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Abstract

The simultaneous optimization of multiple responses is an important problem in the design
of industrial processes in order to achieve improved quality. In this paper, we present a new
metaheuristic approach including Simulated Annealing and Particle Swarm Optimization to
optimize all responses simultaneously. For the purpose of illustration and comparison, the
proposed approach is applied to two problems taken from the literature. The results of our study
show that the proposed approach outperforms the other approaches and can find better solutions.
Finally, in both cases, we present the results of a sensitivity analysis incorporating experimental
design.
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I ntroduction

Response Surface Methodology (RSM)
has extensive applications in industrial
settings. It is a collection of techniques for
finding the relationship between a response
(y) and input variables (x;,x,,..,x,). The
purpose of the experimenter often is to find
the optimal setting of the input variables to
maximize (or minimize) the response. In
RSM, the input variables are transformed
into coded dimensionless variables.

A standard experimental designin RSM is
the Central Composite Design (CCD), used
to find the relationship between response and
input variables. The various techniques used
in RSM are described by Box and Draper
(1987) [1], Khuri and Cornell (1996) [2] and
Myers and Montgomery (2002) [3].

In some applications there is more than
one process or product response. The
selection of optimal settings of the input
variables with simultaneous consideration of
multiple responses is called a Multi
Response Surface (MRS) problem. There are
typically three stages in the solution of such
problems. experimental design and data
collection, model building and optimization.

After the 1st and 2nd stages we write the
model asfollows:

y; =f;(x)+&;, j=12..,m, (1)

where y, is j™ of m responses, f,(x) is a

function relating the | response to the input
variablesand ., israndom error.

This paper presents an approach for
simultaneous optimization of al the
responses in MRS problems by the use of the
two metaheuristics:. Simulated Annealing
and Particle Swarm Optimization. The paper
is organized as follows. The next section
reviews current approaches to MRS
problems. The third section contains our
approach and the new algorithm. In the
succeeding section we present two examples
solved using our approach and compare our
solutions with those obtained from other
approaches. Conclusions are in the last
section.

Main approachesto MRS problems
Given a model of each response, a basic
and simple approach to MRS problems is the
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use of response contour plots, determining
the optimal solution by visual inspection.
However, unless both the numbers of
responses and input variables are small, this
method is inefficient and should not be used.

Some approaches to MRS problems

aggregate all responses in a single objective
form which is then optimized. Examples are
the priority based approach [4], desirability
functions [5] and the loss function [6].
In the priority based approach, the decision
maker selects the most important of the
responses as an objective function and uses
the desired values of the other responses as
congtraints; there is no simultaneous
optimization of all responses.

In the desirability function approach, all
responses are transformed to a scale-free
value between 0 and 1 using the desirability
function d,for the j" response. The

computed desirability for each response is
combined to construct an overall desirability,
which is then optimized.

Derringer (1994) proposed a weighted
geometric mean for the overall desirability
function [7]. Kim and Lin (1998, 2000 and
2002) suggested maximizing the lowestd;,

as overall desirability value of the responses
[8, 9, 10]. The loss function approach
attempts to minimize the costs associated
with the distances of the responses from their
targets namely:

L(y(x))= (y(x)=T) c(y(x)-T), @)

Here y(x) isthe vector of responses, x is

the vector of input variables, T is the target
vector of the responses and C is the cost
matrix containing the relative importance of
each response. See Vining (1998) and Ko
and Kim (2005) [11, 12].

One of the man objectives in MRS
problems is robustness in product or process,
reaching the specified mean with minimum
variance. Chiao and Hamada (2001) propose
a quality measure which is the probability
thata m component responses are
simultaneously meeting their respective
gpecification (Ss) or the proportion of
conformance [13]. They proposed it to

incorporate robustness into these problems.
The objective function can be written

max p(Y € S), (3
where Y isthe vector of responsesand S is
the specification region depending on values
I;,u; which are the lower and upper limits of

the i response
5 = jﬂ:l('w“j)- (4)

For the optimization stage, Del Castillo
and Montgomery (1993) solved the problem
by using the generalized reduced gradient
(GRG) agorithm, which is available in
software packages such as Microsoft Excel
[14]. Del Castillo et a. (1996) used a
gradient-based optimization approach by
modifying the desirability function to be
everywhere differentiable [15]. In a latter
study Tong and Xu (2002) used a god
programming approach to find the optimal
solution [16].

