
 
   Journal of Industrial Engineering, University of Tehran, Vol. 43, No.1, Dec. 2009, PP. 1-13                         1 

* Corresponding author:            Tel& Fax: +98- 21- 88021067                                 Email:  satorabi@ut.ac.ir 
 

A meta-heuristic approach for the ELDSP in flexible flow 
lines: the power-of-two policy 

 
Seyed Ali Torabi*1 and Masoud Jenabi2 

1Assistant Professor, Department of Industrial Engineering, College of Engineering, 
University of Tehran, Tehran, Iran 

2Ph.D. Student, Department of Industrial Engineering, Amirkabir University of Technology, 
424, Hafez Avenue, 15916-34311 Tehran, Iran 

(Received 25.6.85, Accepted 27.8.88) 
Abstract 

In this paper, the problem of lot sizing, scheduling and delivery of several items in a two-
stage supply chain over a finite planning horizon is studied. Single supplier via a flexible flow 
line production system (FFL) produces several items and delivers them directly to an assembly 
facility. Based on basic period (BP) strategy, a new mixed zero-one nonlinear programming 
model has been developed with the objective of minimization average setup, inventory-holding 
and delivery costs per unit time in the supply chain without any stock-out. The problem is very 
complex and it cannot be solved to optimality especially in real-sized problems. So, an efficient 
hybrid genetic algorithm (HGA) has been proposed based on applying the most applied BP 
approach i.e., power-of-two policy. Based on a number of problem instances, the solution 
quality of the algorithm has been evaluated and also compared with the common cycle 
approach. Numerical experiments demonstrate the superiority of the solutions of proposed 
HGA and indicate that is a very promising solution method for the problem. 
 
Keyword: Flexible Flow Lines; Lot and Delivery-Scheduling, Basic Period Approach, Power-of-Two 
Policy, Hybrid Genetic Algorithm (HGA) 

 
Introduction 

Nowadays, there is a high tendency to 
develop integrated models in research 
community for simultaneously cost-effective 
planning of different activities in supply 
chains. Among them, integrated production 
and delivery planning between adjacent 
supply parties is in particular interest which 
can reduce the total logistics-related costs 
considerably.  

Literature review reveals that one of the 
earliest studied problems in this area is the 
economic lot scheduling problem (ELSP). 
This problem addresses lot-scheduling of 
several items with static and deterministic 
demands over an infinite planning horizon at 
a single facility, where products are 
delivered to the customer continuously. 
Research on the ELSP usually has focused 
on cyclic schedules (i.e., schedules that are 
repeated periodically) with three well known 
policies: common cycle, basic period (or 
multiple cycle) and time varying lot size 
approaches (Torabi et al. 2005). Several 

authors have extended the ELSP to 
multistage production systems with common 
cycle production policy (Ouenniche and 
Boctor 1998, 1999, Fatemi Ghomi and 
Torabi 2002, Torabi et al. 2005).   

The economic lot and delivery-scheduling 
problem (ELDSP) is an extension of ELSP 
to a two-stage supply chain where a supplier 
produces several items for an assembly 
facility and delivers them to it in a static 
condition. Hahm and Yano (1995a, b) 
provided an excellent review of models 
related to ELDSP and developed two 
efficient heuristic algorithms to solve it 
based on common cycle and nested schedule 
strategies, respectively. Jensen and Khouja 
(2004) developed an optimal polynomial 
time algorithm for the ELDSP under 
common cycle approach. Finally, Torabi et 
al. (2006) considered the ELDSP in flexible 
flow lines under common cycle approach 
and over a finite planning horizon. They 
developed an effective HGA to obtain near 
(or ideally optimal) solutions.  



 
   2                                          Journal of Industrial Engineering, University of Tehran, Vol. 43, No.1, Dec. 2009                      

 
 

Regarding to the basic period (BP) 
approach, Bomberger (1996) assumed 
different production cycles for items in 
which each cycle time must be an integer 
multiple of a BP that is long enough to meet 
the demand of all items. The production 
frequency of each product during the global 
cycle is then determined as a multiple of the 
selected BP. In such a case, infeasibility 
results from the artificial restrictions 
imposed by the concept of BP. Elmaghraby 
(1978) provided a review of the various 
contributions to ELSP and presented an 
improvement upon the BP approach, named 
the extended basic period (EBP) method. Its 
main difference from Bomberger’s BP 
method was that it allowed items to be 
loaded on two BPs simultaneously and at the 
same time relaxed the requirement that the 
basic period should be large enough to 
accommodate such simultaneous loading. 
Yao and Elmaghraby (2001) developed an 
evolutionary algorithm for ELSP under basic 
period policy. Also, Ouenniche and Boctor 
(2001a, b, c) proposed three efficient 
heuristic approaches, i.e., power of two, two 
group and G-group methods for the ELSP in 
flow shop systems over an infinite planning 
horizon under basic period approach. 

In all above works, the planning horizon 
is assumed to be infinite. However, this 
assumption considerably reduces the 
usefulness of the proposed contributions, 
because in practice, planning horizon is often 
finite. In this regard, there are few research 
which have assumed the finite planning 
horizon (Ouenniche and Boctor 1998, 
Ouenniche and Bertrand 2001, Torabi et al. 
2005, 2006). 

Consequently, to the best of our 
knowledge, there is no research on ELDSP 
in flexible flow lines under basic period 
approach over a finite planning horizon so 
far. It is noted that the solutions obtained via 
the basic period approach are generally 
better than the common cycle's solutions, 
and this is our main motivation in this 
research.  

