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Abstract 

Suppose G is the molecular graph of an achiral polyhex nanotorus and e is an edge of G. We denote by N1(e|G) the 
number of vertices of G lying closer to one end of e and by N2(e|G) the number of vertices of G lying closer to the 
other end of e. Then the Szeged index of G is defined as Sz(G) = ∑e∈E(G)N1(e|G)N2(e|G), where E(G) is the set of all 
edges of G. The Wiener index of G is defined as W(G) = 1/2∑{x,y}⊆V(G)d(x,y), where d(x,y) denotes the length of a 
minimal path between x and y. In this paper, the Wiener and Szeged indices of an achiral polyhex nanotorus are 
computed. 
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Introduction 
Graph representation of molecular structures is 
widely used in computational and theoretical 
chemistry (Trinajstic 1992, Bonchev 1983, Rouvray 
1983, Balaban 1985). Trinajstic (1992) noted that 
the roots of chemical graph theory may be found in 
the works by chemists of 18-19th centuries such as 
Higgins, Kopp and Crum Brown. First chemical 
graphs for representing molecules were used by 
them. Recently, Konstantinova and Skorobogatov 
(2001) showed that chemical hypergraph is also 
useful in investigating structure–properties 
relationship (QSPR). 

A graph G consists of a set of vertices V(G) and a 
set of edges E(G). The vertices in G are connected 
by an edge if there exists an edge uv ∈ E(G) 
connecting the vertices u and v in G such that u,v ∈ 
V(G). In chemical graphs, the vertices of the graph 
correspond to the atoms of the molecule, and the 
edges represent the chemical bonds. The number of 
vertices and edges in a graph will be denoted by 
|V(G)| and |E(G)|, respectively. 

To identify molecular structures of chemical 
compound, the molecular graph invariants, called 
topological indices could be used too. Topological 
indices are designed basically by transforming a 
molecular graph into a number. The first use of a 
topological index was made by the chemist (Harold 
Wiener 1947). In that year, he introduced the notion 
of path number of a graph as the sum of distances 
between any two carbon atoms in the molecules, in 

terms of carbon-carbon bonds. Wiener originally 
defined his index (W) on trees and studied its use 
for correlations of physico-chemical properties of 
alkanes, alcohols, amines and their analogous 
compounds. 

Hosoya (1971) reformulated the Wiener index in 
terms of distances between vertices in an arbitrary 
graph. He defined W as the sum of distances 
between all pairs of vertices of the graph under 
consideration, W(G) = 1/2∑{x,y}⊆V(G)d(x,y), where 
d(u,v) is the number of edges in a minimum path 
connecting the vertices u and v. We encourage the 
reader to consult the special issues of MATCH 
Communication in Mathematics and in Computer 
Chemistry (Gutman et al., 1997a) and Discrete 
Applied Mathematics (Gutman et al., 1997b) and 
(Diudea & Gutman 1998, Dobrynin et al., 2001; 
Dobrynin et al., 2002) for information on results on 
the Wiener index, the chemical meaning of the 
index and its history. 

In the 1990s, a large number of other topological 
indices have been put forward, all being based on 
the distances between vertices of molecular graphs 
and all being closely related to W. Szeged index is 
one of these topological indices, which is introduced 
by Ivan Gutman (1994). 

We now recall some algebraic definitions that 
will be used in the paper. Let G be a simple 
molecular graph without directed and multiple edges 
and without loops. If e is an edge of G, connecting 
the vertices u and v then we write e = uv. Let 
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N1(e|G) be the number of vertices of G lying closer 
to one end of e and N2(e|G) be the number of 
vertices of G lying closer to the other end of e. 
Edges equidistance from both the ends of an edge 
are not taken into account. Then the Szeged index of 
the graph G is defined as Sz(G) = 
∑e∈E(G)N1(e|G)N2(e|G). 

Throughout this paper our notation is standard 
and taken from the book of Trinajestic1. Our 
notation related nanotorus is taken from the papers 
by Diudea and his co-authors (John & Diudea 2004, 
Diudea et al., 2004, Diudea et al., 2003; Diudea 
2002a, Diudea 2002b, Diudea & Kirby 2001). We 
encourage the reader to consult these papers for 
background material on this topic, as well as basic 
computational techniques. Some of the present 
authors (Yousefi & Ashrafi 2006, Yousefi & 
Ashrafi 2007, Ashrafi & Yousefi 2007a, Ashrafi & 
Yousefi 2007b) computed the Wiener index of 
polyhex, TUC4C8(R) and TUC4C8(S) nanotori. The 
goal of this paper is to present a new method for 
such calculations. As a particular case of our 
method, the Szeged index of an achiral polyhex 
nanotorus is computed for the first time. 

