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Abstract
In descriptive statistics, there are two computational algorithms for determining

the variance S°, of a set of observations {x,}’
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Algorithm 1: §°=

Algorithm 2: §°=

i(xj -X )25

i=1"

where x = Zx .. It is interesting to discuss, which of the above formulas is

i=l

numerically more trustworthy in machine numbers sets. I this paper, based on
total effect of rounding error, we prove that the second Algorithm is better than
the first Algorithm. Numerical experiments show the efficiency of Algorithm 2.
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Introduction

The accuracy of results of calculations is a
paramount goal in numerical analysis. For computing
error analysis in a computational algorithm, sources of
error are usually classified as follows:

1. Error in input data,

2. Round off errors, and

3. Approximation errors.

The stability analysis of a numerical method is
related to the above sources of error if the amount of the
total error is very small [10]. Different strategies for
error analysis were investigated by von Neumann and
Goldstein [8], Rademacher [9], Scarborough [12],

Ashenhurst and Metropolis [1], Wilkinson[16-18],
Henrici [4], Moore [7], Kulisch [6], Knuth [5], Sterbenz
[14], Bauer and Coworkers [2], [3], and Stauning [13].

Let us denote the set of machine numbers by F such
that (' see [11], [14], [15]):

F=F(B,m,LU)={0}
U{x eRix =(-1) ﬁei a, B },

where the set of floating point numbers with m
significant digits, base f=2,a, #0, 0< ¢, < f-1,
i=1,..,m, =0,1 and range of (L,U) with L < ¢ <
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U,eeZ ,LeZ and Ue Z . Therefore, it is clear that
the members of F are finite and the cardinality of
F(B,m,L,U) is

Card F=2(U ~L+1)(-1)p"" +1.

The elements of [F are called the machine numbers.
If x € F then we have to define the following
mapping:

d:D—>F,DcR,

where rd(x)= x(1+ ¢€), | € [< eps for all x € D and eps =

p

{E}x S~ is called the machine precision or the

machine epsilon.

On the other hand, we have observed that the results
of arithmetic operations as + ,x,+,... cannot be
expected to reproduce the arithmetic operations on F.

We recall that if e < L or e > U then we have the
definition of underflow and overflow, respectively.

Also, we consider an algorithm such as y = ¢(x ),
that x and y are input and output of ¢, respectively.

Therefore, its sequence of elementary operations gives
rise to a decomposition of ¢ into a sequence of

elementary maps

r=1)

o= o ogl 0]

°...o @
¢"'=D, »D,,,D, cR",
D,=D,D, cR"™ =R",
where characterize the algorithm. An algorithm for
computing the function ¢ :D ->R",D cR", for a
given x =(x,,...,x,) €D corresponds to a

decomposition of the map ¢ into elementary maps ¢’ ,

(0)

and leads from x = x via a chain of intermediate

results
x=x© 5 ® (x(0>) _

x> e (x(r))= x U =y,

to a approximation of the result y. We assume that every
@' is continuously differentiable on D,. Now let us

denote v’ the "remainder map" by:

y? :go(r) ogo(H) o ..o ¢(i) :D, >R",i =0,..

s

then l//(o) = ¢ with floating-point arithmetic, input and
round off errors will perturb the intermediate result
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x ). Considering these perturbations, we finally arrive
at the following formula which describes the effect of
the input errors Ax and the round off errors ¢, on the

result y =x " =p(x):
Ay =Ax(r+1) o

Do(x)Ax + Dy (x(l))a1+ (1)

+Dy"” (x ) )ar ta,,,.