The outline of the paper is as follows: 
problem definition and formulation has been 

presented in section 2. The proposed HGA 
have been explained in section 3. In section 
4, an efficient procedure has been developed 
for determining upper bounds on ki values. 
An efficient feasibility test for capacity 
checking along with an iterative repair 
procedure based on ki values modifications 
to convert an infeasible solution to a feasible, 
are also proposed in section 5. 
Computational experiments are provided in 
section 6. Finally, section 7 is devoted to 
conclusion remarks. 
 
Problem formulation 

This paper studies the finite horizon 
economic lot and delivery scheduling 
problem in flexible flow lines under basic 
period approach. At first, a new mixed zero-
one nonlinear program has been developed 
whose optimal solution determines 
simultaneously the optimal assignment of 
products in basic periods, optimal 
assignment of products to machines at stages 
with multiple parallel machines, the optimal 
products sequence for each machine at each 
stage, the optimal lot sizes and the optimal 
production and delivery schedule at each 
global cycle. 

To solve the problem, we assume that the 
cycle time of product i, Ti, is an integer 
multiple, say ki, of a basic period F; i.e., 
Ti=ki.F for all i. In addition, we required that 
the basic period F to be such that the 
planning horizon PH is an integer multiple 
of a global cycle H.F; that is PH=r.H.F 
where r is an integer and H denotes the least 
common multiple (LCM) of the ki’s. 
Consequently, to solve the problem, a hybrid 
genetic algorithm (named PT-HGA) has been 
proposed based on power of two policy (the 
most applied BP strategy). 

The following assumptions are considered 
for the problem formulation: 
• Machines at stages with multiple parallel 

machines are identical (in all 
characteristics such as production rates 
and setup times/cost)  

• Machines of different stages are 
continuously available and each machine 
can only process one product at a time. 



 
   A meta-heuristic …..                                                                                                                                           3 

 
 

• At stages with parallel machines, each 
product is processed entirely on one 
machine. 

• Setup times/costs in supplier's production 
system are sequence independent. 

• Production sequence at each basic period 
for each machine at each stage is unique 
and is determined by the solution 
method. 

• The supplier incurs linear inventory 
holding costs on semi-finished products. 

• Both the supplier and the assembler incur 
linear holding costs on end products. 

• Preemption/Lot-splitting is not allowed. 
Moreover, the notations used for the problem 

formulation are defined as follows: 
Indices  
Index For Scale 

i Products {1, 2, …, n} 
j Work Centers {1, 2, …, m} 
l Positions {1, 2, …, n} 
k Basic Periods {1, 2, …, H1} 
k' Machines {1, 2, …, mj} 

Parameters: 
n number of products 
m number of work centers (stages) 
mj number of parallel machines at stage j 
Mk'j k'-th machine at stage j 
di demand rate of product i 
pij production rate of product i at stage j 
sij setup time of product i at stage j 
scij setup cost of product i at stage j 
hij inventory holding cost per unit of 

product i per unit time between stages 
j and j+1 

hi inventory holding cost per unit of final 
product i per unit time 

A transportation cost per delivery 
PH planning horizon length 
M a large real number 
Decision variables 
σk partial sequence vector of basic 

period k 
σkk'j sequence vector of machine k' at stage 

j in basic period k 
r number of production cycles over the 

finite planning horizon 
nkk'j number of products assigned to 
                                                 
1 H= LCM (k1, k2,…,kn) 

machine k' at stage j in basic period 
k 

  F basic period length 
bij production beginning time of product 

i at stage j (after related setup 
operation) 

ki time multiple of product i 
xilk'kj 1, if product i occupies position l on 

machine k' at stage j in basic period 
k  

0, otherwise 
 It is noted that based on above variables, 

the global cycle length is equal to the least 
common multiple of the ki variables, in other 
words we would have: H = LCM (k1, 
k2,…,kn). Also, the production cycle length, 
the production lot size of product i and the 
processing time for a lot of product i at stage 
j would be as follows: 
Ti = ki.F, Qi = di.Ti, ptij= Qi /pij =di.ki.F / pij.  

Moreover, at stages with only one 
machine the value of mj and index k' would 
be only one. Since after processing each 
product at each stage, there would be a value 
added for the product, values of hij 
parameters will be non-decreasing; that is 
hi,j-1≤ hij. 

The objective function of this problem 
(Problem P) includes two fundamental 
expressions. First expression is related to the 
setup and transportation costs. This 
expression consists of two parts: the first part 
computes the setup cost of products with 
respect to their production cycle times. The 
second part computes the transportation cost 
of products on each basic period. 

.
1 1 F

A
Fk

sc
C

n

i

m

j i

ij += ∑∑
= =

 (1)

The inventory holding costs are often 
more complicated which are incurred at both 
the supplier and the assembler. Figure 1 
shows the inventory level of final product i 
in one cycle at the assembly facility is 

2
2

1 ii
i

iii TdTTdT =





  . Therefore, the average 

inventory of component i per unit time at the 
assembly facility will be:  

.2
1
∑
=

n

i
iii dhFk  (2)

 



 
   4                                          Journal of Industrial Engineering, University of Tehran, Vol. 43, No.1, Dec. 2009                      

 
 

 
 
 
 
 
 
 

Fig. 1: Inventory level at the assembler in one 
cycle. 

 
Two types of inventories i.e., WIP and 

finished product inventories are considered 
for the supplier. Figures 2 and 3 show the 
evolution of WIP inventory of product i 
between two successive stages j-1 and j, and 
the inventory level of final product i, 
respectively. 

 
 
 
 
 

 
 
 
 
 

Fig. 2. WIP between stages j-1 and j at the 
supplier. 

 
 
       
 
 
 
 
 
 
 

 Fig. 3. Final product inventory at the supplier. 
 
