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Abstract 
Let 1≥p  and )( nw  be a sequence with non-negative entries. If 0)( , ≥= kntT , 

denote by 
,p w

T  the infimum of those U  satisfying the following inequality: 
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whenever ( ) ( )n pa l w∈ . The purpose of this paper is to give an upper bound for 
the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also 
e(w,∞). We considered this problem for certain matrix operators such as Norlund, 
Weighted mean, Ceasaro and Copson matrices. This problem is considered by 
some authors like Bennett, Jamson and the first author on sequence spaces pl  and 
weighted sequence spaces for some kind of matrix operators. Also, this study is an 
extension of paper by Chang-Pao Chen, Dah-Chin Luor and Zong-Yin Ou. 
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Introduction 

In this study we consider the norm of certain matrix 
operators on weighted sequence spaces ( )pl w , ( , )e w ∞  
and Lorentz sequence spaces ( , )d w p , 1p ≥ , which is 
considered in [1] and [2] on lp spaces and in [5-8] and 
[10] on ( )pl w  and ( , )d w p  for some matrix operators 

such as Cesaro, Copson, Hausdorff  and Hilbert 
operators. 

Assume that pl  is the normed linear space of all 

sequences ( )na a=  with finite norm pa , where 

1

1
.

p
p
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⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  

Suppose that ( )nw w=  is a sequence with non-
negative entries. For 1p ≥ , we define the weighted 
sequence space ( )pl w  as follows: 
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Also, if ( )nw  is a decreasing non-negative sequence 
such that lim 0n nw→∞ =  and  

1 nn
w∞

=
= ∞∑ , then the Lorentz sequence space 

( , )d w p  is defined as follows: 
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where *( )na  is the decreasing rearrangement of ( )na . 
In fact, ( , )d w p  is the space of null sequences a  for 

which *a  is in )(wl p , with norm *
( , ) ,

.
d w p p w

a a=  

Let * * *
1k kA a a= + +L  and 1k kW w w= + +L , we 

define the weighted sequence space ( , )e w ∞  as follows: 
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with norm 
,

.
w ∞

, which is defined as follows: 
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Our objective in section 1 is to give a generalization 
of some results obtained by [1] and [2]. In section 2, we 
try to solve the problem of finding the norm of certain 
matrix operators on ( ,1)d w  and ( , )e w ∞ and we deduce 
the existence of an upper bound for certain matrix 
operators such as Cesaro and Copson operators. 

The problem of finding the lower bound of matrix 
operators on weighted sequence spaces is considered in 
[9]. 

Results 

1. Matrix Operators on d(w, p) and lp(w) 

Now consider the operator ,( )i jT t=  defined by 

Ta b= , where ,1i i j ji
b t a∞

=
= ∑ . We write 

,p w
T  for 

the norm of T as an operator from ( )pl w  into itself, 

and 
p

T  for the norm of T as an operator from pl  into 

itself, and 
( , )d w p

T  for the norm of T  as an operator on 

( , )d w p . 
The following conditions is what we need to convert 

statements for ( )pl w  to ones for ( , )d w p . We assume 
throughout that: 

(1) For all ,i j , , 0i jt ≥ . 
(2) For all ,i ,lim 0.j i jt→∞ =  
(3) Either ,i jt  decreases with j  for each i , 

or ,i jt  decreases with i  for each j , and 

, ,1

m
m j i ji

c t
=

= ∑  decreases with j  for each m . 

Condition (1) implies that Ta T a≤  and hence the 

non-negative sequences are sufficient to determine norm 
of T . 

 
Proposition 1.1. ([5], Lemma 2.1). Let 1p ≥  and 

,( )i jT t=  be an operator with conditions (1), (2) and 
(3). Then 

*
( , ) ( , )

,
d w p d w p

Ta Ta≤  

for all non-negative elements a in ( , )d w p . Hence 
decreasing, non-negative elements are sufficient to 
determine norm of matrix operator .T  

In the following, we state some lemmas which are 
needed for main result. We set max( ,0)ξ ξ+ =  and 

min( ,0)ξ ξ− =  and also *
1

p
pp −= . 

