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Abstract 

Deformation pattern of the northeastern part of the Iranian-Arabian collision 

zone (i.e., mainly Sanandaj-Sirjan Belt or Zone) is the main concern of this paper. 

Here, we investigate the stress distribution and displacement pattern of Eghlid-

Deh Bid area as affected by the position of Zagros suture using a three 

dimensional mechanical model. The modeled area is located between the Zagros 

Thrust Fault on the west and Deh Shir-Baft Fault in the east as its edges. The 

model is composed of 3 layers: the upper two layers represent the upper brittle 

and lower ductile crusts of the collided continent and the lowest layer represents 

lithospheric mantle. The bounding major faults are treated as vertical sides of the 

model. We introduced a discontinuity parallel with the Zagros Thrust Line at two 

different locations at the western margin and in the middle of the model to 

simulate Zagros suture to investigate its debated position and role on the 

deformation history in the area. Our results showed that stress and displacement 

patterns are fairly affected and disturbed by its position in the two cases. It could 

also have partitioned deformation across the study area particularly due to its 

marginal position. The modeled pattern of stress and displacement fields are both 

totally comparable with plate boundary shear zones demonstrating dextral 

transpression and more consistent with a suture zone located at or very close to 

the Zagros Thrust Line place. Such a conclusion is in agreement with recent field 

surveys including micro and macro-tectonic data. 
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Introduction 

Shear zones with plate scale size are important 

features in geology as they define boundaries of the 

plates [40, Fig. 7]. They behave as ductile zones and 

getting insight into their mechanism of formation and 

evolution could help understanding plate tectonics [20]. 

In spite of relative availability and variability of 

methods to study brittle fault zones, ductile shear zones 

are much more difficult to study regarding to their 

limited evidence in their exposures on the Earth. Their 

shearing can be observed indirectly only in special 
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circumstance where anomalous heat transfer [34] or 

earthquake rupturing occurred [81,47,92,68,91]. In this 

way, modeling approach will be powerful and versatile 

[14,86,23,35] for the purposes of studies. Such an 

approach may include laboratory analogue modeling 

[e.g., 26,71] or mechanical numerical analysis [e.g., 17]. 

Due to the obliquity of convergent vector between the 

Arabian and Iranian Plates, such shear zones can occur 

within the interior of the Iranian Plate at least as local 

shear zones. In this regard, our study area (Eghlid–Deh 

Bid) located within Sanandaj-Sirjan Metamorphic Belt 

(SSB) (Stocklin 1968a) can be considered as a shear 

zone [e.g., 81,13,58] taking into account its boundaries 

that are specified by Zagros Thrust Fault and Deh Shir-

Baft Fault (DBF) on the west and east, respectively. 

DBF is considered as the boundary between the SSB 

and Central Iran (CI). Zagros Thrust Fault (the ‘Zagros 

Thrust Line or ZTL in this study) also referred to as the 

‘Main Zagros Thrust’, the ‘Zagros suture’ or the ‘Main 

Zagros Reverse Fault’ by various authors [e.g., 

75,33,27,9] in the related articles, is shown to be deeply 

rooted and was the previous site of a paleotrench and 

could indicate position of the suture between the Iranian 

and Arabian Plates although its location has been 

doubted [e.g., 1,70, 4]. In this study, we investigate 

presence of the Zagros suture zone as a pre-existing 

major discontinuity [86,87] in a 3-D finite element 

model (TECTON 2.3 code) of [51,52] and its effect on 

the deformation history in the modeled area considering 

its proposed location [4,1] relative to the western 

boundary of the model. Based on the method introduced 

by [32] we simulate a zone of high strain localization 

corresponding to the suture. The results can be a support 

for observations that the suture zone could run most 

probably along the ZTL. 