The quantity «;,,, can be interpreted as the absolute
runoff error newly created when ¢’ is evaluated in

floating-point arithmetic, and the diagonal elements of
E.,, can be similarly interpreted as the corresponding

relative round off errors. The notation = instead of = ,
which has used occasionally before, is meant to indicate
that the corresponding equations are only a first order
approximation, they do not take quantities of higher
order A's into account.

g 00 0
0 & 0 0

E . = : ,|sj| <eps,
000 £

ai+1 :Ei+1x (i+1)'

If one selects a different algorithm for calculating the
same result ¢(x), (in other words a different
decomposition of ¢ into elementary maps), then
D@Ax remains unchanged; the Jacobian of the matrix
Dy’ ,which measures the propagation of round off, will

be different, however, and so the total effect of rounding
error will be,

Dy a, +..+Dy"” a, +a,,,. ()
Definition 1. An algorithm is called numerically more
trustworthy than another algorithm for calculating

@(x) if, for a given data set x, the total effect of

rounding error (2) smaller for the first algorithm
compared to that of the second one.

Outline of this paper is as follows. First we compute
DpAx for two algorithms and show that it will be

equal, then we compute total effect of rounding error for
two algorithms. Then, comparison between two
algorithms and experimental results are given.
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Computation of DpAx for Two Algorithms

Proposition 1. The terms D@.Ax are unchanged for

two algorithms.
Proof. In Algorithm 1, we have the following statement:

AS* =Dp.Ax =
_ _ 3)
—Z(XI_X)Ax1+...+2(x"_x) .
n—1 n—1
If we write,
p=5"= ! Zn:x.z—nfz
n-1\F"
1 1, 1 & )
= x —n(—>Yx.
n—l[t_ll (nlz_:‘L)J
- 1 O 2 (Z;’:lxt’)z
= X S —-n——
n-1|4 n
and
Do=
T’x[ n i
[2}(1—22“1 ,2x2—2Z:‘:1 ,
n-— n n
>
,2x =2
n
= 2 (xl—x_,xz—)?,...,xn—x_),
n—1

Then (1) is true. Also, for Algorithm 2 we can show
(1) is true. We consider

(p:SZ = ﬁ[i(xl _f)zj

2
1 [[ x1+...+xnj
= X, - +
n-1 n

and

D= 2 :
n-—1
X Ftx, [_lj
! n n
[ X, + ..+xnj[ lj
+ x, - ——|+...
n n
+[xn_x1+ ..+xnj[l_lj
n n
1 1 :
1—— |(x, —X ) +| — X, —X
[0+ JEe )
__2
n-1 ’

then we have:

AS* =DpAx =

nz_l[([l—%](xl —ﬂ{—%][;(x[ —f)ijl ‘.
+((1—%](xn —x_)+(—%jjz_;(x[ —f)ijn]
2

=mK(n “1)(x, —x_)—[Z:;(x[ —x_)ijl o
+((n—l)(xn 5)-Sx, -) Axn}

o2 [(n=1)(x,~F)~(x, ~F)Ax, +...

n (n —1)
H(n-1)(x, =%)=(x, -¥))Ar, |

2 _ _
:m[n (x,=%)Ax, +...+n(x, —X)Ax, ],
hence, proof is completed. i
Computation of the Total Effect of Rounding

Error for Algorithms

The aim is to compute variance with the use of
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elementary maps. In fact, in each stage only one
computation will be done and we will follow algorithms

step by step by elementary maps.
If we consider Algorithm 1, then we can state it by

the following decomposition

xl
Xy o : oD
0 1 N 2
x( ) — S X (O] N x( )
xn
X, 2
xl
xl
Xy .
(n)
- X, 4
=l X, . X = -
X
2 1
X .
2
x2 2
xn
XX ;
X, Sy,
: i=1 (2n-1)
1 ° 2n-1 2
x("+)= x(" ) — x12 N x(")
xn
X 2
1 2
2 xn
x2
X
x12 q,(lni
= . %
2
xn
=2 =2
X nx
5 (2n+1) 2 (2n+2)
(o) _ x.1 <"_> (2n+2) _ x.1 <"_>
2 2
xn xn
=2
nx
2 2
x(2n+3) — xl +X2
2
xn
et nx_z ¢(3n+1) r n ) R (3n+2)
x O = - x("”:Zx[ —-nx- -

no_2
Z[:lx[ i=l

1 & _
x(3n+3) 2_12)6[2 —nx 2'
n =

Also, the following decomposition is given for
Algorithm 2.
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X1
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xn
X1+X2
X
1
: T
(n-1) .
@ :
(n-1) _ (n) _
= x, - x"=
n x"
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i=1
X, —X
X
o (n+1) N
N — :
xn
X
—\2
_ (x, %)
X=X o2 _
x(Zn) — : N (2n+1) xz —X
X, =X B
xn—x
—\2
(xl_x) q)(zn)
3 .
x(n)z : d