From Figure 2 it is obvious that the 

average WIP inventory of product i between 
two successive stages j-1 and j per unit time 
is: 







+









−−







+=
−

−
−

−
ij

iiii

ji

ii
jiijii

ji

iiii

i
ji p

TdTd
p

TdbbTd
p

TdTd
T

I
22

1

1,
1,

1,
1,











−−+=

−
−

1,
1, 22 ji

ii
ji

ij

ii
iji p

Fkdb
p

Fkdbd  (3)

Therefore, the total WIP inventory 
holding cost for all products per unit time at 
the supplier would be as follows: 

.
22 1,

1,
1 2

1,






−






−+=
−

−
= =

−∑∑
ji

ii
ji

ij

ii
iji

n

i

m

j
jiWIP p

Fkd
b

p
Fkd

bdhTC

 (4) 
Also, from Figure 3, we can derive the 

average inventory of final product i per unit 
time: 












−−





+=−
im

ii
imiii

im

iii
ji p

TdbTTd
p
TdTd

T
I .

2
1

1,  

imii
im

i
i bdFk

p
dd −








−=

2
.1  (5) 

Thus, the total inventory holding cost for 
all final products per unit time is: 

imi

n

i
i

ikm

i
i

n

i
iFI bdhFk

p
ddhTC .. .
.2

1.
1

i
1

∑∑
==

−







−=  (6)

So, the total cost per unit time (i.e., 
objective function of Problem P) would be as 
follows: 
 
















−




+







−

++=

∑∑

∑∑

= −
−

=

= =

m

j jiij
ji

i
n

i im

iiii

n

i

m

j i

ij

pp
hd

p
dkdhF

Fk
sc

F
ATC

2 1,
1,

2

1

1 1

11.
2

3.
2

...

( ) ∑∑∑
== =

−− −−+
n

i
imii

n

i

m

j
jiijiji bdhbbdh

11 2
1,1,   .  (7) 

Regarding to this objective function and 
logical relationships between variables of 
Problem P (that some of them are 
recognizable from inventory level curves), a 
mixed zero-one nonlinear model is 
developed to obtain optimal solution of the 
problem. 
 

( )

1 1

2

, 1
1 2 , 1

, 1 , 1
1 2

   

. 1 13
2 2

    

Problem  P:                                                     
n m

ij

i j i

n m
i i i i i

i i j
i jim ij i j

n m

i j i ij i j
i j

scAMin Z
F k F

d k d k dF h h
p p p

h d b b h

= =

−
= = −

− −
= =

= + +

  
− + −     

+ − −

∑∑

∑ ∑

∑∑
1

n

i i im
i

d b
=
∑

 (8) 

 mjnib
p

Fkdb

:subject to

ij
ji

ii
i,j- ,...,2 ;,...,1 ;  

1,
1 ==≤+

−

 (9) 

time 

Ti

iI

ii Td  . 

time 

ijiiij pFkdb ..+1,1, .. −− + jiiiji pFkdb1, −jib
ijb

i . Tdi

1, −jiWIP

imiiim pFkdb .+

time

iI

ii Td  . 

imb iT



 
   A meta-heuristic …..                                                                                                                                           5 

 
 

( )( )

( )n

j

kjkukjkiujij
ij

ii
ij

kklcmHHk

nmkmjiuni

xxMbs
p

Fkdb

,...,,,...,1

; ;,...,1 ;,...,1 ; ,,...,1

 2

1

1

==

<=′=≠=

−−≤−++ ′+′

l

ll

 (10) 

( )n

j

n

i
kjki

kklcmHHkn

mkmjx

,...,,,...,1 ;,...,1

;,...,1 ;,...,1  ;  1

1

1

===

=′=≤∑
=

′

l

l  (11) 

( )

( )nj

n

u
kjku

n

i
kjki

kklcmHHknmk

mjnixx

,...,,,...,1 ;  ;,...,1

;,...,1 ;,...,1   ;

1

11
1

==<=

==≤∑∑
=

′
=

′+

l

ll  (12) 

mjnix
j im

k

n k

k
kjki ,...,1 ;,...,1 ;   1

1 1 1
===∑∑∑

=′ = =
′

l
l  (13) 

( ) ( )( )

2,...,0 ;,...,1 ;,...,1 ;,...,1

 ; 
1 1

1
1 1

−====

=∑∑∑∑
=′ =

++′
=′ =

+′

i
i

m

k

n

jkbtki

m

k

n

jbktki

k
Hbktmjni

xx
j

i

j

i
l

l
l

l

 (14) 

Hkmjmjmi

xx
jj m

k

n

jkkil

m

k

n

kjkil

,...,1 ;,,...,1 ;,...,1

; 
1 1

1,
1 1

=<==

=∑∑∑∑
=′ =

+′
=′ =

′
ll  (15) 

( )n

m

k
kjkiijij

kklcmHHkni

mjxMsb
j

,...,,,...,1 ;,...,1 

 ,,...,1 ; 1

1

1
1

===

=







−−≥ ∑

=′
′  (16) 

,...,niF
p

Fkdb
im

ii
im 1 ; =≤+  (17) 

( )nkklcmHPHH.F.r ,..., ; 1==  (18) 
rand integer   , 1≥  (19) 

{ }
kjki

xjibF kjkiij

,,,,

;1,0  ;,  0  ;0
′∀

=∀≥≥ ′

l

l  (20) 