Regional Tectonic Elements 

To satisfy the aims of this study that is: (1) to model 

numerically deformation pattern during time in the 

Eghlid-Deh Bid area and investigate the effects of a pre-

existing discontinuity i.e., the Zagros suture on this 

pattern and, (2) to use the results to extend and 

generalize the model for the evolution of the Zagros 

suture zone, it will be necessary and reasonable to give 

a description of the evolution of regional tectonic 

elements around the study area with a brief explanation 

of the them. The study area, Eqhlid-Deh Bid Area 

(EDA) with an upside down triangular shape is located 

between 30°-31° latitudes and 52° 30�-54° longitudes 

(Fig. 1). It is bounded by Zagros Thrust Fault Line 

(ZTL) on the western edge (trending NW-SE) and by 

Deh Shir-Baft Fault (DBF) on the eastern edge (trending 

nearly N-S), respectively. The upper third edge is a 

nearly E-W trending lineament [45,50]. According to 

[30] it appears that Eurasia has grown from the Middle 

to Late Triassic by successive accretion of micro-

continents which came from the south, across the 

Tethyan seaway. The closure of Paleo-Tethys during 

Upper Permian–Late Triassic time resulted in welding 

of the existing micro-continents with the Eurasian Plate 

along a suture zone consisting of oceanic rocks. Nearly 

at the same time during the closure of Paleo-Tethys in 

the north, rifting along the present Zagros thrust zone of 

the continental plate took place, resulting in the opening 

of a new ocean called Neo-Tethys. With the disappea-

rance of Paleotethys, the floor of Neo-Tethys started a 

north-dipping subduction beneath the Eurasian Plate 

during Triassic–Jurassic time. This caused a change in 

tectonic regime between the Arabian margin and the 

Iranian block from passive to convergent [30]. In this 

way, the Zagros orogen began to result from the 

convergence between the Iranian block and the Arabian 

Plate. Disappearance of the Neo-Tethyan realm was 

through a succession of subduction/obduction/collision 

stages [1]. During the Late Cretaceous, approximately 

100-70 Ma ago [1], obduction occurred on the 

 

 

Figure 1. Location of the Zagros major active faults and 

seismicity and modeled area (triangle). The inset displays the 

global location of Zagros and Iran in the collision zone 

between the Arabian and Eurasian Plates. MRF: Main Recent 

Fault; MZT: Main Zagros Thrust; HZF: High Zagros Fault. 

After [9,22,89]. 
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northeastern margins of the Arabian Plate. This 

obduction was caused by the convergence of the 

Iranian-Arabian plate [62,31,63] and led to an Early 

Cimmerian metamorphic event, recorded in the 

southwest of the SSB [10,11]. The final closure of Neo-

Tethys and collision between the Arabian and Iranian 

Plates took place during the Neogene [10,12,30]. 

Numerical Modeling and Boundary Conditions 

The main purpose of this article is to model the 

influence of a pre-existing discontinuity on deformation 

history and stress pattern in the modeled area. We used 

a 3D version of the finite element code, TECTON 2.3 

[51,52]. The outputs were edited and displayed using 

Tecplot 10 software [80]. A total thickness of 100 km is 

given to the model domain comprising of three layers 

composing of the upper brittle and lower ductile crusts 

of the collided continent with a thickness of 20 and 40 

km, respectively, and the lowest layer represents 

lithospheric mantle. The upper crust behaves as an 

elastic material (Table 1) while the lower crust is 

considered as a non-Newtonian viscous fluid layer with 

different power law exponent (n= 3, 5, 7) but the first 

one is included here as there wasn't any difference in the 

final patterns. The lithospheric mantle is taken as a low-

viscosity material and is not allowed to move in any 

direction relative to the overlying layers. Here, a no-slip 

boundary condition along its base is applied [73]. An 

external boundary force equal to 3.55E+17 N [64] act 

normal to the western boundary which was resolved on 

the suture plane into suture parallel and normal 

components according to the angle of plate convergence 

as the only advancing boundary following a dynamic 

approach [64]. A time interval of 30 Myr [1,30,16] with 

time step of 30 to 150 was applied during each run. The 

eastern boundary (DBF) was allowed to slide in y-

direction freely but the elements on its right side were 

fixed. The third side was allowed to move freely in x-

direction. The Zagros suture zone was introduced as a 

high strain zone of localization [40,41] by defining a set 

of nodes [90] parallel to the ZTL. Two cases were 

examined: a marginal suture nearly at the place of the 

ZTL and, a median suture immediately behind the SSB 

(Fig. 2). Both cases have vertical dips in this study. The 

role of change in the suture plane dip is not considered 

here and will be presented in another paper. 

Displacement was fixed along z axis but allowable in x 

and y directions. The depth of the suture was limited to 

the depth of the lower crust as applied in the model, 

nearly coincident with theoretical seismogenic depths 

[18]. All of the boundaries have vertical dips regarding 

to theoretical basis and real field evidence [see for 

example; 40,47,54,88]. Two limitations of our modeling 

work are namely first, we didn't consider any thermal 

change from top to bottom of the model due to 

geothermal gradient and second, we couldn't apply split 

nodes in three dimensions to run the model in 3d mode. 