 
Lemma 1.1. ([2], Lemma 2.1). Assume that ,a t  are 
non-negative sequences. Then for all n  
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Lemma 1.2. ([2], Lemma 2.2). Let 1N ≥  and ,a t be 
non-negative sequences with 1 0N Na a +≥ ≥ ≥L  and 

0na =  for n N< . Then for all n , 
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Lemma 1.3. Suppose that ,nu  nv  are non-negative 

numbers such that 
1 nn
u∞

=∑  is divergent and 

lim 0n nv→∞ = . Then 
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0 .
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n nn
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nn
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as m

u
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=

→ → ∞∑
∑

 

 
Proof. If we take 0ε > , since lim 0n nv→∞ = , then 
there exists an integer 0N >  such that for all m N>   

1 1 1 1 1
.

m N m N m

n n n n n n n n
n n n N n n

u v u v u u v uε ε
= = = + = =

≤ + ≤ +∑ ∑ ∑ ∑ ∑  

Since 
1 nn
u∞

=∑  is divergent, there exists an integer 

1N N>  such that for all 1m N>  we have  

1 1
.

N m

n n n
n n

u v uε
= =

≤∑ ∑  

Therefore  

1 1

2 .
m m

n n n
n n

u v uε
= =

≤∑ ∑  

If 0ε → , we have the statement. 
 

Proposition 1.2. ([5], Proposition 5.1). Let 1p >  and 
( )nw  be a decreasing sequence with non-negative 
entries and let the matrix ,( )n kT t=  be with the 
following entries: 

1

, 0 .
n

n k

for n k
t

for n k
≥⎧

= ⎨ <⎩
 

Then *
,p w

T p≤ . 

 
Lemma 1.4. Let 1p >  and ( )nw  be a decreasing 

sequence with non-negative entries and also 
1

nw
nn

∞

=∑  be 

divergent. Let 1N ≥  and the matrix ,( )N
N n kC c=  have 

the following entries: 

,

1 for
.1
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N
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Then *
,N p w

C p= . 

 
Proof. 1C  is the Cesaro matrix and 1

, ,0 N
n k n kc c≤ ≤  for 

all , 1n k ≥ . 
Since ( )nw  is a decreasing sequence, applying 

Proposition 1.2, we deduce that 
*

1, ,
.N p w p w

C C p≤ ≤  

Fix m  such that m N≥ , and let 
1
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Also, for n m≤  
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where 1 .n nA a a= + +L  
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Since (1 ) 1ps ps− ≥ −  for 0 1s< < , we have 
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Since ( )nw  is a decreasing sequence, 1n n mw w + −≥  
and so 

1

1 11 1
n n m
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≥
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Therefore 11
nw

n mn

∞
+ −=∑  is divergent, setting 

1
nw

n n mx + −= , 
( )

1
*

1

1 p
n

n m
y

+ −
=  and apply Lemma 1.3, we 

have the statement. 
In the following, we recall Theorem 8 of [3] which is 

needed for main result. 
 

Theorem 1.1. ([3], Theorem 8). If 1p >  and x  is a 
non-negative sequence, then 
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Lemma 1.5. If 1p >  and ,x w  are non-negative 
sequences and also w  is decreasing, then 
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Proof. Applying Theorem 1.1, we have 
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We set ,0 0nt =  for 1n ≥  and 
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We say that ,( )n kT t=  is a lower triangular, if 

, 0n kt =  for n k< . We now introduce the first main 
result. 

 
Theorem 1.2. Suppose 1p >  and ( )nw  is a decreasing 
sequence with non-negative entries. Let ,( )n kT t=  be a 
lower triangular matrix with non-negative entries. 

( )i  *
, Tp w

T p M≤ . Moreover, if TM < ∞ , then T  

is bounded on ( )pl w . 
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non-negative entries and 
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1
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,T Tp w

p m T p M≤ ≤ . 