 
Problem P has the following set of 

constraints. Constraints (9) state that no 
product can be processed before it is 
completed at previous stage. Constraints (10) 
show that, no product can be processed 
before the completion of its predecessor in 
the related production sequence (σkk'j). 
Constraints (11) reveal that at each position 
of each machine, there is at most one 
product; because for each machine such as 
Mk'j, it may be assigned less than n products. 
Constraints (12) state that one product can be 
assigned at one position of machine Mk'j; if 
another product is to be assigned at the 

previous position of this machine. 
Constraints (13) ensure assignment of 
product i to one of the first ki basic period 
and implies that each assigned product at 
each stage has a unique position in the 
sequence of one machine. Constraints (14) 
determine assignment of products in 
appropriate basic periods during the H basic 
periods. Constraints (15) denote that if 
product i have been assigned to basic period 
k at stage j, it must be assigned to that basic 
period at all stages. Constraints (16) show 
that if product i is the first product in the 
sequence vector of one machine at stage j, 
it’s processing cannot be started before 
setting up the corresponding machine. 
Constraints (17) assure that the resulting 
schedule is cyclic so that the process 
completion time for each product at final 
stage is less than or equal to a basic cycle 
time F. Constraint (18) implies that the 
planning horizon PH is an integer multiple 
of H.F, where H=LCM (k1,…,kn), and F is 
the basic period length. Constraints (19) 
show that r is an integer greater than or equal 
to one. Finally, Constraints (20) are the non-
negativity constraints of variables. 
It is noted that this model can be run for a set 
of known ki variables. In other words, to run 
this model, at first the ki values must be 
determined, and then the corresponding 
optimal basic period length, optimal 
assignments, sequence vectors and 
production and delivery schedule of products 
are obtained via solving Problem P. 
 
Proposed hybrid genetic algorithm 

During the last thirty years, there has been 
a growing interest in obtaining the optimal 
solutions for complex systems using genetic 
algorithms (GA). Genetic algorithms 
maintain a population of potential solutions 
and simulate evolution process using 
selection process based on fitness of 
chromosomes and genetic operators. To 
improve solution quality and to escape from 
converging to local optima, various 
strategies of hybridization have been 
suggested (Cheng and Gen 1997, Torabi et 
al. 2006). In designing a hybrid genetic 



 
   6                                          Journal of Industrial Engineering, University of Tehran, Vol. 43, No.1, Dec. 2009                      

 
 

algorithm (HGA), the neighborhood search 
(NS) heuristic usually acts as a local 
improver into a basic GA loop. 

In our HGA, each solution is 
characterized with a set of ki multipliers and 
the value of basic period F. Beside the cost 
minimization; we have to generate feasible 
schedules. Therefore, a capacity feasibility 
test has been developed in section 5 which is 
able to identify the infeasible solutions and 
converting them to feasible schedules. 

 
Chromosome representation 

The proposed HGA search in the solution 
space of ki values, so that each chromosome 
is a binary (zero-one) string, and each ki 
multiplier will be represented as a particular 
part of a chromosome. For instance, the first 
u1 bits are used to encode the value of k1 and 
the particular piece of chromosome from the 
(u1+1)-th bit to the (u1+u2)-th bit represents 
the value of k2 and so on. In order to 
represent all the possible values of ki for each 
item i, we need an upper bound (see section 
4) on the value of ki (or vi so that iv

ik 2= ). 
Because of encoding the value of ki into a 
binary string, we have to establish a mapping 
between each binary string and an integer ki. 
In fact, we map a binary string consisting of 
ui bits to an integer value ki by using the 
following equations for the power of two and 
non-power of two cases, respectively: 

( ) i
i

ii

v
ii

u

j

j
juu kvbbbb 22... 10

101

1

211 =⇒=







= ∑

=

−
− (21) 

 
Determining the σk vectors 
In assigning and sequencing of products in 
different basic periods i.e., determination of 
σk vectors, it is not easy to derive a simple 
necessary and sufficient condition to have a 
non-empty set of feasible solutions. Given a 
vector of multipliers ki; i=1,…,n, the 
procedure starts to make a vector say V' by 
sorting the products in ascending order of ki 
and, within the products having the same 
multiplier ki , in the descending order of ρi 
where: 

∑
=

==
m

j ij

ii
i ni

p
dk

1
....,,1,ρ  (22)

Each product i in the vector V' is assigned 
to the basic period t within the first ki periods 
of global cycle H which minimizes: 























+∑

∈=+=
ij

ii

u uj

uu

mj,...mt,tk p
dk

p
dk

k
i σ,...,1

maximummaximum (23)

Finally, for each k, k=1,…,H, we 
determine the sequence of products within σk 
such that if i, u ∈ σk and i is ordered before u 
in V', then i also is ordered before u in σk. 

 
Determining the σkk'j vectors  

First available machine (FAM) rule has 
been employed to assign and sequence the 
products of each basic period to machines of 
different stages (Torabi et al. 2006). 
According to this procedure, for any given 
permutation vector V; the products are 
assigned to machines of first stage by using 
FAM rule (if 1m > 1). Then, for each of 
subsequent stages, the products have been 
first sequenced according to increasing order 
of their process completion time at the 
previous stage, and then assigned to the 
machines at the current stage according to 
FAM rule.  
 
Initial population  

Initial population of binary chromosomes 
is generated randomly. According to 
feasibility test, each infeasible solution is 
converted to a feasible one and then is 
inserted into the initial population. 
 
Evaluation function 

Each chromosome in the population 
represents a potential solution to the 
problem. Evaluation function is responsible 
for rating these potential solutions by 
assigning a real number as a measure of their 
fitness. In our problem after determining the 
σkk'j vectors for each chromosome, evaluation 
function is obtained by solving the following 
NLP model (Problem P1). This problem is 
derived from Problem P by substituting xilkk'j 
values by corresponding ones. Also, σkk'j(i) 
indicates the i-th product in the sequence 
vector of machine Mk'j  in basic period k. 
Problem P1 can be solved by the following 
iterative procedure: 



 
   A meta-heuristic …..                                                                                                                                           7 

 
 

Initial step:     Let r =1, and solve the 
resultant linear program. 
Iterative step: Increase r by 1 and solve the 
corresponding linear program for this new 
value of r. If this model has no feasible 
solution, stop; else, if the objective function 
for current value of r (i.e., Zr) is less than this 
value for previous r (i.e., Z), then set Z=Zr 
and F*=PH / r.H, and go to the next 
iteration. 