 
Results and Discussion 
In this section, the Wiener and Szeged indices of an 
achiral polyhex nanotorus is computed. We first 
investigate the Wiener index of these nanotori. Let 
us recall some definitions and notations. An 
automorphism of a graph G is a permutation g of the 
vertex set V(G) of G with the property that, for any 
vertices u and v, g(u) and g(v) are adjacent if and 
only if u is adjacent to v. The set of all 
automorphisms of a graph G, with the operation of 
the composition of permutations, is a permutation 
group on V(G), denoted Aut(G).  

In mathematics, groups are often used to describe 
symmetries of objects. This is formalized by the 
notion of a group action: every element of the group 
acts like a bijective map on some set. To clarify this 
notion, we assume that G is a group and X is a set. 
G is said to act on X when there is a map φ : G × X 
→X such that all elements x∈X (i) φ(e,x) = x, 
where e is the identity element of G, and,(ii) 
φ(g,φ(h,x)) = φ(gh,x) for all g ,h∈G. In this case, G 
is called a transformation group, X is called a G-set, 
and ϕ is called the group action. For simplicity we 
define gx = ϕ(g,x). In a group action, a group 

permutes the elements of X .The identity does 
nothing, while a composition of actions corresponds 
to the action of the composition. For a given X ,the 
set {gx | g ∈ G}, where the group action moves x, is 
called the group orbit of x. If G has exactly one 
orbit, then G is said to be transitive. A graph G is 
vertex transitive if its automorphism group acts 
transitively on V(G). Throughout this paper T = 
T[p,q] denotes a polyhex achiral nanotorus of 
perimeter p and length q. 

To compute the Wiener index of an achiral 
polyhex nanotorus, we first prove its graph is vertex 
transitive. This gives a new method for computing 
the Wiener index of an achiral polyhex nanotorus 
different from those given by some of the present 
authors (Yousefi & Ashrafi 2006). 
 
Lemma 1. The molecular graph of an achiral 
polyhex nanotorus is vertex transitive. 
Proof. To prove this lemma, we first notice that p 
and q must be even. Consider the vertices uij and urs 
of the molecular graph of an achiral polyhex 
nanotorus T = T[p,q], Figures 1 and 2. Suppose both 
of i and r are odd or even and σ is a horizontal 
symmetry plane which maps uit to urt, 1 ≤ t ≤ p and π 
is a vertical symmetry which maps utj to uts, 1 ≤ t ≤ 
q. Then σ and π are automorphisms of T and we 
have πσ(uij) = π(urj) = urs. Thus uij and urs are in the 
same orbit under the action of Aut(G) on V(G). On 
the other hand, the map θ defined by: 

θ(uij) = θ(u(p+1−i)j) 
is a graph automorphism of T and so if “i is odd and 
r is even” or “i is even and r is odd” then again uij 
and urs will be in the same orbit of Aut(T), proving 
the lemma. 

 
Fig. 1. An Achiral Polyhex Nanotorus. 
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Fig. 2. A 2-Dimensional Lattice for an Achiral Polyhex 
Nanotorus T[p,q]. 
 
Suppose d(x) denotes the summation of topological 
distances between x and all vertices of G. Then we 
have: 
Lemma 2. If G is a vertex transitive graph then for 
every vertices u and v, d(u) = d(v). In particular, 
W(G) = (n/2)d(x), where n = |V(G)| and x is a fixed 
vertex of G. 
Proof. By assumption, there is an automorphism ϕ 
such that ϕ(u) = v. By definition of an 
automorphism, for every vertex x: 

d(u) = Σx∈V(G)d(x,u) = Σx∈V(G)d(ϕ(x),ϕ(u))  
= Σx∈V(G)d(ϕ(x), v) = Σy∈V(G)d(y,v) = d(v). 

Therefore, W(G) = 1/2∑{x,y}⊆V(G)d(x,y) = 
1/2Σxd(x) = n/2d(x). 

 
By Lemmas 1 and 2, in an achiral polyhex 

nanotorus T = T[p,q] we have W(T) = (pq/2)d(x), 
for a fixed vertex x of T. By this result we have:  
 
Theorem. If T = T[p,q] is a polyhex nanotorus then 
the Wiener index of T is as follows: 

 W(T) = 

2
2 2

2
2 2

pq (6p q 4) q p
24

p q (3q 3pq p 4) q p
24

⎧
+ − <⎪⎪

⎨
⎪ + + − ≥⎪⎩

. 

