
type curve results are not so accurate 
especifically in gas reservoirs. Average 
absolute relative error percentage (ARE) of 
this model is 40.94 (ARE is 24.64 for the oil 
reservoir and 46.37 for the two gas 
reservoirs). The reason can be explained by 
the fact that the variations of producing 
fluid properties with pressure were 
neglected. 
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Table 2:   Permeability and skin factor determined by decline curve  
analysis for reservoir “A” 

Well 
No. 

k, md Skin 

Fet. TC B. TC A-G TC Fet. TC B. TC A-G TC 

1A 6.8885 7.9076 9.1109 -5.66503 -6.90448 -6.20845 

2A 30.6869 93.8293 102.3352 -2.61362 4.966629 5.001648 

3A 67.3022 125.409 127.7172 -5.98659 -4.67953 -4.68218 

4A 11.1367 13.5865 9.0484 -2.51694 -8.0249 -8.58839 

5A 139.1623 216.6317 182.1184 -3.41189 -9.35383 -9.90422 

6A 8.8045 14.6639 18.5068 -5.129 -3.74862 -1.22445 

7A 82.5359 61.8933 93.4547 -6.57089 -8.28133 -7.23628 

8A 7.8695 5.3226 5.9224 -4.74381 -8.43454 -8.42516 

9A 5.8293 5.6087 6.4642 -2.3546 -7.81263 -8.35071 

10A 61.7054 119.8991 128.2473 -3.6049 -4.31813 -4.32615 

11A 53.9324 51.5909 50.1895 -5.8916 -8.15934 -8.53179 

12A 254.9819 267.4039 249.6313 -6.32357 -7.80746 -7.82115 

13A 16.8025 19.3715 18.2705 -5.57399 -8.16388 -8.70865 

14A 61.1795 50.535 49.6395 -7.90185 -9.43835 -9.38049 

15A 16.2701 24.8439 26.4251 -4.96912 -6.37877 -6.37872 

16A 40.0276 32.511 36.09 -3.23083 -9.05867 -9.07376 

17A 21.7633 28.9301 30.0889 -7.33241 -8.32526 -8.32634 

18A 21.5098 23.6475 28.8943 -4.96629 -8.05507 -8.05262 

19A 17.9123 23.7803 19.3815 -5.41431 -7.6914 -8.09265 

20A 12.4163 14.563 12.4264 -5.60872 -7.57357 -7.98886 

21A 24.5069 13.806 16.8546 -5.38541 -7.40001 -6.95831 

22A 12.6997 15.5464 14.8953 -6.73486 -7.49663 -7.48912 

23A 13.9278 14.3921 16.4293 -6.68042 -8.44393 -8.43935 

24A 15.9871 17.3248 18.2247 -5.90567 -6.37804 -6.36738 

25A 135.2833 224.3135 170.4286 -6.24969 -9.59435 -9.56485 

26A 7.3163 17.546 19.5757 -6.89308 -7.25269 -7.24609 

27A 5.508 19.9397 16.2354 -6.85901 -7.68143 -8.19344 

28A 13.4202 12.4587 13.6229 -7.53487 -8.94599 -8.93185 

29A 111.8209 112.9497 104.022 -7.86638 -9.76525 -9.73379 

30A 60.8704 25.2471 28.9702 -4.91329 -8.37276 -8.35967 
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Table 3:   Permeability and skin factor determined by decline curve analysis 

for reservoir “B” 

Well 
No. 

k, md Skin 

Fet. TC B. TC A-G TC Fet. TC B. TC A-G TC 

1B 10.7552 15.1917 14.8303 -1.83722 -1.15183 -1.14513 

2B 7.123 7.4651 9.3039 -4.55604 -8.57987 -9.12958 

3B 3.3283 34.5422 29.9016 -7.21189 -8.04553 -8.59734 

4B 4.4469 14.878 12.9616 -7.30507 -9.32682 -9.29764 

5B 3.338 39.4188 46.1159 -6.45975 -0.80302 -0.7843 

6B 6.8586 13.9302 20.8505 -4.78132 -8.05185 -7.64132 

7B 8.851 9.5 13.5692 -2.98442 -8.54888 -7.69624 

8B 6.11 7.1263 5.6168 -4.89105 -8.22855 -8.76639 

9B 11.1847 45.2229 69.6534 -2.40142 -5.33159 -3.70576 

10B 4.7613 47.6824 50.9019 -7.26815 -1.63966 -1.61952 

11B 4.4422 80.3116 106.6603 -8.15782 -1.63034 -1.62993 

12B 2.7417 20.5161 19.2562 -7.89159 -7.81721 -8.20634 

13B 9.1396 26.8109 34.8829 -1.88393 -6.19201 -5.45782 

14B 7.8516 23.7618 30.8448 -4.50419 -8.08718 -7.62802 

15B 10.234 14.5952 15.3874 -5.04429 -8.07623 -8.9994 

16B 6.5286 32.9428 31.674 -2.20447 -5.88494 -8.88121 

17B 4.8337 51.6851 46.8355 -4.72741 -5.37924 -7.95111 

18B 11.5266 19.7405 12.8798 -2.51254 -6.5108 -8.38209 

19B 5.8856 11.9603 14.4195 -5.09723 -7.87327 -8.80531 

20B 6.6447 12.3257 18.9824 -6.42578 -8.83113 -8.80888 

21B 3.1436 61.4433 59.4476 -7.19352 -9.12826 -7.97446 

22B 5.8459 24.579 27.3683 -5.18459 -5.71998 -7.87796 

23B 29.8025 58.553 53.8405 -1.71096 -5.40471 -5.38095 

24B 34.5602 15.0968 12.5691 -1.69528 -9.19391 -9.14926 

 