( ) ∑∑∑

∑ ∑

∑∑

== =
−−

= −=
−

= =

−−+






















−+








−

++=

n

i
imii

n

i

m

j
jiijiji

n

i jiij

m

j

i
iji

im

ii
ii

n

i

m

j i

ij

bdhbbdh

F
pp

d
kh

p
dd

kh

Fk
sc

F
AMin  Z

11 2
1,1,

1 1,2

2

1,

1 1

...

11
2

..3
2

..

   

:P1 Problem

 

     
(24)

mjnib
p

dFkb ij
ji

ii
ji ,...,2  ,,...,1  ;.

:osubject  t

1,
1, ==≤+

−
−

 

 (25) 

( )
( ) ( )

( )

( ) ( )

),...,(,,...,1

 ;,...,1  ;,...,1;,...,2

 ;                     

.

1

,,

,1

11
,1

n

jjkk

jiji

ji

ii
ji

kklcmHHk

mkmjni

bs

p

dFk
b

jkkjkk

jkk

jkkjkk

jkk

==

=′==

≤−

+

′

−

−−
−

′′

′

′′

′

σσ

σ

σσ
σ

(26) 
( ) ( )

),...,(,,...,1 ;,...,1

;,...,1 ;

1

,1,1

nj

jj

kklcmHHkmk

mjsb
jkkjkk

===

=≥
′′ σσ

(27) 

niF
p

dFkb
im

ii
im ,...,1  ;.

=≤+  
(28) 

integer and 1   ;.. ≥= rPHFHr  (29) 
.,   0, jibF ij ∀≥  (30) 

 
Selection and crossover operators 

In proposed HGAs, we have used the 
tournament selection approach. It randomly 
chooses two chromosomes from parent pool,  

and then chooses the fittest one if a 
random value generated (τ) is smaller than a 
pre-set probability value φ (0.5<φ<1). 
Otherwise, the other one is chosen. Then, the 
selected chromosomes are duplicated and 
pairs of them are selected as parents to 
undergo the crossover operation. 

The main purpose of crossover is to 
exchange genetic materials between 
randomly selected parents with the aim of 
producing better offspring. In this research 
we have used the classic two point crossover. 
According to this crossover, at first two 
positions are randomly selected, and then the 
genes between them in the parent 
chromosomes are exchanged (see Figure 4). 

 
0 1 1 0 1 0 0 1 0 1 0 0 
1 1 0 1 0 1 0 1 1 0 1 0 
            
0 1 1 1 0 1 0 1 1 1 0 0 
1 1 0 0 1 0 0 1 0 0 1 0 

 
 
 

Fig. 4 Two point crossover 
 
Mutation operator 

Mutation introduces random variation 
(diversification) into the population. Most 
genetic algorithms incorporate mutation 
operator mainly to avoid convergence to 
local optima in the population and 
recovering lost genetic materials. In the 
proposed HGAs, we have used the swap 
mutation. Fig. 5 illustrates an example of this 
operator. 

 
0 1 1 0 1 0 0 1 0 1 0 0 
            

1 1 0 1 0 1 1 1 1 0 1 0 
 

Fig. 5. Swap mutation. 
 
Local improver 

Our local improvement procedure is 
based on an iterative neighborhood search 
(NS) so that within successive interchanges, 
given offspring is replaced with an elite 
(dominating) neighbor. We have used 
inversion operator as local improver. Figure 
6 is an example of this operator. 

 
0 1 1 0 1 0 0 1 0 1 0 0 
            

0 1 1 0 1 0 1 0 1 0 0 0 
 

Fig. 6. Inversion operator. 
 
Population replacement 

Chromosomes for the next generation are  

parent

child

parent

child

Two cut points 

Par1

Par2

Child1
Child2



 
   8                                          Journal of Industrial Engineering, University of Tehran, Vol. 43, No.1, Dec. 2009                      

 
 

selected from the enlarged population. After 
offspring were generated from GA operators 
(crossover and mutation) and then improved 
by the neighborhood search procedure, the 
improved offspring are added to the current 
population. This population is called the 
enlarged population, and then about 60 
percent of the new population is filled out by 
the best fittest chromosomes of the enlarged 
population. Remaining chromosomes are 
selected randomly from the remainder 
chromosomes in the enlarged population. 
 
Termination criteria 

Termination criterion determines when 
GA will stop. In other words, the genetic 
operations are repeated until one of the 
termination conditions is met. In our 
implementation, we stop HGAs, if pre-
determined number of generations, max_gen, 
has been executed or the pre-set number of 
generations without any improvement in the 
last best solution, max_nonimprove, reaches. 
 
Determining upper bounds on ki 
values  

In order to represent all possible and 
feasible values of each ki multiplier, we 
determine an upper bound for each one. In 
our HGAs, we derive an upper bound on ki 
through determining an upper bound on the 
objective value of each product i. Following 
steps describe how we can compute an upper 
bound for each ki (ki

UB): 
Step1: For each product i, assume ki=1 and 
calculate ∑j di/pij, arrange the products in 
ascending order of these values. Assign the 
products and sequence them to machines at 
all stages via FAM rule. Finally, find the 
corresponding common cycle solution and 
its objective function, TCcc. 
Step2: Calculate the cost share of each 
product i, ∑ ≠=

−=
n

iuu
u
cccc

i
cc TCTCTC

,1
. As it had 

been mentioned by Yao and Elmaghraby 
(2001), we would have: TCi

BP ≤TCi
cc, where 

TCi
BP is cost share of product i under basic 

period approach. So, TCi
BP values must be 

determined. 