When the number of responses (or
objectives) and constraints increase, the
probability of finding a local instead of
global optimum is increased and, in these
cases, metaheuristic approaches can be
helpful for finding the global optimum [17].
Ortiz et a. (2004) developed a multiple-
response solution technique using a GA in
conjunction  with an  unconstrained
desirability function [18]. Some other recent
works on multi-response  optimization
problems are as follows;

Tong et al. (1997) developed a multi-
response signal to-noise (MRSN) ratio,
which integrates the quality loss for all
responses to solve the multi-response
problem [19]. Tong et a. (2005) aso
consider the correlation of responses and use
PCA and TOPSIS methods to find the best
variable setting [20]. Kun-Lin Hsieh (2006)
used neural networks to estimate the
relationship between control variables and
responses [21]. Tong, et a. (2007) use
VIKOR methods in converting Taguchi
criteria to single responses and then derive a
regresson model and the related optimal
setting [22]. Kazemzadeh et al., (2008)
proposed a genera framework for multi-
response optimization problems based on
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goal programming and compared some
existing methods [23]. They attempted to
aggregate all characteristics into one
approach, including the priorities of certain
types of decision makers. Bashiri and Hejazi
(2009) used Multiple Attribute Decision
Making (MADM) methods such as VIKOR,
PROMETHEE IlI, ELECTRE Il and
TOPSIS in converting multiple responses to
a single response in order to analyze data
from robust experimental designs[24].

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a
significant member of swarm intelligence
techniques. It was proposed by Eberhart and
Kennedy (1995) as an optimization method
[25]. PSO is a population based search
algorithm founded on the simulation of the
social behavior of bees, birds or a school of
fishes. Each individual within the swarm is
represented by a vector in multidimensional
search space. This vector has one assigned
vector that determines the next movement of
the particle and is called the velocity vector.
The PSO agorithm determines how to
update the velocity of a particle Each
particle updates its velocity based on the
current velocity, the best position (p_best) it
has explored so far and on the global best
position (g_best) explored by the swarm [26,
27, 28]. Movement of each particle is shown
in Figure 1, and it is based on equations (5),
(6). Equation (5) shows that the velocity
vector is updated by the global best position,
personal best position and current position of
each particle. Equation (6) shows that each
particle moves with its own velocity.

New Positi

Velocitv Vector

Current

Global Best
Position

Personal B
Position

Figure 1: Individual particle movement

v; (t +D) =wy, (t) +b,.rand p_best-x; (t))+
b,.randg _best-x; (t)) ()
Xi (t+1) = x; (1) + v (1) (6)

Here i indexesthe particle, t isthe index
of iteration,v; is the vector of velocity, x; Is
the position, w is the weight of the current
velocity, b, is the weight of the difference

between personal best and current position,
b, is the weight of the difference between

global best and current position and rand is
used for randomization.

This approach is widely used in recent
research such as that of Wang and Liu
(2010) who applied a chaotic PSO to
assembly sequence planning [29]. Yang and
Lin (2010) took advantage of PSO to solve a
serial multi-echelon inventory model [30].
Lin et al. (2010) base an efficient job-shop
scheduling agorithm on particle swarm
optimization [31]. Our proposed
metaheuristic approach for MRS problems,
based on PSO, is described in the following
section.

M.R.SA & M.R.P.S.O approach

After fitting m response functions to the
experimental data, the estimated responses
are,

Yi= (X Xo0 Xg) 0 J =1, m . (7)

It is necessary to aggregate all responses
into a single function. In the proposed
method we use a desirability function-based
approach for this aggregation. To find both
an optimal setting of the input variables and
a robust design, we need a second criterion
in our optimization process. By assuming
that the response vector v, has a

multivariate normal distribution with mean

and variancer,x respectively, the joint
probability density functionof Y, is:
FOir,2)=@z) "2 2w
S ER ) ®)

Here r=(u, y.... 1,) 1S the mean vector of
responses and X istheir variance-covariance
matrix. Now we can compute the criterion
p(ves) for each setting of the input
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variables). The larger the value of this
criterion, the more robust is the design.