 
Table 4:   Permeability and skin factor determined by decline curve analysis  

for reservoir “C” 

Well 
No. 

k, md Skin 

Fet. TC B. TC A-G TC Fet. TC B. TC A-G TC 

1C 374.2727 331.2228 306.4296 -7.67165 -10.1187 -9.48481 

2C 322.2183 226.9318 237.3678 -3.31393 -10.4611 -10.0601 

3C 281.5824 230.3552 226.2369 -7.53572 -10.348 -9.97474 
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Table 5:   Values of relative error percent of determined permeability  

bydifferent decline models in comparison with well test results 

Well 
No. 

k, md 

error percent, 

100
 testwell

 testwellDCA 


k

kk
 

Well 
Test 

Fet. TC B. TC 
A-G 
TC 

Fet. 
TC 

B. TC 
A-G 
TC 

2A 124 30.6869 93.8293 102.335 75.2525 24.3312 17.4716 

8A 6 7.8695 5.3226 5.9224 31.1583 11.29 1.29333 

9A 7 5.8293 5.6087 6.4642 16.7243 19.8757 7.65429 

14A 54.8 61.1795 50.535 49.6395 11.6414 7.78285 9.41697 

16A 35 40.0276 32.511 36.09 14.3646 7.11143 3.11429 

27A 24.16 5.508 19.9397 16.2354 77.202 17.4681 32.8005 

1B 16.202 10.7552 15.1917 14.8303 33.6181 6.23565 8.46624 

12B 20.36 2.7417 20.5161 19.2562 86.5339 0.7667 5.42142 

20B 22.8293 6.6447 12.3257 18.9824 70.8939 46.0092 16.8505 

1C 320.602 374.273 331.223 306.43 16.7408 3.31293 4.42041 

2C 263.979 322.218 226.932 237.368 22.0621 14.0341 10.0808 

3C 208.365 281.582 230.355 226.237 35.139 10.5537 8.57721 

 
In spite of Fetkovich type curve, 

permeability determined by Blasingame and 
Agarwal-Gardner type curves have more 
accuracy. ARE of these models are 14.06 
(9.3 for the oil reservoir and 15.65 for the 
two gas reservoirs) and 10.46, respectively 
(7.69 for the oil reservoir and 11.38 for the 
two gas reservoirs). 

It is necessary to mention that the 
amount of decline curve analysis skin 
factor should be considered qualitatively 
rather than quantitatively, it means, the 
sign- negative or positive- is more important 
than the value. Decline curve analysis skin 
values in all wells of the three studied 
reservoirs except one are negative. Negative 
values can be considered to be affected by 
existing fracture networks in the vicinity of 
producing wells and also periodic well 
stimulations. 

However, it is not so reasonable to 
compare decline curve analysis skin values 
to those of the well test analysis. It can be 
explained that well test skin values show the 
condition of producing well in a short time 
period and due to damage or stimulation, 
the values may change with time; while 

decline curve analysis skin values are 
results of analyzed production data of a long 
time period even sometimes the whole 
production history of the wells. 

Results of Agarwal-Gardner and 
Blasingame type curves also show that 
neglecting LGR less than 100 bbl/MMscf 
cannot significantly affect the analysis.  
 
 

Conclusions 
 Conventional decline curve analysis can 

be used to analyze production data of 
naturally fractured reservoirs if data 
preparation process is done in 
appropriate procedure and the reservoir 
fluid has desired conditions. 

 Agarwal-Gardner type curve is the best 
decline model to determine permeability 
in naturally fractured reservoirs; 
moreover,Blasingame type curve can be 
used for estimating permeability in 
naturally fractured reservoirs with 
reasonable accuracy. 

 Fetkovich type curve cannot determine 
permeability in naturally fractured 
reservoirs with good accuracy. 
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 A useful and applicable procedure was 
introduced to prepare appropriate 
production data when the data do not 
have all necessary conditions to perform 
decline curve analysis. 

 Neglecting produced condensates of gas 
condensate reservoirs with LGR less than 
100 bbl/MMscf cannot affect decline 
curve analysis results significantly. 

 

Nomenclature 
A Drainage area, ft2 
bpss Constant in pseudo steady state 

Equation for liquid flow as 
defined by Dake equation, 
psi/(MMSTB/Day) 

Bo Oil formation volume factor, 
resbbl/STB 

cA Dimensionless reservoir shape factor 

ct Isothermal compressibility factor, 
psia-1 

h Formation thickness, ft 

k Permeability, md 
N Original oil in place, MMSTB 
Np Cumulative oil production, MMSTB 
Pi Initial reservoir pressure, psia 
Pwf Flowing bottom-hole pressure, psia 

p  Average reservoir pressure, psia 
q Production flow rate at standard 

conditions, MMSTB/Day or 
MMScf/Day 

rwa Apparent well radius, ft 
p

 
Pressure difference, psia 

  Interaction parameter 

o
 

Oil viscosity, cp 

  Storativity ratio 
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