بررسی عملکرد سیستم لجن فعال با بستر ثابت در حذف فلزات سنگین
کرم، نیکل، سرب از پسابهای صنعتی

چکیده

یکی از مهم‌ترین آلاینده‌های موجود در پساب‌سیاری از صنایع فلزات سنگین است که در صورت راهیابی به میکروکاربینسها و سیستم‌ها و اکتشاف‌های نئوسیستم‌ها، تأثیر گاشته و باعث کاهش بازده سیستم می‌شوند. به‌منظور مقایسه کارایی و بررسی عملکرد سیستم پیلولوژیکی لجن فعال با بستر ثابت در تصفیه پساب‌های حاوی ترکیبات فلزات سنگین کرم، سرب و نیکل از یک راکورت از جنس پلاستیک کلاسی شماره سه قلمی به‌صورت راکورتهای هوازی به‌وسیله راکورتهای کریستالی با جریان رو به بالا و یک تنظیم نتلی به‌صورت کل مجموعهٔ تنظیم غلب راکورتهای 78/0 لیریک که توسط لجنهای فعال خروجی تصفیه‌خانه شرکت غرب راکورتهای گست استفاده نشده، قابل‌اولین مطالعه سازگاری سیستم، فاز دوم تأثیر آزمایش فاز کرم به‌صورت تنها بر عملکرد و این سیستم و فاز سوم تأثیر تجمیع قاچع‌های قانونی سیستم تولید، بود. تغییر قاچع‌نام‌داده‌های که در فاز دوم حذف COD در این سیستم و در زمان سازگاری میکروکاربینسها حدود 95 درصد بوده و در دوره خروج‌تن قانونی سیستم‌ها در این سیستم پایین‌است. در صورت حذف فلزات سنگین کرم به‌صورت تنها در راکورت لجن فعال با بستر ثابت و در غلت 4 میلی‌گرم در لیتر 65 است که با غلت ۰/۰۴٪، غلت ۹/۸٪ و غلت ۹/۷٪ افزایش می‌یابد. در صورت حذف فلزات سنگین (کرم، سرب و نیکل) به‌صورت مخلوط در راکورت در غلت 1 میلی‌گرم در لیتر ۶۵/۸٪، ۶۲٪ و ۶۰٪ افزایش می‌یابد. در راکورت لجن فعال با بستر ثابت، میزان کرم، سرب و نیکل بجا گذاشته شده در لجن نسبت به مقدار آن در داخل لجن چپ حاصل از شستشوی لجن سبیل پیشتر است که نشان دهنده جدید این فلزات توسط میکروکاربینس‌هاست.

کلیه واژه‌ها

تصفیه پیلولوژیکی هوازی، فلزات سنگین، میکروکاربینس، تصفیه پساب‌های صنعتی

سرآغاز

فلزات سنگین در پساب‌سیاری از صنایع مانند صنایع پتروشیمی، پالایش‌نام‌داده‌های کامپیوتر، دارویی، رنگسنجی، فرآورده‌های پلاستیکی و غیره وجود دارند، باعث کاهش همکاری بازده سیستم‌ها و اکتشاف‌های صنعتی شده، نیازمند راکورتهای وابسته از میکروکاربینسها و سیستم‌ها باعث تصفیه فلزات سنگین در پساب‌سیاری شده، راکورتهای کریستالی با جریان رو به بالا، و باعث کاهش بازده تصفیه می‌شوند (Lenntech, 2004; UNEP/GPA, 2004).