Proof. ( )i  Let ( )na  be any sequence. By Lemma 1.1, 
we deduce that 
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Applying Lemma 1.5 and the maximal theorem of 
Hardy and Littlewood, we have 
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This implies that 
*
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Let 1N ≥ , so that 0Nβ ≥ . Let ( )nb  be a decreasing 
sequence with non-negative entries and 
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,

pp
N N p w
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Applying Proposition 1.1, we conclude that 
*

, Np w
T p β≥ , and so 

*
, Tp w

T p m≥  

This establishes the proof of the theorem. 
In the following, we give some corollaries of 

Theorem 1.2. We assume ( )nw  is a decreasing 

sequence with non-negative entries and 
1

( )n

n

w
w +

 is 

decreasing and also 
1

nw
nn

∞

=
= ∞∑ . 

 
Corollary 1.1. Suppose 1p >  and ,( )n kT t=  is a lower 
triangular matrix with , 1 ,0 n k n kt t−≤ ≤ for 1 .k n< ≤  
Then 

* *
, ,,

1 1 1
sup inf sup

n

n N n kp wn NN n k

p nt T p t
≥≥ ≥ =

⎛ ⎞⎧ ⎫⎛ ⎞ ≤ ≤ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎩ ⎭⎝ ⎠
∑ . 

Moreover, if the right hand side of the above 
inequality is finite, then T  is bounded on ( )pl w . 

 
Proof. We have 1 ,1

sup n
T n n kk

M t≥ =
= ∑  and Tm =  

1 ,sup infN n N n Nnt≥ ≥ . This completes the proof of the 
statement. 

 
Corollary 1.2. Assume that 1p >  and ,( )n kT t=  is a 
lower triangular matrix with , 1 ,0 n k n kt t−≤ ≤  for 
1 k n< ≤  and also ,( )n knt  is an increasing sequence for 
each k . Then 

{ }*
,,

1
sup n np w
n

T p nt
≥

= . 

In particular, *
,N p w

C p= , where NC  is the 

generalized Cesaro matrix defined in Lemma 1.4. 
We apply the above corollary to the following two 

special cases. 
Let ( )nt  be a non-negative sequence with t1>0, and 

1n nT t t= + +L . The Norlund matrix ,( )t n kN t= is 
defined as follows: 

1

,

for 1
.

0 for

n k

nn k

t
k n

Tt
k n

− +⎧ ≤ ≤⎪= ⎨
⎪ >⎩

 

 
Corollary 1.3. Suppose 1p >  and ,( )t n kN t=  is the 
Norlund matrix and ( )nt  is a sequence decreasing with 

nt α→  and 0α > . Then 

*
,t p w

N p= . 

Let ( )nt  be a non-negative sequence with t1>0. The 
Weighted mean matrix ,( )t n kM t=  is defined as 
follows: 

,

for 1
.

0 for

k

nn k

t
k n

Tt
k n

⎧ ≤ ≤⎪= ⎨
⎪ >⎩

 

 
Corollary 1.4. Assume that 1p >  and ,( )t n kM t=  is 
the Weighted mean matrix and also ( )nt  is an 
increasing sequence with nt α→  and α < ∞ . Then 

*
,t p w

M p= . 

 
Corollary 1.5. Suppose 1p >  and ,( )n kT t=  is a lower 
triangular matrix with , 1 , 0n k n kt t− ≥ ≥  for 1 k n< ≤ . 
Then 

{ }* *
, ,1,1 11

inf sup .
n

n k np wn nk

p t T p nt
≥ ≥=

⎛ ⎞ ⎛ ⎞≤ ≤ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑  

Moreover, if the right hand side of the above 
inequality is finite, then T  is bounded on ( )pl w . 

 
Proof. We have 1 ,1supT n nM nt≥=  and Tm ≥  

1 ,1
inf n

n n kk
t≥ =∑ . This establishes the proof. 

We apply the above corollary to the following two 
special cases. 