Step3: Assume there is only one product (say 
product i) with following objective function: 

( ) ..

11.
2

3.
2

..
.

2
1,1,

2 1,
1,

2

1

imii

m

j
jiijiji

m

j jiij
ji

ii

im

iiii

m

j i

iji
BP

bdh  bbdh

pp
h

dk
p
dkdh

F

Fk
sc

TC

−−+






−






+








−

+=

∑

∑

∑

=
−−

= −
−

=

 (31) 
Obviously, to obtain the optimal solution, 

we have to determine the starting times so 
that minimize (bij-bi,j-1)-bim. Also, the 
smallest feasible value of bij-bi,j-1 is equal to 
kiF.di/pi,j-1. Therefore, the best value of TCi

BP 
is equal to: 

.111.
2

3.
2
.

.

1

1

2

2 1,
1,

2

1

44444444444 344444444444 21
iH

m

j ij
ii

m

j jiij
ji

i

im

iii

i

m

j i

iji
BP

p
dh

pp
h

d
p
ddh

Fk
Fk

sc
TC












−









++








−

+=

∑∑

∑
−

== −
−

=  

 (32)
Finally for a given value of F, we can derive 
an upper bound on vi, ( iv

ik 2= ), denoted by 
vi

UB by using following equations: 

( )
.

.2

4

  

0. 

 .    

1

2

1

22

1






























−+

=⇒

≤+−⇒

≤+⇒≤

∑

∑

∑

=

=

=

mini

m

j
iji

i
cc

i
cc

2
UB
i

m

j
ij

i
cciii

i
ccii

m

j i

iji
cc

i
BP

FH

scHTCTC

logv

scTCFkHFk

TCHFk
Fk

sc
TCTC

(33)
Moreover, to determine the minimum 

value of F, Fmin, assume that F must be large 
enough so that at least one product with 
ki=1, can be produced during it. 
Consequently, Fmin is obtained from the 
following equation: 

.
1

1

1

,...,1

11,...,1













−
≥⇒

≤












+

∑
∑

∑∑

=

=

=

===

m

j iji

m

j ij

ni

m

j ij

i
m

j
ijni

pd

s
maximumF 

 F
p

Fd
smaximum

 

(34) 
 



 
   A meta-heuristic …..                                                                                                                                           9 

 
 

Feasibility test and repair 
procedure 

For a given chromosome and related ki, σk 
and σkk'j vectors, a simple test for capacity 
feasibility can be carried out. To do so, the 
process completion times of products for all 
H basic periods are first calculated. We can 
use the following procedure for doing so. 

Then, if at least at one basic period, the 
related completion time would be greater 
than or equal to 1, the corresponding 
chromosome is infeasible and otherwise, it is 
feasible. In other words, if at least one of the 
ftk values, k=1,…, H, be grater than or equal 
to 1, this solution would be infeasible. 
for k=1,…,H 
    for each i∈σk 
        for j=1,…,m 

 ,M machineon k  period
 basicat  i before isu product  

 ;1

jk ′

∈∑
′

=
jkku ujuu pdkprocess

σ

 

1j,k

1,1,

M machineon k   period 
 basicat  i  before isu product  

 ;2
1,

−′

−∈ −

+= ∑
−′ ji

ii

u ju

uu

p
dk

p
dkprocess

jkkσ

 

fin=max{process1,process2}+kidi /pij 
       end 
   ftik = fin 
   end 
ftk=maxi{ftik} 
end 

For converting an infeasible solution to a 
feasible one, we have also proposed 
following iterative repair procedure based on 
ki values modifications. 
Step1: Choose the basic period with maximal 

value of ftk, e.g. basic period k1. 
Step2: Among the products of basic period 

k1, select the product with maximum 
amount of process time (maxi {∑j=1,…,m 
kidi/ pij}; i∈σk1), e.g. product i. 

Step3: If vi≠0; set vi=vi -1, and obtain σk and 
σkk'j vectors for this new set of multiples. 
If this solution is feasible, stop, otherwise 
go to step1. If vi=o; select the product 
with subsequent maximum amount of 
process time and go to step3. 

It is noteworthy that each chromosome 
obtained via genetic operators (crossover, 
mutation and local improver) is checked with 
aforementioned feasibility test.  
 
Computational experiments 
To verify efficiency of the proposed 
algorithm, in terms of the solution quality 
and the required computation time, several 
numerical experiments have been conducted. 
In this regard, all of the experimental tests 
have been implemented on a personal 
computer with an Intel Pentium IV 1800 
MHz CPU and HGA has been coded with 
MATLAB 6.5. Moreover, to solve the mixed 
zero-one non-linear models, LINGO 6.0 
optimization software has been used. 
 
Parameter setting and data set 

The tuned parameters of the HGA after 
initial tests have been adjusted as: population 
size pop_size = n, maximum number of 
generations max_gen = m×n, maximum 
number of generations without improvement 
max_nonimprove =n, crossover probability 
Pc= 0.8, mutation probability Pm= 0.2, and 
tournament selection parameter φ = 0.7. 

Furthermore, the parameters of each 
problem instance have been randomly 
generated from the following uniform 
distributions: 

( ) ( )
( ) ( )
( ).20000,10000~

,10,1~,025.0,01.0~

,15000,5000~,1000,100~

1

UA

Uh  Us

   Up  Ud

iij

iji

 
Because processing at each stage has a 

value added on products, hij values should be 
non-decreasing with j. So, after random 
generation of hi1 for each product i, other 
associated hij values are determined by 
randomly generating incremental additions 
i.e., hij=hi,j-1+U(1,3). Also there could be a 
correlation between scij and sij values. 
Therefore, for each randomly generated sij, 
its corresponding scij parameter has been 
computed using the following equation: 
scij=15000×sij +1000×U(0,1). 
 