E-mail: ahhassani@gmail.com

نویسنده مسئول، تلفن: ۰۹۱۲۰۲۱۲۵۵۸۷۷۰۷-۱۲۹-۲۰۱۲
یکی از روش‌هایی که برای جذب این ترکیبات از فاصله‌ها و در تابع محیط زیست مورد استفاده قرار می‌گیرد، روش تحقیقات پیوسته در
است. این روش به دلیل توانایی این گروه از میکروگانیسم‌ها در
جزییات فاصله سنجی و ترکیبات آن، در سیستم از موارد مورد نیست به‌صورت
روش‌های تفصیلی و حذف این ترکیبات برتر است.
(Iddou and Ouab, 2008)

یکی از روش‌هایی مناسب برای تحقیقات پیوسته می‌باشد: در
این ترکیبات استفاده از راکтор لجن فعال با بستر تاب از
دسترسی به فاصله‌ها و سنجش سنجی در
فاصله راکتورهای پیوسته می‌باشد. (FAS)

برای راحتی این‌ها می‌تواند چنین سنجش بوده است:
در داخل فضای محیطی آن سطح گازهای با دمای بلند پیوسته
قرار گیرد که در حقیقت قسمت اصلی اکسیژن از سیستم لجن
فعال است و پیوسته که بر روی بستر تکمیل می‌شود عمل تحقیقات فاصله
می‌باشد. (Takani, 1994; Mesdanghinia)

یکی از روش‌هایی که برای جذب این ترکیبات از فاصله‌ها و در
تبحیر محیط زیست مورد استفاده قرار می‌گیرد، روش تحقیقات پیوسته در
است. این روش به دلیل توانایی این گروه از میکروگانیسم‌ها در
جزییات فاصله سنجی و ترکیبات آن، در سیستم از موارد مورد نیست به‌صورت
روش‌های تفصیلی و حذف این ترکیبات برتر است.
(Iddou and Ouab, 2008)

یکی از روش‌هایی مناسب برای تحقیقات پیوسته می‌باشد: در
این ترکیبات استفاده از راکتور لجن فعال با بستر تاب از
دسترسی به فاصله‌ها و سنجش سنجی در
فاصله راکتورهای پیوسته می‌باشد. (FAS)

برای راحتی این‌ها می‌تواند چنین سنجش بوده است:
در داخل فضای محیطی آن سطح گازهای با دمای بلند پیوسته
قرار گیرد که در حقیقت قسمت اصلی اکسیژن از سیستم لجن
فعال است و پیوسته که بر روی بستر تکمیل می‌شود عمل تحقیقات فاصله
می‌باشد. (Takani, 1994; Mesdanghinia)
جدول شماره (1): ترکیب بسیار ممنوعه مرده استفاده در هر یک از فازهای این تحقیق

<table>
<thead>
<tr>
<th>ترکیبات موجود در فاصلاب (ملی گرم در لیتر)</th>
<th>شماره فاز</th>
<th>ملاتس</th>
<th>اوره</th>
<th>کروم</th>
<th>نیکل</th>
<th>سرب</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>فاز اول</td>
<td>1200</td>
<td>28</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>فاز دوم</td>
<td>1400</td>
<td>28</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>فاز سوم</td>
<td>1200</td>
<td>28</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

فاز دوم- بررسی عملکرد راکتور لجن فعال با سیرت تایید در تنظیم فاضلاب‌های حاوی غلظت‌های متفاوت عناصر فلز سنگین کرم، از تیپ‌های تشخیصی تا شهرونه‌های آب‌های سطحی به مدت 60 روز.

فاز سوم- بررسی عملکرد راکتور لجن فعال با سیرت تایید در تنظیم فاضلاب‌های حاوی غلظت‌های متفاوت عناصر فلز سنگین کرم، نیکل، سرب از تیپ‌های تشخیصی تا شهرونه‌های آب‌های سطحی به مدت 60 روز.

برای عملکرد راکتور لجن فعال با سیرت تایید در تنظیم فاضلاب‌های حاوی غلظت‌های متفاوت عناصر فلز سنگین کرم، نیکل، سرب، آزمون‌های غلظت‌های توده پیژوهی و کل جامدات مطلق و pH و آزمون اندازه‌گیری عناصر سنگین نیکل، کروم و سرب در فاز 1 و 2 انجام شد. کلیه آزمایش‌ها بر اساس دستور العمل استاندارد روش (Greenberg et al., 1998) انجام شد.