After computing the criterion for each
setting of the input variables, we use the
criterion value as a second responsey . The

fitted model for thisresponseis
9pr = fpr (X1, X2 ey Xn) - (9)

Finally the overall function to aggregate all
responses will be:

min ND = {Tzllm [(1—0';)]')}

Xxe Q,

1/p

(10)

In (10) »; isthe weight of the | response to

be defined by the decision maker (DM) and
d;is the desirability value which can be

computed from the functions below for STB
(smaller the better), NTB (nominally the
best) and LTB (larger the better) types of
responses.

0 yi()zu;
d;" = uju_ijl(xq Iy <9500 <u; (11)
) J1 J ¥ <1
0 )A/j(x)ﬁlj
4, - {y”l'} L <9,005u,  (12)
J1 J )A/J.(x)zuj
0 5,00<1, or §,00>u,
d\™= 1_T1ijilj(’° 1, <9,(0<T, (13)
1 50T T <0<y
4T

Here T, is the target value of the j"

response which is of NTB type, to be defined
by the producer according to production
requirements. Equation (10) can be written
as.

min ND _{%y] la-d, P +7 a7, )]p}l/p,

. XeQ) (14)

In (14) ¥, is the response that is the

probability of conforming to the
specification region defined in (9). It is of

LTB type response (§,, =d, ), with y, the

weight of this response.

At this stage, we need to optimize (14)
and find the optima value. Our proposed
approach is illustrated in Figure 2. We used

MATLAB for the calculations.
Some characteristics of the proposed
approach are:

1) It is based on the desirability function;

2) It pays attention to product or process
robustness;

3) MRSA (Multiple Response Simulated
Annealing) and MRPSO (Multiple
Response Particle Swarm Optimization) do
not guarantee that we find the optimal setting
of the input variables. However, but the
probability of getting trapped at a local
optimum is very small;

4) The proposed approach has no restriction
on the number of input or response variables.
Further, additional quality criteria can be
added at the model building stage.

In the next section we present the results of
using MRSA & MRPSO in two examples
from the literature and compare our results
with other methods used for the same
examples.

Comparison of Proposed Metaheuristic
approach with other approaches
1. Example of GM A welding process

This example concerns Gas Metal Arc
Welding (GMAW). Correia et al. (2004)
study optimization of a GMA welding
process [32]. They used RSM to find the
optimal setting of the process combined with
a Genetic Algorithm (GA) for numerical
optimization. They make comparisons with
two other methods.
The GMA welding process establishes an
electric arc between a continuous metal filler
electrode and the weld pool. The process
variables are reference voltage (T), wire feed
speed (F) and welding speed (S), which we
caled x;,Xx, andx, in our genera

formulation. The response variables (y) are
deposition efficiency (dep), penetration
(Pexp), Width (Weyp) and reinforcement (Rexp).
Target values at the optimum for these
responses arein Table 3.
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Figure 2: Overview of MRSA & MRPSO proposed algorithm in multiple response optimization

Correia et a. 2004 used a CCD (Centra
Composite Design), the values of the four
responses from which are in Table 2 [32].
The function they used for aggregating the
responses s,
P pep@F (O~ deo F

P, D,
We ~ W ) (R~ rep ()

2
+er :
Wt Rt

where Of(ia
value for thei

Of (i)=cp

+ CW

Is the aggregated function
experiment in their RSM and

GA method, cp, cd, cw and cr are weights of
the responses (7, 7,, 73 and y, in our
MRSA method) and P;, Dy, W;, R; are target
values for penetration, deposition efficiency,
width and reinforcement respectively
(T;,j=1..4 in our proposed method).