 
Corollary 1.6. Assume that 1p >  and ,( )t n kN t=  is 
the Norlund matrix and ( )nt  is an increasing sequence. 
Then 

* *
,

1
sup n

t p w
n n

nt
p N p

T≥

⎛ ⎞⎧ ⎫
≤ ≤ ⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

. 
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Corollary 1.7. Suppose 1p >  and ,( )t n kM t=  is the 
Weighted mean matrix and also ( )nt  is a decreasing 
sequence with nt α→  and 0α > . Then 

* * 1
,t p w

t
p M p

α
⎛ ⎞≤ ≤ ⎜ ⎟⎝ ⎠

. 

 
Example 1.1. Let 

( )( )
1

log 1n n
w γ+

=  where 0 1γ< ≤ , nw  

and 
1

( )n

n

w
w +

 be decreasing and also 
1

nw
nn

∞

=
= ∞∑ . 

Therefore, if ( )nt  is a decreasing sequence with 

nt α→  and 0α > , then 

*
,t p w

N p= . 

Also, if ( )nt  is an increasing sequence with nt α→  
and α < ∞ , then 

*
,t p w

M p= . 

2. Matrix Operator on d(w, 1) and e(w,∞) 

In this part of study, we consider the problem of 
finding the norm of matrix operator NC  and t

NC  on 
( ,1)d w  and ( , )e w ∞ , where ( ,1)d w  and ( , )e w ∞  are 

defined as before. 
If ( ,1)a d w∈ , we denote norm of a  with 

1,w
a  and 

if ( , )a e w∈ ∞ , we denote norm of a  with 
,

.
w

a
∞

 We 

write 
1,w

T  for the norm of T  as an operator from 

( ,1)d w  into itself, and 
,w

T
∞

 for the norm of T  as an 

operator from ( , )e w ∞  into itself.  
Suppose T  is a bounded matrix operator on 

( , )e w ∞ . Then tT , the transpose matrix of T , is a 
bounded matrix operator on ( ,1)d w  and  

,1,
.t

ww
T T

∞
=  

Let 1N ≥  and NC  be defined as in Lemma 1.4, and 
also let t

NC  be the matrix transpose of NC . The matrix 

,( )t
N n kC a=  is defined as follows: 

,

1 for
.1

0 for
n k

n k
a k N

n k

⎧ ≤⎪= + −⎨
⎪ >⎩

 

If 1N = , 1C  and 1
tC  are Cesaro and Copson 

matrices, respectively. NC  and t
NC  are generalized 

Cesaro and Copson matrices. 
The problem of finding the norm of matrix operators 

on ( ,1)d w  and ( , )e w ∞  is considered in [8]. Also in the 
following, we consider such problems for some matrices 
on weighted sequence spaces ( ,1)d w  and ( , )e w ∞ . 

 
Theorem 2.1. Suppose ,( )n kT t=  is a matrix operator 
satisfying conditions (1), (2) and (3). If 

sup n

n n

S
W

< ∞ , 

where 1n nS s s= + +L , ,1n k k nk
s w t∞

=
= ∑  , and 

1n nW w w= + +L , then T  is a bounded operator from 
( ,1)d w  into itself, and also  

1,
sup .n

w
n n

S
T

W
=  

 
Proof. Applying Proposition 1.1, it is sufficient to 
consider decreasing, non-negative sequences. Let a  be 
in ( ,1)d w  such that 1 2 0a a≥ ≥ ≥L  and sup n

n

S
n WM = . 

Then 

( )

( )

,1,
1 1

1

1
1

1
1

.

n n k nw
n k

n n
n

n n n
n

n n n
n

Ta w t a

s a

S a a

M W a a

∞ ∞

= =

∞

=

∞

+
=

∞

+
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

= −

≤ −

∑ ∑

∑

∑

∑

 

Also, we have 

( )11,
1

n n nw
n

a W a a
∞

+
=

= −∑ . 

Therefore 

1, 1,
,

w w
Ta M a≤  

and hence 
1,

.
w

T M≤  

Further, we take 1 1na a= = =L  and 0ka =  for all 
1k n≥ + , then 

1, 1,
,n nw w

a W Ta S= =  
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Thus 

1,w
T M= . 