نتایج

نتایج این پژوهش در 5 قسمت ارائه می‌شود که عبارتند از:

1) بررسی دوره خوردن فیلتر و نحوه اندازه‌گیری میکروگانیسم‌ها با شرایط محیطی در راکتور لجن فعال با روش جسیمه
2) کاهش 24/4% غلظت کروم از 49/1 در زمان 10 روز و تا زمان 10 روز 100 در 200 میلی‌گرم در لیتر، که برای این مدت غلظت MLSS به میزان 37/6% می‌رسد (شکل شماره 2). در این مدت غلظت
3) موجود در اکثریت از 32 میلی‌گرم در لیتر و در زمان 10 روز 100 میلی‌گرم در لیتر هنگام کاهش می‌یابد و پس از آن تا میزان 90 میلی‌گرم در لیتر تا زمان 20 روز. نتایج اکتشافات عمیق‌تری یافتند از:

فاز اول- بررسی نحوه سازگاری راکتور لجن فعال با سیرت تایید با فاضلاب‌های مورد بررسی و سرعت اندازه‌گیری میکروگانیسم‌ها با شرایط محیطی از خردادماه تا تیرماه آب به مدت 50 روز:

شکل شماره (2): جزئیات بالاپلاست مرده استفاده

جدول شماره (2): مشخصات بالاپلاست

<table>
<thead>
<tr>
<th>اعداد</th>
<th>شرح</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>طول کل</td>
</tr>
<tr>
<td>2</td>
<td>عرض کل</td>
</tr>
<tr>
<td>3</td>
<td>ارتفاع کل</td>
</tr>
<tr>
<td>4</td>
<td>طول هر سانتیمتر</td>
</tr>
<tr>
<td>5</td>
<td>عمق سانتیمتر</td>
</tr>
<tr>
<td>6</td>
<td>قطر لوله ورودی</td>
</tr>
<tr>
<td>7</td>
<td>قطر لوله خروجی</td>
</tr>
<tr>
<td>8</td>
<td>قطر لوله دفع این</td>
</tr>
</tbody>
</table>
| 9 | شبکه کف دفع شدن کلام این

(1) بررسی دوره خوردن فیلتر و نحوه اندازه‌گیری میکروگانیسم‌ها با شرایط محیطی در راکتور لجن فعال با روش جسیمه

(2) میزان 24/4% غلظت کروم از 49/1 در زمان 10 روز و تا زمان 10 روز 100 در 200 میلی‌گرم در لیتر، که برای این مدت غلظت MLSS به میزان 37/6% می‌رسد (شکل شماره 2). در این مدت غلظت

(3) موجود در اکثریت از 32 میلی‌گرم در لیتر و در زمان 10 روز 100 میلی‌گرم در لیتر هنگام کاهش می‌یابد و پس از آن تا میزان 90 میلی‌گرم در لیتر تا زمان 20 روز. نتایج اکتشافات عمیق‌تری یافتند از:

(4) فاز اول- بررسی نحوه سازگاری راکتور لجن فعال با سیرت تایید با فاضلاب‌های مورد بررسی و سرعت اندازه‌گیری میکروگانیسم‌ها با شرایط محیطی از خردادماه تا تیرماه آب به مدت 50 روز:
نکته قابل توجه در طول دوران سازگاری است که در حدود COD در روزهای ابتدا دوره کاهش داشته و پس از آن مجدداً افزایش می‌یابد که می‌تواند بودن زمان عمل خر گرفتن میکروگانیسم‌ها با پس پرو مواد است.