AlSO Py (i) s degp (1) 1 W (i) 8N 1, (i) are the
predicted values for each response (§;(x) in

our method). The ranges of settings for input
variables are given in Table 1. The
experimental settings, as well as the values
of each response, arein Table 2.
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Table 1: Range of setting for input variables
in welding process example

Parameter Range
Reference Voltage , T (V) 36.0-39.1
Wire feed speed, F (m/min) 3.9-9.7
Welding speed, S (cm/min) 50-70

Table 2: Experimentsand resultsin welding
process example

Factor Response

T F S Pe De We Re

368 | 54 55.0 35 81.8 51 12

384 | 54 55.0 3.8 79.6 4.7 13
368 | 83 55.0 51 91.3 9.1 18
384 | 83 55.0 53 90.4 9.1 16
368 | 54 65.0 3.0 79.4 4.8 1.0
384 | 54 65.0 31 79.6 4.6 15
368 | 83 65.0 4.5 70.9 7.0 13
384 | 83 65.0 4.5 69.6 6.8 11
36.0 [ 6.9 60.0 35 84.2 6.7 20
391 69 60.0 35 88.3 6.2 18
377 | 39 60.0 31 79.7 3.8 1.0
377 | 97 60.0 55 90.8 7.8 20
377 | 69 51.6 43 88.0 6.1 1.0
377 | 69 68.4 3.8 69.0 4.1 0.8
37.7 | 69 60.0 4.0 74.3 55 13
377 | 69 60.0 3.9 78.0 5.6 13
377 | 69 60.0 4.0 721 6.2 12
37.7 | 69 60.0 4.0 73.3 6.3 12
37.7 | 69 60.0 3.8 735 6.2 13
377 | 69 60.0 34 76.3 59 15

The fitted response functions with coded
variables are:

¥pe =3.81+1.35F —0.49S — 0.26T % + 0.57F  + 0.435°

Vge = 74.32+ 2.79F —10.655 +11.047T 2 +10.10F 2 —19.4FS

Jwe = 5.93+ 2.59F —1.15S +0.77T 2 ~1.99FS

1o =1.28+ 0.37F —0.1965 + 0.59T 2 + 0.2F 2 — 0.585 2
—0.45TF - 0.49FS

In this study the preferences for all
responses are not equal but the priorities are:

05 03, 01 and 0.1 for penetration,
deposition, width and reinforcement
respectively. The target vaues and

maximum and minimum values (1;,u;) for

each response are reported in Table 3.

We solved the welding process problem
by MRSA («=0.99, T=10, T0=0.001 and
p=1) and MRPSO (number of particles=40,

W=45, B1=1.5, B2=2.5). The methods and
results are shown in Table 4, which aso
includes a comparison with the GA and
RSM methods.

If we take weights of 0.5, 0.3, 0.1 and 0.1 for
the response preferences the ND (non
desirability) values for RSM, GA, MRPSO
and MRSA are 0.65, 0.71, 0.12 and 0.32
respectively; the MRSA and MRPSO
methods outperform GA and RSM in the
GMAW problem. Note that there is no
attention to Robustness in the RSM and GA
methods so that in calculating the MRSA
and MRPSO for this comparison it has been
assumed thaty,, =0.

Table 3: Target values, limitsand types of
responsesin the welding process example

Penetration Deposition | Width |Reinforcement
Targetvalug 54 100% | 85 15
Maximum
m 55 100 0.1 2
Minimum 3 65 41 08
Type NTB LTB NTB NTB

As described above, interest in the MRSA
and MRPSO methods, is in minimizing the
overall non-desirability by using of equation
(10). The final results for the controllable
factors (T, F and S) in MRSA are -0.2884,
0.4289 and -0.9098 and for MRPSO -0.3194,
0.6002, and -0.0648 respectively. We can see
that MRSA has the better result when
compared to the MRPSO and the other
approaches in this example.

For the proposed MRSA and MRPSO
approaches, a senditivity analysis was made
using a factorial design. Figure 3 illustrates
the results of the factorial design analysis of
the MRSA approach as main effects plots. It
shows that the best settings for the
parameters are Alpha=0.99, T=10 and T0=0.