(x, —%)
(4-1)

n 4
x(4n71) :Z(xi _f)Z N
i=1

! Zn:(xi -xX)°.
_1i:1

It is concluded that if we have n observations
{x,}', then using Algorithml leads to (3n+3)

x (4n) _
n

elementary maps and using Algorithm 2 leads to (4n)
elementary maps.

Total Effect of Rounding for Algorithm 1

Proposition 2. 4 bound for the total effect of rounding
error for Algorithm 1 is as follows:

2 2
|A| SP(%J+2M_Z +|y|}eps. 4
n—
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Here, we assume A:= Total effect of rounding error
Jfor Algorithm 1, such that

2 2

X X
A=""'—g+..+ 2
n—1 n-—

1 =,
+— Exv & + g 3.
n—l([_l i j n+2 y n+3

Proof. 1If we consider Algorithm 1 then for simplicity
we can write:

=2
g, —2nx’¢,

Therefore, we have:
0= oV op
Ay =Ax® = Do (x )Ax + Dy (x Ve

+Dy® (x (2))0:2 +a,

and
x,
xl q)‘“’ N q,(l)
2@ = | O R
xn
xn p—
X
n 2,0
x.© | 1 & _
x2 n—-14
hence,
2
xl
(0) |
(0 (xls axn)_ 3 )
xn
X
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O (e, ) =0 00" (u,.. )

= QD(Z) (Zn:uz ’unHJ
i =1

1
Dl//(l) (u,...,unﬂ) =n—_

D!//(l) (x (1))=D!//(1) (xlz,...
1

n-1

y? (u,v)=(o(2) (u,v)=ﬁ(u —nvz),

2 —
x,0.5)

(L,...,1,-2n%),

Dy (uw) =ﬁ(l—2nv ).

Dy (x <z>) _ Dy [Z":xlz,x—j -
i=1

Moreover, we have:

(1-2nx).

n-1

U (%
m—w(z) (x (2)): Oy =YV&,3

n
2 -2
(Zx[ i ]g
i=1

1
n-1
So, we can write
Do(x)Ax +Dy" (x (1))0:1 +Dy? (x (2))0:2 +a, =

Z(x[zg[ - 2nx_28n+1)

i=1
n
2
Zx[ 8n+2+y8n+3'
i=1

Therefore, the proof is completed. o

Do(x)Ax +

n-1

+

1
n-1

Total Effect of Rounding Error for Algorithm 2

Proposition 3. A bound for the total effect of rounding
error for Algorithm 2 is as follows:

|B| < (xl_f)2+...+(x"

_f)z
o = +|y| eps. 5)
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Here, we assume B.:= Total effect of rounding error
Jfor Algorithm 2, such that

=—\2 =—\2
X, =X X —X
=—( 1 =%) 82+...+—( » —¥) £
n-—1 n-—

B n+1+y8n+3'

Proof. If we consider Algorithm 2 then for simplify we
can write:

Therefore, we have:

0= oV op?,

Ay =Ax® = Do(x)Ax + Dy (x (1))0:1
+Dy? (x (2))0:2 +a,

and we can conclude

X1 o le o
PN B SR N
xn
X, -
—\2
o [T e gy
(e, ) e
X, —X
Hence, we have
xl
go(o)(xp X)) = . P
X
(ul_unH)
" (st y) = : ,
(un un+1)2
1 n
go(z)(vl,...vn):mZvl,
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1

Dy (u”.._,unﬂ)zﬁ(z(u1 U)o

2(un _un+1)’_2(u1 _unﬂ)""’_z(un _un+1))

n-1
= 2 (x1_x_: ’xn_x_’o)’
n-1
1 n
l//(z)(vl’ ,Vn)zw(Z)(vl’ ,vn)—ﬁz;vu
1 1
Dl//(z)(vv""vn)z(ﬁ""’ﬁ)’

Dy (x (2))=Dv/(2) (0, =5)es(x, —5)?)