(2) بررسی عملکرد راکتور لجن فعال با رشد چسبیده در زمان افزودن فاز سنجین کروم به صورت تناوبی COD در غلظت 1 میلی‌گرم در لیتر فازات سنجگن کروم در حدود 78% و غلظت 50 میلی‌گرم در MLSS موجود در داخل راکتور به 140 میلی‌گرم در لیتر PH و TSS و 340 میلی‌گرم COD در غلظت 56% و غلظت 100 میلی‌گرم در لیتر در فاز سنجگن کروم تا 120 میلی‌گرم در 78/240 میلی‌گرم MLSS موجود در داخل راکتور به 340 میلی‌گرم PH و TSS و 78/240 میلی‌گرم PH و TSS و تغییرات خوبی از دارد (شکل شماره ۴).

(3) مقدار ۱۲۰ میلی‌گرم قم بر لیتر در روز اول تا مقدار ۲۴۰ میلی‌گرم بر لیتر در روز هفتم افزایش داشته، به ترتیب تا رسیدن به حالت پایداری (وزن سیودوم) سیری تغییر را حتی کردند به میزان ۱۰۰ میلی‌گرم بر لیتر می‌رسد و آن روز به بعد یک حالت اختیاری پایدار از خود تشکل یافته و در یک نگاه دوره سازگاری TSS به مقدار ۷۸ میلی‌گرم بر لیتر می‌رسد که جذابیت ماده جامد معلق در خروجی و تغییرات خوبی دارد (شکل شماره ۴).

(4) مقدار ۲۴۰ راکتور به ۳۴۰/۷۸ در روز اول تا ۷۸/۲۴۰ در روز هفتم PH کاهش می‌یابد و پس از آن تا میزان ۷۸/۲۴۰ تا روز پایان عملیات سازگاری افزایش می‌یابد (شکل شماره ۴).

(5) میلی‌گرم در لیتر تا روز پایان عملیات سازگاری افزایش می‌یابد (شکل شماره ۴).
 poderá employed alcurroan falkal ba yîst ser fakal bi da falkat bi da falkat bi da...

شکل شماره (2) : نتایج آزمایش آیلیک تیک و سرب

شکل شماره (3) : نتایج آزمایش آیلیک تیک و سرب
حذف فلزات سنگین (کروم، سرب و نیکل) به صورت مخلوط در راکتور

لجن فعال 1 بسته تابت در غلظت 1 میلی گرم در لیتر به ترتیب 78٪، 80٪ و 60٪ است که با افزایش غلظت فلزات سنگین کروم، سرب و نیکل تا 100 میلی گرم در لیتر، درصد حذف به ترتیب 66٪، 60٪ و 97٪ می‌رسد (اشکال شماره 9 و 10 و 11)

شکل شماره (11): نتایج عملکرد راکتور لجن فعال بسته تابت در حذف فلزات سنگین نیکل

6) تعیین مقدار فلزات سنگین جذب شده بروی لجن و موجود در لجن آب مشاهده شد در غلظت‌های 1، 5، 10، 50، 100 میلی گرم در لیتر به ترتیب 8/8، 13/27، 5/2، 7/5 و 1/13 میلی گرم کروم بر گرم لجن خشک و به ترتیب 9/1، 7/12، 5/11، 1/13 و 9/1 میلی گرم سرب بر گرم لجن و به ترتیب 9/1، 7/12، 5/11، 1/13 و 9/1 میلی گرم نیکل بر گرم لجن خشک و به ترتیب 9/1، 7/12، 5/11 و 1/13 میلی گرم کروم، سرب و نیکل بر گرم در آب لجن است که میانگین تجمع این فلزات در داخل پافت میکوراگانیزمی باشد (اشکال شماره 12 و 13 و 14).