Results 

We present our modeling results in two parts 

regarding to the presumed position of the Zagros suture 

zone. The first part is devoted to the case in which a 

median suture zone immediately behind the SSB 

boundary [e.g., 2,4] is suggested (Fig. 2). The second 

part gives the results of the case where the Zagros suture 

is fixed at the position of the Zagros Thrust Line as a 

marginal suture [e.g., 1]. In both cases, the suture was 

allowed to slip along x and y axes without and 

movement along z axis. A combined presentation of 

contour lines and vectors were chosen to show 

simultaneously different and comparable features of the 

model results for example, displacement and stress 

values and their variation from top to bottom of the 

model. 

Median Suture Zone 

Regarding to width of the study area (approximately 

200 km) a median suture was located nearly at the 

middle of the model running parallel to the ZTL trend. 

The length of the selected suture was so that it didn't 

interact with other boundaries of the model. As noted 

previously for the other boundaries, here a vertical dip 

was also attributed to the specified suture. 

 
Table 1. Summary of mechanical parameters used in the 

numerical modeling 

Name Symbol Unit Value 

Young's modulus c Pa 1.00E+11 

Poisson’s ratio   0.25 

Density ρ Kg/m³ 2.70e3 (upper crust) 

 ρ Kg/m³ 2.80e3 (lower crust) 

 ρ Kg/m³ 3.00e3 (upper mantle) 

Viscosity 

coefficient 
 Pa 1.00E+11 

Power law   1.0 (upper crust) 

   3.0 (lower crust) 

Cohesion c Pa 1.00E+07 

Friction angle φ  30 
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Displacement Field Pattern 
Figures 3 and 4 show displacement field pattern and 

its variation for different components in the study area. 

Displacement are given in Km. Each component is 

plotted as contour lines but total displacement is shown 

as vector. Figure 3 shows displacement components 

along x and y directions and their relative change with 

depth. Cross sections are along the top and bottom of 

the model. As shown, a clear separation is happened 

between displacement vectors along the suture zone. 

The nearly straight shape of the displacement contours 

parallel to the suture zone is visible on the model 

surface. Of course, the pattern is different from top to 

bottom of the model mainly due to downward extension 

of the suture i.e., its limitation to the crust thickness. 

The displacement pattern in both directions behind the 

suture line is almost uniform and its magnitude is 

constant but less than that seen on the left side of the 

suture (Fig. 3). This pattern is also seen for z-direction 

but the amount of displacement is larger is behind the 

suture line (Fig. 4). A clear difference between x and y-

components from z component is that the displacement 

pattern does not change with depth for the z component. 

The general pattern of the displacement field resulted 

from our modeling is shown in Figure 5. 

Stress Field Pattern 
To show the role of a suture zone as the 

representative of a pre-existing discontinuity in the 

study area, different components of the stress field and 

their variation with depth during time period are given 

in a block diagram set presented in Figure 6. The 

variation of Sxx and Syy (in MPa) versus depth is 

shown in Figure 6a and b. Shear stress components (Sxy 

and Syz) and their pattern change versus depth is 

illustrated in Figure 6c and d. The elongated shape of 

normal stress pattern (Fig. 6a and b) is affected by the 

position of the median suture and is restricted to 

southwestern side of the suture. The amount of Sxx 

increases northward whereas it is southward for Syy. 

The amount of the stress increases from top to bottom of 

the model partly because the lower layer of the model 

i.e., lithospheric mantle was fixed and not allowed to 

move relative to the upper layers. As the effect of the 

suture was more clearly observed in shear stress 

components, it was preferred to present their pattern as 

vector diagram. Figure 6 (c and d) compare such an 

effect for Sxy and Syz shear stresses, respectively. 

Since, the pattern for Szx is almost the same as for Sxy, 

we didn’t show it. As can be seen, the presence of the 

suture divides the region into two parts; the direction of 

vectors is from east to west to the left side of the suture 

but it is reversed to the right of the suture (Fig. 6c and 

d). Additionally, an NE-SW break is seen for Syz plot 

(Fig. 6d) below the location of the suture. The shear 

stress direction is uniformly toward east to the right of 

suture for Syz. Additionally, an NE-SW break is seen 

for Syz plot (Fig. 6d) below the location of the suture. 