 



 
   10                                          Journal of Industrial Engineering, University of Tehran, Vol. 43, No.1, Dec. 2009                      

 
 

Performance evaluation 
To verify efficiency of proposed solution 

method, we have considered eight different 
problem sizes. For each problem size, 20 
problem instances have been randomly 
generated. Also, we have divided our 
problem instances in two parts: problem 
instances with 4 and 5 products, and 2 and 3 
stages (as the small-sized problems), and 
problem instances with 5 and 10 products 
and 5 and 10 stages (as the medium and 
large-sized problems). For small size 
problems, the solutions of HGA have been 
compared with the solution of LINGO 
software. Also, for medium and large-sized 
problems, we have calculated an index λ by 
the λ= (TC-LB)/LB equation and used it as a 
base of comparisons. In index λ, the TC is 
the total cost of a problem instance obtained 
by each algorithm and LB is the associated 
lower bound. 

To calculate the LB, we must obtain 
minimum value of the following equation: 

++= ∑∑
= =

n

i

m

j i

ij

Fk
sc

F
AZ

1 1
    

∑ ∑
= −=

−





















−+








−

n

i jiij

m

j

i
iji

im

ii
ii F

pp
dkh

p
ddkh

1 1,2

2

1,
11

2
..3

2
..

( ) ∑∑∑
== =

−− −−+
n

i
imii

n

i

m

j
jiijiji bdhbbdh

11 2
1,1, ...  (35)

If we assign to bij the values that 
minimize (bij-bi,j-1), then the above equation 
is minimized. According to constraints 2, the 
minimum possible amounts of (bij-bi,j-1) are 
di.kiF/pi,j-1. Also, if products can be 
scheduled as soon as possible, we can 
substitute bim with ∑j=1,…,m-1 di.kiF/pij. 
Therefore, a good lower bound can de 
computed as follows: 

∑
∑

∑

∑∑

= −

=

−=
−

= =





















−











++








−

+
=

n

i m

j ij
iii

jiij

m

j

i
iji

im

ii
ii

n

i

m

j i

ij

p
kdh

pp
dkh

p
ddkh

k
sc

F

1 1

1

2

1,2

2

1,

1 1

1

11
2

..3
2

..

A  

 (36)

∑
∑

∑

∑∑

= −

=

−=
−

= =





















−











++








−

++=

n

i m

j ij
iii

jiij

m

j

i
iji

im

ii
ii

n

i

m

j i

ij

F

p
kdh

pp
dkh

p
ddkh

Fk
sc

F
ALB

1 1

1

2

1,2

2

1,

1 1

1

11
2

..3
2

..

   

 

 (37)
Table 1 represents the computational 

results for the small sized problem instances 
and Table 2 and 3 gives these results for 
medium and large sized problem instances. 

 
Table 1. Results of small-sized test problems 
 

problem 
size (n×m) * ** 

average CPU 
time for 

LINGO (in 
seconds) 

average CPU 
time for 

PTHGA (in 
seconds) 

4×2 17 3.44 2736.98 34.43 
4×3 16 5.05 5684.45 53.47 
5×2 16 5.35 5770.77 54.69 
5×3 18 9.07 9737.29 133.65 

*: number of times that the PTHGA’s solution was better than 
the LINGO’s solution 

**: the average of percentage decrease in PTHGA’s solution 
compared to LINGO's solution (%) 

 
In summary, we find out the following 
results from our numerical experiments: 
1) In Table 1, solution qualities of the 

proposed algorithm have been compared 
with the related optimal solution obtained 
via LINGO 6.0. As we can see, for the 
small size problem instances, the 
solutions of the PT-HGA are 67 times 
better than the solutions of LINGO. It 
seems that having a mixed zero-one and 
nonlinear nature of the proposed 
mathematical model makes the LINGO 
can not obtain good results. Also, in 
average, the solutions qualities obtained 
by the PT-HGA are 4.3 percent better than 
the solutions of LINGO. Totally, the 
results shown in Table 1 indicate 
superiority of the proposed algorithm with 
respect to both CPU time and solution 
quality in compare to solutions of the 
LINGO. 

 
 
 



 
   A meta-heuristic …..                                                                                                                                           11 

 
 

Table 2. Results of medium and large-sized test 
problems (comparison with LB) 

 

problem size (n×m) 
the average 

performance ratio 
of PTHGA (%) 

the average CPU time of 
PTHGA  

(in seconds) 
5×5 10.26 149.34 

5×10 18.86 787.66 

10×5 16.4 1825.9 

10×10 23.63 2126.58 

 
Table 3. Results of medium and large size test 
problems (Comparison with the common cycle 

approach) 
 

problem size 
 (n×m) 

the average improvement in PTHGA's solution  
compare to common cycle approach (%) 

5×5 9.76 

5×10 6.49 

10×5 8.35 

10×10 6.82 

 
2) For the medium and large-sized problem 

instances, performance ratio λ has been 
calculated and used as a measure to 
evaluate the proposed algorithms. In 
Table 2, we have calculated the 
performance of the proposed algorithm. 
We observe that the average performance 
ratio for the problem instances increases 
when the problem size increases. 
However, this increase can be either due 
to an increase in the difference between 
the lower bound and the corresponding 
optimal cost, or due to reduction of 
effectiveness (performance) of the 
proposed algorithms due to increase in 
corresponding solution space. 