شکل شماره (12): میزان جذب نیکل بر روی لجن و موجود در لجن آب

شکل شماره (8): نتایج عملکرد راکتور لجن فعال بسته تابت در حذف فلزات سنگین کروم تناها

شکل شماره (9): نتایج عملکرد راکتور لجن فعال بسته تابت در حذف فلزات سنگین سرب مخلوط

شکل شماره (10): نتایج عملکرد راکتور لجن فعال بسته تابت در حذف فلزات سنگین سرب مخلوط
الف) راکتور لجن فعال یا بستر تابث در پسابهای مخلوط پوده در
صاروتی که مستوطن ترکب درصد پساب و ورودی تحت کنترل باشد هم از
ظرفیت COD یا از نظر مواد ملکر خروجی، می‌تواند موفق باشد.
(ب) راکتور لجن فعال یا بستر تابث، به کمک ذرات بیضی از کیفیت
تقریباً بیکاتی بی‌روشدار بوده و وضعیت تعادلی لجن در این سیستم
بسیار زیاد است.

(ص) سیستم لجن فعال یا بستر تابث سیال انعطاف‌پذیر بوده، برای
خروج با تغییرات شرایط ممکن می‌باشد.
(د) دوره سازگاری در این سیستم کوتاه است و سیستم با توجه به
توسعه مورد استفاده، خیلی سریع آماده به‌پردازی می‌شود و می‌توان
از آن، پساب تصفیه شده‌ای که هر یک به‌کمک دیگر گرد کرده (م)
فرآیند تا بسیار بیشتری روز برای سیستم نسبت به سایر
فلات می‌گذارد که نشانگر اثر سریع را بسیار این فلز در مقابل
سایر فلات دارد.

(و) راکتور لجن فعال یا بستر تابث در حد فلز سرب از پسابهای
آلوه به فلات سنگین تا غلظت ورودی 100 میلی‌گرم در لیتر درای
باید به شرح این 97٪ در حد فلز نیکل که غلظت ورودی 100 میلی‌گرم
در لیتر درای باید به شرح این 72٪ و همچنین در حد فلز کروم که
غلظت ورودی 100 میلی‌گرم در لیتر درای باید به شرح این 58٪ است.

(ز) راکتور لجن فعال یا بستر تابث در تحلیل ورودی پسابهای آلوه
به فلات سنگین کروم، سرب و نیکل از نظر فلز غلظت 10 میلی‌گرم در لیتر کاملاً موفق است، و در غلظت 10 میلی‌گرم در لیتر
دارای باید حدف غلظت بیش از 90٪ بوده و غلظت غلظت کروم
و کروم در حدود 66٪ تحت غلظت از این راکتورها مشاهده شده است.

(ر) معیار برای مدل‌سازی راکتور است، که معیاری که به عنوان
فلات سنگین کروم، سرب و نیکل گزارش نشده نیز
عمل کرده درصدی از این ترکیبات را به‌صورت سطحی جذب می‌کند.

1-Fixed Activated Sludge (FAS)
2-Sequencing Batch Reactor (SBR)
3-Rotary Biological Contactor (RBC)
منابع مورد استفاده

جایی پخش، ا. ۱۳۸۳. بررسی عملکرد سیستم‌های هوازی با استفاده در تصفیه فاضلاب‌ها با پار آنتی‌ژن بالا، پایان‌نامه کارشناسی ارشد مهندسی محیط زیست - آب و فاضلاب، دانشگاه آزاد واحد علوم و تحقیقات تهران، مهندیسان فضایی، م. ۱۳۸۰. نش میکروگانیسم‌ها در حذف فازات از فاضلاب، مجله آب میکروژیست، شماره ۲۵ صفحات ۲۴۳-۲۹۶.

تجانی، ا. ۱۳۸۳. بررسی عملکرد راکتورهای نیوترون با عملکرد متغیر (SBR) در تصفیه پساب‌های حاوی ترکیبات فازات سنگین (کروم، سرب و نیکل) با استفاده ازدور راکتور SBR. پایان‌نامه کارشناسی ارشد مهندسی محیط زیست - آب و فاضلاب، دانشگاه آزاد واحد علوم و تحقیقات تهران.

Takani, k. 1994. Wastewater Treatment with Microbial Film, 1st edition, Technomic, USA.