The shear stress direction is uniformly toward east to 

the right of suture for Syz. Such a pattern forces one to 

imagine an extensional zone at the suture which is not in 

accordance with the existing evidence. The problem is 

more debating for the case of Figure 6d. 

Marginal Suture Zone 

The location of marginal suture was fixed nearly at 

the place of the ZTL. To prevent calculation errors due 

to the elements geometry, the suture was located at the 

nodes immediately after those defining the ZTL. The 

applied geometry and boundary conditions is similar to 

those of a median suture explained in Section 1. 

Displacement Field Pattern 
Displacement field pattern and its variations for 

different components in the study area are shown in 

Figures 7 and 8. Each displacement component is 

plotted as contour lines but total displacement is shown 

as vector. Figures 7a and 7b show displacement 

components along x and y directions and their relative 

change with depth. Cross sections are again along the 

top and bottom of the model. The maximum amount of 

displacement (contours) in Km is toward NW and SE 

for x and y components, respectively. However, the 

pattern is almost uniform for the bottom layer and 

shows a southward increase. As illustrated, a semi 

uniform displacement direction is located at the place of 

the suture zone on the upper cross sections ((Fig. 7a and 

7b). It also depicts a moderate elongation parallel to the 

suture line. The overall shape of the displacement 

contours indicates an elongation parallel to the suture 

zone. The effect of the suggested suture is more obvious 

for displacement component along z axis (Fig. 8). Here, 

a distinct downward displacement can be seen behind 

the suture line and inside the model boundaries. The 

general pattern of the displacement field form top to the 

bottom of the model is shown in Figure 9. 

Stress Field Pattern 
The pattern of stress field for normal and shear 

components are given in Figure 10. Figure 10a and b are 

block diagrams of the normal components Sxx and Syy, 

respectively. The position of the suture is appeared as a 

clear cut in the contours pattern. The pattern indicates a 

northward and southward increase for Sxx Syy, 

respectively. Thus, the suture bears less effect in regions 
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Figure 2. Three dimensional mesh (200*200 km) plot of the 

study area. Zagros Thrust Line shows general location of this 

fault. The two black lines indicate located positions of Zagros 

suture line for two different cases considered in the model. 

 
a) 

 
b) 

 

Figure 3. Cross sections of displacement field for x (a) and y 

(b) components and their variation on the top and bottom of 

the model. Vectors show variation of the total displacement. 

Zagros Thrust Line shows general location of this fault. 

 

 

where sense of fault movements is similar. As for the 

median suture, a downward increase is seen in the 

amount of the stress. The effect of the suture on shear 

stress components is presented in Figure 10c and d. As 

shown, the presence of the suture is very significant at 

its position and a triangular zone has been formed in the 

middle of the model. The general direction of vectors 

demonstrates a clockwise rotational pattern which is 

clearer for Sxy component (Fig. 10c). The shape of the 

a) 

 
b) 

 

Figure 4. Cross section and block diagram of the 

displacement component Z. Vectors show total displacement 

change form top to bottom of the model. The location of the 

suture in this case is shown as a red bold line. 

 

 

Figure 5. General pattern of the displacement field and its 

downward variation. Zagros Thrust Line shows general 

location of this fault. Depth scale (Z) is in m *10. 

 

 

vector pattern at the ZTL is highly affected by the 

boundary conditions because we applied the driving 

force normal to the western side and did not allow the 

suture to move laterally but only in the z direction. The 

direction of Szx vectors reveals a downward shape in 

the middle part of the region (Fig. 10d) while it is nearly 

upward at the corners. This pattern is in agreement with 

general topography of the study area (Figs. 2 and 16, 

Arzani 2005). 



Vol. 21  No. 2  Spring 2010 Sarkarinejad and Barjasteh J. Sci. I. R. Iran 

160 

a) 

 
b) 

 
c) 

 
d) 

 

Figure 6. Stress components (Sxx, Syy, Sxy, Syz) variations, 

respectively for the study area. Zagros Thrust Line shows 

general location of this fault. See text for details. Depth scale 

(Z) in c and d is in m *10. 

 

Discussion 

Regarding to the above mentioned results of the 

present study, we will present some more block 

diagrams containing extra evidence to distinguish 

between median and marginal suture zones effects on 

the deformation pattern in the study area and their 

a) 

 
b) 

 

Figure 7. Cross sections of displacement field for x (a) and y 

(b) components and their variation on the top and bottom of 

the model. Vectors show variation of the total displacement. 

Zagros Thrust Line shows general location of this fault. 

 
similarities and contrasts with plate scale shear zones. 