This completes the proof of the theorem. 
In the following statements, we consider the norm of 

Cesaro and Copson matrices. It is enough to consider 
the sequence ( )n

n

s
w  instead of ( )n

n

S
W , because of the well-

known facts listed in the following lemma. 
 

Lemma 2.1. ( )i  If n

n

s
wm M≤ ≤  for all n , then 

n

n

S
Wm M≤ ≤  for all n . 

( )ii If ( )n

n

s
w  is increasing (or decreasing), then so is 

( )n

n

S
W . 

( )iii If n

n

s
w M→  as n → ∞ , then n

n

S
W M→  as 

n → ∞ . 
 

Proof. It is elementary. 
 

Lemma 2.2. Let 0 1α< < .  
( )i If 1N ≥  and 

( )
1

1 1

n
n k k N

X α= + −
= ∑ , then 

( )11
nX

n N α−+ −
 

is increasing and tends to 1
1 α− .  

( )ii If 1
1

( )n k n k
X α+

∞

=
= ∑ , then ( )nn Xα  is decreasing. 

 
Proof. It is elementary. 

 
Theorem 2.2. If 

( )
1

1n n N
w α+ −

= , where 0 1α< < , then 

NC  is a bounded operator on ( ,1)d w  and also t
NC  is a 

bounded operator on ( , )e w ∞ . Moreover,  

( )11, ,
1

1 .
1

t
N Nw w

k

C C N
k N

α
α

∞

+∞
=

= =
+ −

∑  

In particular, ( )1 11, ,
1t

w w
C C ξ α

∞
= = + , where ξ  

is Riemann’s Zeta function. 
 

Proof. Applying Theorem 2.1, we have 

1,
sup .n

N w
n n

S
C

W
=  

Since 

( )
( )1

11
1

n

k nn

s
n N

w k N
α

α

∞

+
=

= + −
+ −

∑  

( ) 1
1

11 ,
k n N

n N
k

α
α

∞

+
= + −

= + − ∑  

Lemma 2.2 ( )ii  shows that n

n

s
w  is decreasing. 

Therefore applying Lemma 2.1 ( )ii , we deduce that n

n

S
W  

is decreasing and also 
 

Proposition 2.1. If 

( ) ( )1
sup ,

1
n

N
n n

W
r w

n N w≥
= < ∞

+ −
 

then t
NC  maps ( ,1)d w  into itself. Also, we have 

( )
1,

.t
N Nw

C r w≤  

 
Proof. Since for all n  

( )
1

n
n N n

W
s r w w

n N
= ≤

+ −
, 

Theorem 2.1 and Lemma 2.1 ( )i  follow that 

1,
( )t

N Nw
C r w≤ , and this completes the proof. 

 
Proposition 2.2. If 

1 1

1sup ,
1

n
k

n kn

W
W k N≥ =

< ∞
+ −∑  

then NC  is a bounded operator on ( , )e w ∞  and 

,
1 1

1sup .
1

n
k

N w
n kn

W
C

W k N∞
≥ =

=
+ −∑  

 
Proof. Applying Theorem 2.1, we have 

1,
supt n

N w n n

S
C

W
= . 

Since 1
nW

n n Ns + −= , and 
,1,

t
N N ww

C C
∞

= , we have the 

statement. 
 

Theorem 2.3. Suppose that 
( )

1
1n n N

w α+ −
= , where 

0 1α< < . Then t
NC  maps ( ,1)d w  into itself and also 

we have 

, 1,

1
1

t
N Nw w

C C
α∞

= =
−

. 
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In particular, 1
1 1 1, 1,

t
w w

C C α−∞
= = . 

 
Proof. We have 

( ) ( )11 1
n n n

n n

S W W
w n N w n N α−= =

+ − + −
. 

Our nW  is the nX  of Lemma 2.2 ( )i , which tells us 

that 1( 1)
nW

n N α−+ −
 is increasing and tends to 1

1 α− . Lemma 

2.1 ( )ii  and ( )iii  follow the statement (Of course, this 
also shows that 1

1( )Nr w α−= .). 
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