 
We now compute the Szeged index of the 

molecular graph of an achiral polyhex nanotorus T. 
 

Lemma 3. If e is an arbitrary edge of  T = T[p,q] 
then N1(e|G) = N2(e|G) = pq/2. In particular, Sz(T) = 

3/8p3q3. 
Proof. We first assume that e is an arbitrary edge of 
the 2-dimensional lattice of T, Figure 2. Using 
symmetry of an achiral polyhex nanotorus, it is easy 
to see that N1(e|T)N2(e|T) = N1(f|T)N2(f|T), where f 
= u11u12. Suppose d(uij,u11) = aij, d(uij,u12) = xij, A = 
[aij] and X = [xij]. Then we have:  

i, j

i, j

i, j

na 1 2 j 1
2x .

na 1 j 1 or j 1
2

⎧ − ≤ ≤ +⎪⎪= ⎨
⎪ + = > +
⎪⎩  

 
Therefore for one half of pairs (i,j), we have xij > 

aij. This shows that N1(e|T) = N2(e|T) = pq/2. Next 
by definition of Szeged index and Lemma 2, we 
have: 

 Sz(T) = ∑e∈E(G)N1(e|T)N2(e|T)  
= ∑e∈E(G)(pq/2)(pq/2)  
= 3/2pq(1/4p2q2). 
 

Second Proof. If G is connected bipartite graph 
with n vertices and m edges then by a theorem of 
Gutman and Dobrynin (1994), 

( )2 2
uv E(G)

1Sz(G) = n m -  (d(u)-d(v))
4 ∈∑ . 

Now if  G = T[p,q] then by Lemma 2, d(u) = d(v) 
and so: 

2 2 3 31 1 3 3Sz(T[p,q]) = n m = (pq) (pq) p q .
4 4 2 8

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 To explain our proof in the previous lemma, in 
what follows we compute the matrix A and X of 
distances from vertices 1 and 2 in Figure 3. We 
have: 
 

 
Fig. 3. The Fragment of an Achiral Polyhex 
Nanotorus. 
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16,16

0 1 4 5 8 9 12 13 16 15 12 11 8 7 4 3
1 2 3 6 7 10 11 14 15 14 13 10 9 6 5 2
2 3 4 5 8 9 12 13 16 15 12 11 8 7 4 3
3 4 5 6 7 10 11 14 15 14 13 10 9 6 5 4
4 5 6 7 8 9 12 13 16 15 12 11 8 7 6 5
5 6 7 8 9 10 11 14 15 14 13 10 9 8 7 6
6 7 8 9 10 11 12 13 16 15 12 11 10 9 8 7
7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8

A
8 9 10 11

=
12 13 14 15 16 15 14 13 12 11 10 9

7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8
6 7 8 9 10 11 12 13 16 15 12 11 10 9 8 7
5 6 7 8 9 10 11 14 15 14 13 10 9 8 7 6
4 5 6 7 8 9 12 13 16 15 12 11 8 7 6 5
3 4 5 6 7 10 11 14 15 14 13 10 9 6 5 4
2 3 4 5 8 9 12 13 16 15 12 11 8 7 4 3
1 2 3 6 7 10 11 14 15 14 13 10 9 6 5 2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 

 

16,16

1 0 3 4 7 8 11 12 15 16 13 12 9 8 5 4
2 1 2 5 6 9 10 13 14 15 14 11 10 7 6 3
3 2 3 4 7 8 11 12 15 16 13 12 9 8 5 4
4 3 4 5 6 9 10 13 14 15 14 11 10 7 6 5
5 4 5 6 7 8 11 12 15 16 13 12 9 8 7 6
6 5 6 7 8 9 10 13 14 15 14 11 10 9 8 7
7 6 7 8 9 10 11 12 15 16 13 12 11 10 9 8
8 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9

X
9 8 9 10 1

=
1 12 13 14 15 16 15 14 13 12 11 10

8 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9
7 6 7 8 9 10 11 12 15 16 13 12 11 10 9 8
6 5 6 7 8 9 10 13 14 15 14 11 10 9 8 7
5 4 5 6 7 8 11 12 15 16 13 12 9 8 7 6
4 3 4 5 6 9 10 13 14 15 14 11 10 7 6 5
3 2 3 4 7 8 11 12 15 16 13 12 9 8 5 4
2 1 2 5 6 9 10 13 14 15 14 11 10 7 6 3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎦  
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