1 1
=Gy

Moreover, we have:
0" (x0) =0 (x¥)=a, =(0.....0.%5,) .
o (x7)=p" (x0) = at

= ((xl —)?)282,...,(.?(,, _x_)zgnﬂ)T s
o ()= (x?)=a, = ye, .

1 & _

—1[2( B )]
So, we can write
Ay =Do(x )Ax + Dy (x)e,

+Dy ¥ (x (2))a2+a3,
Ay éDQ)()C)A)C +%[Zn:(xi _x_)zgi+1j+y8n+2'
n—=1I\i=a

Therefore, the proof is completed. i
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Corollary 1. Comparing (4) and (5) we have:

{(xl -0, L @, -0
n—1 n-—1

Phtx,?
< {2{% + 2057 4]y |
o

This means that total effect of rounding for
Algorithm 2 is less than total effect of rounding for
Algorithm 1. Therefore, we can conclude that
Algorithm 2 is numerically more trustworthy than
Algorithm 1.

Results and Discussion

In what follows we run two algorithms on three sets
of data. Also, we assume that the set of numbers is

F= F(IO, 4,L,.U ) Our aim is to calculate the relative

errors of the F=
]F(10,6,L,U) .

two algorithms in the set

Remark 1. e; and e, denote the relative error for
Algorithm 1 and 2, respectively.

Example 1. We assume that the set of observations is

x;=0.1256, x,=0.2347, x3=0.3511. In the set
F=F(10,4,L,U ) we obtain X =0.2371 and in the set
F=F(10,6,L,U) we obtain X =0.237133. The

variance and relative errors are shown n Table 1.

Example 2. We assume that the set of observations is
x;=0.1123, x,=0.1234, x3;=0.1356. In the set
F=1F(10,4,L,U ) we obtain X =0.1238 and in the set

F:F(10,6,L,U) we obtain x =0.123767. Therefore,

we have Table 2:

Example 3. We assume that the set of observations is
x;=0.1113, x,=0.1124, x3=0.1135. In the set
F=1F(10,4,L,U ) we obtain X =0.1124 and in the set

F=F(10,6,L,U) we obtain X =0.112400. Therefore,

we have Table 3:

We have proven that the total effect of rounding
error of Algorithm 2 is less that the total effect of
rounding error of Algorithm 1. Hence, we can conclude
that Algorithm 2 is numerically more trustworthy. We

should notice that for large n, computing Zx[z and
i=1
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Z(x . —X)* is a numerical problem and we should add
i=1
small data first to prevent large errors.

Table 1. Comparison between two Algorithms for example 1

Alg. 1 Alg.2

Varlait:c]; (Ztl" giszrx(;a)ﬂons 512 —0.0128 §22 00127
Varlait:c]; (Ztl"(c))lzszrxllja)tlons S12 —0.012717 S22 0012717
if ?;a(tll\g)egfoé) ¢;=0.006527 ,=0.001337

Table 2. Comparison between two Algorithms for example 2

Alg. 1 Alg. 2
Vamifc]; ‘ngzszrg“ons §2=0.0002  §2=0.0001
Varl?‘nc]; ‘Zf(‘)"zszrg“"ns §2=0.000136  S2=0.000136
ln bt}
if?;a(nlvoe 66205) =0.470588  €,20.264706

Table 3. Comparison between two Algorithms for example 3

Alg. 1 Alg. 2
Variance of observations G2 G2
in F (104.L.0) §2=0.0001 S =0.0000
Variance of observations 2 2
=0.000001 =0.000001
in F (10,6,L,U) Si 5
Relative error _ > _ 1
in F (10,6.L.U) €,=0.990000x10" &,=0.100000x10
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