Also, we will discuss their possible explanations 

according to the existing theoretical and experimental 

issues or field observations. Here, we try to present as 

much as possible satisfying and reasonable evidence to 

improve our discussions and conclusions. 

Median Suture Zone 

Figure 11 shows downward variation (contours) of 

the more sensible stress components i.e., Sxy and Szx in 

the top and bottom cross sections of the modeled area 

for two successive runs. Embedded in the cross sections 

are vectors depicting displacement changes. The Sxy is 

almost uniform on the northeast of the median suture 

but shows a concentration on the northwest of it (Fig. 

11a and b). The suture divided the area into two parts 

regarding to the displacement vectors (upper sections in 

the Fig. 11). The direction of the vectors is nearly NE to 

SW on the right side of the suture but is downward on 

its left side. The amount of the displacement increases 

towards west i.e., the ZTL as mentioned in the previous 

sections. Figures 11 c and d give the results for Szx. 

Here, the stress field is separated into banded zones on 

the right side of the suture. However, it gradually 
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becomes uniform throughout the region in successive 

time steps (Fig. 11c and d, respectively). Additionally, it 

shows a triangular pattern on the bottom section which 

increases inward. 

Marginal Suture Zone 

The effect of the marginal suture on the pattern of 

stress and displacement fields is illustrated in Figures 

12a to 12d. As shown, the stress component (Sxy) is 

localized along the suture colored in grass green (Fig. 

12a and b) with a southward necking parallel with the 

ZTL. This pattern is nearly repeated for the Szx (Fig. 

12c). The displacement vectors are nearly tangential at 

the ZTL and towards NE at the suture zone. 

The stress pattern for the Szx component on the 

bottom sections (Fig. 12c and d) is similar to that of the 

median suture with the same variations. Similarly, a 

gradual uniformity of the Szx is gained through the 

successive time steps for the whole region (Figure 12c 

and d, respectively). Regarding to the above results and 

referring to the existing literature about shear zones 

geometry and behavior particularly at plate boundary 

scale, the evidence gathered here are mostly consistent 

with the effects of a marginal suture zone on the 

deformation pattern and history in the study area i.e., 

Eghlid-Deh Bid which cab extended to nearly whole of 

the Zagros Fold-Thrust Belt (ZFTB). To reinforce our 

conclusions we check the model by inserting some 

additional boundary conditions relative to the applied 

suture zone. These requisites include allowing the suture 

to slip laterally along x and y axes and to observe 

displacement changes during successive times steps. We 

didn't present the resulting displacement along the x axis 

as it was not very obvious and significant. Figure 13 

illustrates the effect of motion along the median (a) and 

marginal (b) sutures at the end of a three step running 

procedure. As can be seen, the median suture didn't 

make a simply differentiable partitioning on its sides 

while such a separation is very clear for the case of 

marginal suture. This pattern coincides with reported 

right lateral movement along the ZTL at its north-

western continuation. Besides, the expected amount of 

this strike-slip motion increases southward which is 

consistent with the above mentioned results. It also 

depicts a linear localization of displacement which is 

theoretically in agreement with previous studies of large 

scale shear zones [e.g., 28, 56]. In a similar way we ran 

the model with a marginal suture zone and saw the 

pattern of displacement during a 30Ma time period  

(Fig. 14). 

As shown, the resulted pattern is very consistent and 

in good agreement with present shape of the study area 

and the observed deformation patterns [65,66]. 

Although, the displacement is highly concentrated along 

the ZTL (Fig. 14a) but it gradually spreads over the 

region (Fig. 14c). They are comparable with the 

observed phases of deformation in the area [67], as well. 

The final resulted pattern is also confirmed by previous 

analogue modeling [15]. Accordingly, as an opportunity 

has been available by the Iranian-Arabian continental 

collision (i.e., Eghlid-Deh Bid area as part of it) to  

 
a) 

 
b) 

 

Figure 8. Cross section and block diagram of the 

displacement component Z. Vectors show total displacement 

change form top to bottom of the model. The location of the 

suture in this case is shown as a bold red line. 

 

 

Figure 9. General pattern of the displacement field and its 

downward variation. Zagros Thrust Line shows general 

location of this fault. Depth scale (Z) is in m *10. 
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a) 

 
b) 

 
c) 

 
d) 

 

Figure 10. Stress components (Sxx, Syy, Sxy, Szx) variations, 

respectively for the study area. Zagros Thrust Line shows 

general location of this fault. Depth scale (Z) in c and d is in m 

*10. See text for details. 