3) Table 3 reports the average of cost 
differences between the solutions 
obtained through proposed algorithm and 
the solutions of common cycle approach. 
To do this, at first, for each problem of 
medium and large-sized test problems, 
time multiplier of all products was 
equated to 1. Then, the solution of 
common cycle approach has been 
calculated (see sections 3.2, 3.3 and 3.5). 
Finally, the solution of proposed PT-HGA 
has been calculated and compared with 
the common cycle approach. The solution 
of common cycle can be considered as an 

upper bound for solution of basic period 
approach (Yao and Elmaghraby, 2001). 
These results reveal the average 
improvement of 7.85 percent in solutions 
of the PT-HGA over the common cycle's 
solutions, respectively. From Table 3, it 
can be observed that when the problem 
sizes increases, the distance between 
common cycle and basic period solutions 
decreases. The main reason of this 
observation is that when the problem size 
increases the infeasibility of obtained 
solution; make it impossible to have 
different time multiplier (ki) for products. 
Therefore, the solutions of two 
approaches become similar. Totally, these 
results indicate superiority of applying the 
basic period policy versus common cycle 
approach in the problem. 

 
Conclusion remarks 

In this paper, the basic period approach 
has been applied to solve the economic lot 
and delivery-scheduling problem in flexible 
flow lines over a finite planning horizon. To 
do so, a new mixed zero–one nonlinear 
model has been developed to solve the 
problem to optimality. Providing an optimal 
solution is not a practical approach for 
routine decision-making in case of the 
medium and large-sized problems. Thus, an 
efficient meta-heuristic (PT-HGA) based on 
power-of-two policy of basic period 
approach has been developed.  
Since there is not another solution method 
for the problem, we have compared the 
solutions of PT-HGA with the solution of 
LINGO software in small-sized problems. 
Also, for medium and large-sized problems, 
we have calculated an index λ which 
calculates the distance of solutions obtained 
by PT-HGA from a lower bound. 
Computational results are very promising 
and indicate the superiority of PT-HGA over 
the common cycle approach with respect to 
the solution quality. 
 

 
 



 
   12                                          Journal of Industrial Engineering, University of Tehran, Vol. 43, No.1, Dec. 2009                      

 
 

References: 
1- Torabi, S. A., Karimi, B. and Fatemi Ghomi, S. M. T. (2005). "The common cycle 

economic lot scheduling in flexible job shops: The finite horizon case." International 

Journal of Production Economics, Vol. 97, PP.52-65. 

2- Ouenniche J. and Boctor F. F. (1998). "Sequencing, lot sizing and scheduling of several 

components in job shops: The common cycle approach." International Journal of 

Production Research, Vol.36, No. 4, PP. 1125–1140. 

3- Ouenniche J., Boctor F. F. and Martel A. (1999). "The impact of sequencing decisions on 

multi-item lot sizing and scheduling in flow shops." International Journal of Production 

Research, Vol. 37, No. 10, PP. 2253–2270. 

4- Fatemi Ghomi, S. M. T. and Torabi, S. A. (2002). "Extension of common cycle lot size 

scheduling for multi-product, multi-stage arborscent flow-shop environment." Iranian 

Journal of Science and Technology, Transaction B, Vol. 26 (B1), PP. 55-68. 

5- Hahm J. and Yano C. A. (1995a). "The economic lot and delivery-scheduling problem: The 

common cycle case."IIE Transactions, Vol. 27, PP. 113–125. 

6- Hahm J. and Yano C. A. (1995b). "The economic lot and delivery scheduling problem: 

Models for nested schedules." IIE Transactions, Vol. 27, PP. 126–139. 

7- Jensen M. T. and Khouja M. (2004). An optimal polynomial time algorithm for the 

common cycle economic lot and delivery scheduling problem, European Journal of 

Operational Research, Vol. 156, No. 2, PP. 305–311. 

8- Torabi, S. A., Fatemi Ghomi, S. M. T. and Karimi, B. (2006). "A hybrid genetic algorithm 

for the finite horizon economic lot and delivery scheduling in supply chains." European 

Journal of Operational Research, Vol. 173, PP. 173-189. 

9- Bomberger, E. E. (1966). "A dynamic programming approach to the lot size scheduling 

problem."Management Science, Vol. 12, PP. 778-784. 

10- Elmaghraby, S. E. (1978). "The economic lot scheduling problem: review and 

extensions." Management Science, Vol. 24, PP. 587- 598. 

11- Yao, M. J. and Elmaghraby, S. E. (2001). "On the economic lot scheduling problem under 

power-of-two policy. "Computers and Mathematics with Applications, Vol. 41, PP. 1379–

1393. 

12- Ouenniche J. and Boctor F. F. (2001a). "The multi-product, economic lot-sizing problem 

in flow shops: the powers-of-two heuristic." Computers and Operations Research, Vol. 

28, PP. 1165-1182. 



 
   A meta-heuristic …..                                                                                                                                           13 

 
 

13- Ouenniche J. and Boctor F. F. (2001b). "The two-group heuristic to solve the multi-

product, economic lot-sizing and scheduling problem in flow shops." European Journal of 

Operational Research, Vol. 129, PP. 539-554. 

14- Ouenniche J. and Boctor F. F. (2001c). "The G-group heuristic to solve the multi-product, 

sequencing, lot-sizing and scheduling problem in flow shops." International Journal of 

Production Research, Vol. 39, No. 1, 89-98. 

15- Ouenniche J. and Bertrand, J. W. M. (2001). "The finite horizon economic lot sizing 

problem in job shops: the multiple cycle approach." International Journal of Production 

Economics, Vol. 74, PP. 49-61. 

16- Cheng, R. and Gen, M. (1997). "Parallel machine scheduling problems using memetic 

algorithms." Computers and Industrial Engineering, Vol. 33, PP. 761–764. 