The main effects plots from the same
analysis for the MRPSO are in Figure 4. The
results show that the best parameter settings
for this agorithm are: number of
particles=40, W=4.5, B1=1.5, B2=2.5.
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Table 4: Computed optimal values for each response with four methodsin welding process example

RSM GA MRSA MRPSO
response Target Final value | Difference | Final value | Difference| Final value |Difference(| Final vaue | Difference(%o)
(%) (%) %)
Penetration 5.3 5.5 3.8 55 3.8 5.27 0.56 4.83 8.86
Deposition 100 93.8 6.2 92.2 7.8 95.56 4.44 82.21 17.79
Width 8.5 8.3 2.3 6.5 23.5 8.93 7.59 7.71 9.30
Reinforcemen | 15 20 83 22 467 147 2 175 16.66
Solution 0.250514
Time(s) - - - 0.175130
ND value 0 0.6574 0.7094 0.1193 0.3208
Main Effects Plot (data means) for ND
Alpha T
0.304
0.259
./\ -
0.20 \ I
0.154

Mean of ND

0.80

0.30

0.25+

T
0.001

T
0.100

Figure3: Main Effects plot of general Factorial Design of ND response accor ding to the MRSA
parameter settingsfor Example 1
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Figure4: Main Effects plot of general Factorial Design of ND response accor ding to the MRPSO
parameter settingsfor Example 1

Table5: Experimental resultswith 5r

licationsfor wheel cover component example

n Xl X2 X3 X4 )% X6 X7 replicate 1 replicate 2 replicate 3 replicate 4 replicate 5

Yo [ Yo | Yo [ Yo | Yo [ Yo | Yi | Yo| Y1 | Yo
1/-1|-12]-1|-1]-1|-1]-1]7119 |[059 |7134 059 |7123 047 |7124 |0.71 |7119 |0.63
2-1]-1|-1]1]1]1 725 0.7 7201 091 (7118 |113 7239 |0.79 [720.9 0.78
3]1-1 -1]-1]1 1)1 (7126 056 (7117 044 [711.3 046 |[7121 |0.53 |711.7 |0.46
4 1 -1 1)1]-1]-1(7337 |15 7241 |155 |732 138 ([732.7 145 [7333 |145
511]-1 1] 1| -1]1 (7254 125 (7216 136 [7226 (151 |7231 (122 7211 |1.25
6 | 1]-1 1)-1]1]-1(7281 |117 (7211 |0.97 |7229 098 [723 0.97 [719.7 [0.73
711 10111 (-11(7266 (152 |731.4 (158 |731.4 |[161 |7296 |14 7313 |1.57
8|1 111 ]-1)-1] 117143 |[057 |7144 051 |7136 044 |716.3 |0.44 |7146 |0.56
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2. Wheel Cover Component Experiment

Harper, Kosbe, and Peyton (1987) report
an experiment for finding the optimum
combination of injection molding parameters
to minimize the imbalance of a plastic wheel
cover component [33]. The purpose of the
experiment was to determine the effects of
seven injection molding parameters (denoted
asx,, %,,...,X; ) ON the quality characteristics of
the component. These are measured by the
total weight (y, in grams) and the balance
(y, in inch-ounces). Both y, and y, are
NTB-type responses with limits of (710,
715) and (0.3, 0.4) as the specification
region, respectively. The results of the
experiment are in Tableb.
The fitted response functions for y, and vy,
are:
Y1 = 720.763 +1.873x, + 5.318 x5 — 3.408 X,
Y, = 0.967 + 0.113 x; + 0.328 x5 — 0.174 X,

If we assume that Y has a norma
distribution with mean  I'=(y,x,) and

variance-covariance matrixz, we can then
find the probability of all responses being in
their specification region for each run
p(Yg €S) where Y; is the m dimensional

response vector in the R™ run and S is the
defined specification region.

The covariance matrix and mean responses
for each run were computed from the results
of Table5 and are givenin Table 6.

Table 6: computed Iz in each run for wheel
cover component example.

Run Variance-covariance Mean

0.377 -0.0018 712.38

! (— 0.0018 0.00752] ( 0.598 j
26.923 -0.83935 720.34

2 (7 083935  0.028 J ( 0.862 J
0.082 0.00525 711.68

8 (0.00525 0.0027} ( 0.49 j
15.988 —0.15945 731.16

4 [— 0.15945 0.004030] [ 1.466 ]
2803  —0.04485 722.76

° (— 0.04485  0.01437 ] [ 1318 J
11.742 0.48335 723.08

6 (0.48335 0.02438] [ 0.964j
4328 0.07955 730.06

! [0.07955 o.ooessj ( 1536 J
1.003  -0.01645 714.64

8 [— 0.01645 0.00393 ] (0.5040}

p(Yg €S) iscomputed from (15). And the
results are reported in Table?.