 

a) 

 
b) 

 
c) 

 
d) 

 

Figure 11. General displacement field (vectors) added to 

downward variation of the stress components (Sxy, Szx) 

shown as contours resulted from a median suture in the study 

area. Zagros Thrust Line shows general location of this fault. 

See text for details. 
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a) 

 
b) 

 
c) 

 
d) 

 

Figure 12. General displacement field (vectors) added to 

downward variation of the stress components (Sxy, Szx) 

shown as contours resulted from a marginal suture in the study 

area. Zagros Thrust Line shows general location of this fault. 

See text for details. 

better understand strain localization along major fault 

systems of continental crust, we can develop our model 

findings to the ZFTB as a plate scale shear zone. The 

direction of displacement vectors, their pattern and 

variation from surface to depth are in good agreement 

with oblique relative motion at convergent plate 

margins which is an inevitable consequence of the 

progressive movement of plates on the surface of a 

sphere [21,93]. The pattern of stress components and 

their changes with depth in addition to their partitioning 

into separate sub-zones may be an indication of non-

coaxial non-plane strains which partly have been 

approved by primary microstructural measurements in 

the field [67]. Finally, the model results predicted a 

dextral wrenching along the ZTL. It should be reminded 

that the force was applied normal to the western side of 

the model but resolved into components onto the plane 

of the suture. This could confirm rearrangement of the 

tectonic environment during time span and its gradual 

change from nearly pure compression into dextral 

transpression. Such a model is a proof for the fact that 

the separation of Arabia from the African Plate and its 

subsequent collision with Eurasia was the last of a series 

of separation/collision events combining the extensive  

 
a) 

 
b) 

 

Figure 13. General displacement field resulted from strike-

slip motion along median (a) and marginal (b) sutures for the 

study area. Zagros Thrust Line shows general location of this 

fault. 
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a) 

 
b) 

 
c) 

 

Figure 14. Displacement field resulted from the marginal 

suture zone at the beginning, middle and end of a sample run 

with a time period of 30Ma. 

 
Alpine and Himalayan orogenic system. Finally, the 

main conclusions of the present study can be 

summarized as follows: numerical modeling of Eghlid-

Deh Bid area as part of the ZFTB which is in turn a 

manifestation of the Iranian-Arabian continental 

collision reveals some information about regional 

deformation pattern and role of a pre-existing 

discontinuity i.e., the Zagros suture zone, on the pattern 

of displacement and stress fields in the study area. As 

the study area is mostly composed of SSB, the obtained 

results can be compared and partly confirmed by some 

limited structural and microstructural data gathered by 

other researchers. 

 

 

Figure 15. A synoptic plot of Sxy/Syz ratio (vectors) in the y-

z (a) and z-x (b) sections, respectively. The lower left sides of 

the plots have been simulated by Tecplot 10. 

 
Based on the modeling results, subdivision of the 

area into smaller parts due to the presence of a suture 

zone regarding to the width of the SSB, topography and 

structural or microstructural evidence is mostly 

consistent with a marginal suture located nearly at the 

place of the ZTL [e.g., 1] and a distant suture i.e., 

behind the boundary limit of the SSB, for example at 

the middle distance between the ZTL and DBF, would 

not result in stress and displacement patterns fairly 

reasonable and approvable especially by previous field 

surveys. The overall stress and displacement patterns 

obtained from our model are in good agreement with 

those of common non-coaxial shear zones formed at 

plate boundaries [e.g., 40,41]. They are also supported 

by previous modeling works [e.g., 15]. The results show 

that the stress components are mainly concentrated at 

the model boundaries which are defined by major 

structural features such as the Zagros thrust fault, the 

Zagros suture and DBF. Besides, they increase toward 

the junction of structural trends. The results also 

indicate gradual rearrangement of displacement and 

stress pattern during time span that change tectonic 

environment from almost pure compressional to oblique 

transpressional regime. Such a transformation of 

tectonic regime is theoretically coherent with intrinsic 
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progressive movement of plates on the surface of a 

sphere although, some limited field data confirm these 

changes [65,66,67]. It also could be a product of 

indentation tectonics [e.g., 39,42,48,49,60,73] but has 

not been investigated here although some of the results 

are possibly indicative of such a phenomenon (Fig. 15). 

However, it would remain to be a subject of the future 

research. 
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