( ) 7}5 oj4( )—1| |71/2
p(Yr € S)= 2r) |2 x
" 710 0.3 " (15)

e -1/ 2(YR _rR ) ZR (YR _rR )dyldy >

Table 7: Computed Yor for each run of the whed
cover component example.

Run | X1 | % | X | X |[X |[X |X p(y c S)
1 -1 -1 -1 -1 -1 -1 -1 | 0.0109
2 -1 -1 -1 1 1 1 1 2.38E-51
3 -1 1 1 -1 -1 1 1 0.0415
4 -1 1 1 1 1 -1 -1 | 8.86E-142
5 1 -1 1 -1 1 -1 1 2.97E-25
6 1 -1 1 1 -1 1 -1 | 1.11E-04
7 1 1 -1 -1 1 1 -1 | 4.60E-44
8 1 1 -1 1 -1 -1 1 0.0205
Now P(r€8) s again treated as another

response variable with its value depending
on the settings of the factors. So we can fit a
response surface to our new probability
response. For the data of Table7 the fitted
response functionis:

Ypr = 0.0091 —0.0040x, + 0.0064 x, + 0.0013 X3
—0.004x, —0.0091x5 + 0.0013 x4 + 0.0064 x

In the MRSA & MRPSO approach we
have used the data to find the probability and
fitted a surface to predict the probability for
any setting of the control variables. Chiao
and Hamada (2001), on the other hand, fitted
response surfaces to the mean, standard
deviation and correlation of the responses in
order to compute the probability [13]. Also
in our problem, finding the probability
response is not our main objective; we need
to optimize the probability response
simultaneously with the other responses.

In this example we had two responses
with separate functions to which we added
another response. It is necessary to optimize
all three responses simultaneously.

We used the MRSA with 4 - 0.99 asacooling
ratio, T=10, T0=0.001 and the MRPSO
algorithm with the number of particles=40,
W=4)5, B1=0.5, B2=1.5and p=1. For both
responsesy; =1. The computed optimal

values for input and response variables are
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given in Table 8. In order to find the best
parameter settings for both algorithms we
again used a factorial design with the
parameters selected according to the results
of this analysis. The main effects plots for
the parameters of the agorithm are in
Figures 5 and 6.

Table 8: Comparison of MRSA and
Chiao& Hamada (C& H) method for wheel cover
component example

C&H MRSA MRPSO
method” method method
ND 1.8970 1.0803 1.0002
Improvement
of overall 0% 42.05% 47.27%
result (%)
X, -1 -0.8479 -0.6093
X 2* +1 0.2079 -0.7194
Xy 0 -0.3373 0.8492
X, -1 -0.0764 0.0213
Xg 1 -0.9976 -0.9392
X 0 0.8607 -0.2725
x7* +1 0.3746 0.6242
Yy 710.1640 712.5929 712.4996
Yo 0.3520 0.4788 04815
y pr* 0.0390 0.0263 0.0201
??r':e“(g)” 0.192279 0.310988

«. Chiao and Hamada, (2001)

Main Effects Plot (data means) for ND
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From Table 8 it can be seen that the
aggregated function (ND) of the MRSA and
MRPSO methods is lower than that for the
C&H method. Also, for this example, the
MRPSO method has better results than the
MRSA approach. The computational time
for both algorithms is reasonable, with that
for MRSA lower than that for MRPSO.

Conclusion

In this paper, we have proposed an
approach to improve quality and to achieve
robust quality by the use of the statistical
design of experiments with multiple
responses and metaheuristic optimization
methods that we have caled MRSA &
MRPSO. The proposed approach uses the
desirability value of all responses and also
their proportion of conformance in meeting
their specifications. The MRSA & MRPSO
approaches we have developed are flexible
in the number of input variables, number of
response variables and their respective
weights. The methods can easily be applied
to different optimal process setting problems.
The results show that the proposed
algorithms have an improved objective
function value and so outperform previous
ones.

Future research will investigate the
combination of other methods, such as the
loss function approach, with the proposed
method as well as the solution of MRS
problems by other metaheuristic algorithms.
We also hope to report in future on the use of
these methods in practical examples.
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