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Abstract 

The simultaneous optimization of multiple responses is an important problem in the design 
of industrial processes in order to achieve improved quality. In this paper, we present a new 
metaheuristic approach including Simulated Annealing and Particle Swarm Optimization to 
optimize all responses simultaneously. For the purpose of illustration and comparison, the 
proposed approach is applied to two problems taken from the literature. The results of our study 
show that the proposed approach outperforms the other approaches and can find better solutions. 
Finally, in both cases, we present the results of a sensitivity analysis incorporating experimental 
design. 
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Introduction 
Response Surface Methodology (RSM) 

has extensive applications in industrial 
settings. It is a collection of techniques for 
finding the relationship between a response 
(y) and input variables ( nxxx ,...,, 21 ). The 
purpose of the experimenter often is to find 
the optimal setting of the input variables to 
maximize (or minimize) the response. In 
RSM, the input variables are transformed 
into coded dimensionless variables. 

A standard experimental design in RSM is 
the Central Composite Design (CCD), used 
to find the relationship between response and 
input variables. The various techniques used 
in RSM are described by Box and Draper 
(1987) [1], Khuri and Cornell (1996) [2] and 
Myers and Montgomery (2002) [3]. 

In some applications there is more than 
one process or product response. The 
selection of optimal settings of the input 
variables with simultaneous consideration of 
multiple responses is called a Multi 
Response Surface (MRS) problem. There are 
typically three stages in the solution of such 
problems: experimental design and data 
collection, model building and optimization. 

After the 1st and 2nd stages we write the 
model as follows: 

 

  mjxfy jjj ,...,2,1,   , (1) 

where jy  is jth of m responses,  xf j  is a 

function relating the jth response to the input 
variables and 

j  is random error.  

This paper presents an approach for 
simultaneous optimization of all the 
responses in MRS problems by the use of the 
two metaheuristics: Simulated Annealing 
and Particle Swarm Optimization. The paper 
is organized as follows. The next section 
reviews current approaches to MRS 
problems. The third section contains our 
approach and the new algorithm. In the 
succeeding section we present two examples 
solved using our approach and compare our 
solutions with those obtained from other 
approaches. Conclusions are in the last 
section. 
 

Main approaches to MRS problems 
Given a model of each response, a basic 

and simple approach to MRS problems is the 
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 use of response contour plots, determining 
the optimal solution by visual inspection. 
However, unless both the numbers of 
responses and input variables are small, this 
method is inefficient and should not be used.  

Some approaches to MRS problems 
aggregate all responses in a single objective 
form which is then optimized. Examples are 
the priority based approach [4], desirability 
functions [5] and the loss function [6]. 
In the priority based approach, the decision 
maker selects the most important of the 
responses as an objective function and uses 
the desired values of the other responses as 
constraints; there is no simultaneous 
optimization of all responses. 

In the desirability function approach, all 
responses are transformed to a scale-free 
value between 0 and 1 using the desirability 
function jd for the jth response. The 

computed desirability for each response is 
combined to construct an overall desirability, 
which is then optimized. 
Derringer (1994) proposed a weighted 
geometric mean for the overall desirability 
function [7]. Kim and Lin (1998, 2000 and 
2002) suggested maximizing the lowest jd , 

as overall desirability value of the responses 
[8, 9, 10]. The loss function approach 
attempts to minimize the costs associated 
with the distances of the responses from their 
targets namely: 
     TxyCTxyxyL  )()()( , (2) 

 

Here )(xy  is the vector of responses, x  is 
the vector of input variables, T  is the target 
vector of the responses and C  is the cost 
matrix containing the relative importance of 
each response. See Vining (1998) and Ko 
and Kim (2005) [11, 12]. 

One of the main objectives in MRS 
problems is robustness in product or process, 
reaching the specified mean with minimum 
variance. Chiao and Hamada (2001) propose 
a quality measure which is the probability 
that m component responses are 
simultaneously meeting their respective 
specification ( S ) or the proportion of 
conformance [13]. They proposed it to 

incorporate robustness into these problems. 
The objective function can be written 

 SYp max , (3) 

where Y  is the vector of responses and S  is 
the specification region depending on values 

jj ul ,  which are the lower and upper limits of 

the ith response 

 jj

m

j
ulS ,

1
  .                                                (4) 

 For the optimization stage, Del Castillo 
and Montgomery (1993) solved the problem 
by using the generalized reduced gradient 
(GRG) algorithm, which is available in 
software packages such as Microsoft Excel 
[14]. Del Castillo et al. (1996) used a 
gradient-based optimization approach by 
modifying the desirability function to be 
everywhere differentiable [15]. In a latter 
study Tong and Xu (2002) used a goal 
programming approach to find the optimal 
solution [16]. 

When the number of responses (or 
objectives) and constraints increase, the 
probability of finding a local instead of 
global optimum is increased and, in these 
cases, metaheuristic approaches can be 
helpful for finding the global optimum [17]. 
Ortiz et al. (2004) developed a multiple-
response solution technique using a GA in 
conjunction with an unconstrained 
desirability function [18]. Some other recent 
works on multi-response optimization 
problems are as follows; 

Tong et al. (1997) developed a multi-
response signal to-noise (MRSN) ratio, 
which integrates the quality loss for all 
responses to solve the multi-response 
problem [19]. Tong et al. (2005) also 
consider the correlation of responses and use 
PCA and TOPSIS methods to find the best 
variable setting [20]. Kun-Lin Hsieh (2006) 
used neural networks to estimate the 
relationship between control variables and 
responses [21]. Tong, et al. (2007) use 
VIKOR methods in converting Taguchi 
criteria to single responses and then derive a 
regression model and the related optimal 
setting [22]. Kazemzadeh et al., (2008) 
proposed a general framework for multi-
response  optimization  problems   based   on  
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goal programming and compared some 
existing methods [23]. They attempted to 
aggregate all characteristics into one 
approach, including the priorities of certain 
types of decision makers.  Bashiri and Hejazi 
(2009) used Multiple Attribute Decision 
Making (MADM) methods such as VIKOR, 
PROMETHEE II, ELECTRE III and 
TOPSIS in converting multiple responses to 
a single response in order to analyze data 
from robust experimental designs [24].  
 

Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is a 

significant member of swarm intelligence 
techniques. It was proposed by Eberhart and 
Kennedy (1995) as an optimization method 
[25]. PSO is a population based search 
algorithm founded on the simulation of the 
social behavior of bees, birds or a school of 
fishes. Each individual within the swarm is 
represented by a vector in multidimensional 
search space. This vector has one assigned 
vector that determines the next movement of 
the particle and is called the velocity vector. 
The PSO algorithm determines how to 
update the velocity of a particle. Each 
particle updates its velocity based on the 
current velocity,  the best position (p_best) it 
has explored so far  and on the global best 
position (g_best) explored by the swarm [26, 
27, 28]. Movement of each particle is shown 
in Figure 1, and it is based on equations (5), 
(6). Equation (5) shows that the velocity 
vector is updated by the global best position, 
personal best position and current position of 
each particle. Equation (6) shows that each 
particle moves with its own velocity. 
 
 
 
 
 
 
 
 
 
 

Figure 1: Individual particle movement 
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)()()1( tvtxtx iii           (6)
 

Here i  indexes the particle, t  is the index 
of iteration, iv  is the vector of velocity, ix  is 
the position, w  is the weight of the current 
velocity, 1b  is the weight of the difference 
between personal best and current position, 

2b  is the weight of the difference between 
global best and current position and rand is 
used for randomization. 

This approach is widely used in recent 
research such as that of Wang and Liu 
(2010) who applied a chaotic PSO to 
assembly sequence planning [29]. Yang and 
Lin (2010) took advantage of PSO to solve a 
serial multi-echelon inventory model [30]. 
Lin et al. (2010) base an efficient job-shop 
scheduling algorithm on particle swarm 
optimization [31]. Our proposed 
metaheuristic approach for MRS problems, 
based on PSO, is described in the following 
section.  
 

M.R.S.A & M.R.P.S.O approach 
 After fitting m response functions to the 

experimental data, the estimated responses 
are, 

),...,,(ˆ 21 njj xxxfy  , mj ,...,1 .      (7)   
 

It is necessary to aggregate all responses 
into a single function. In the proposed 
method we use a desirability function-based 
approach for this aggregation. To find both 
an optimal setting of the input variables and 
a robust design, we need a second criterion 
in our optimization process. By assuming 
that the response vector )1( mY  has a 

multivariate normal distribution with mean 
and variance ,  respectively, the joint 
probability density function of )1( mY is: 

   
    






YY

Yf

T

m

1

2/12/

2
1exp

2,;  . (8)

 

Here  n ,...,, 21  is the mean vector of 
responses and   is their variance-covariance 
matrix. Now we can compute the criterion 
 SYp   for each setting of the input 

Current 

Personal Best 
Position

Global Best 
Position

New Position 

Velocity Vector 
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variables). The larger the value of this 
criterion, the more robust is the design. 

After computing the criterion for each 
setting of the input variables, we use the 
criterion value as a second response pry . The 

fitted model for this response is 
),...,,(ˆ 21 nprpr xxxfy  .          (9) 

 

Finally the overall function to aggregate all 
responses will be:  

  
p

m

j

p
jj dND

/1
1

1
1min









 



 . 

                                   x , 
    (10)

 

In (10) j  is the weight of the jth response to 

be defined by the decision maker (DM) and 
jd is the desirability value which can be 

computed from the functions below for STB 
(smaller the better), NTB (nominally the 
best) and LTB (larger the better) types of 
responses. 
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Here jT  is the target value of the jth 

response which is of NTB type, to be defined 
by the producer according to production 
requirements. Equation (10) can be written 
as: 

     
p

m

j

p
prpr

p
jj ydND

/1

1

ˆ11min








 


 , 

.  x  
 

(14) 

In (14) prŷ  is the response that is the 

probability of conforming to the 
specification region defined in (9). It is of 

LTB type response ( prpr dy ˆ ), with pr  the 

weight of this response. 
At this stage, we need to optimize (14) 

and find the optimal value. Our proposed 
approach is illustrated in Figure 2. We used 
MATLAB for the calculations. 
Some characteristics of the proposed 
approach are:  
1) It is based on the desirability function; 
2) It pays attention to product or process 
robustness; 
3) MRSA (Multiple Response Simulated 
Annealing) and     MRPSO (Multiple 
Response Particle Swarm Optimization) do 
not guarantee that we find the optimal setting 
of the input variables. However, but the 
probability of getting trapped at a local 
optimum is very small; 
4) The proposed approach has no restriction 
on the number of input or response variables. 
Further, additional quality criteria can be 
added at the model building stage.  
In the next section we present the results of 
using MRSA & MRPSO in two examples 
from the literature and compare our results 
with other methods used for the same 
examples. 
 

Comparison of Proposed Metaheuristic 
approach with other approaches 
 

1. Example of GMA welding process 
This example concerns Gas Metal Arc 

Welding (GMAW). Correia et al. (2004) 
study optimization of a GMA welding 
process [32]. They used RSM to find the 
optimal setting of the process combined with 
a Genetic Algorithm (GA) for numerical 
optimization. They make comparisons with 
two other methods.  
The GMA welding process establishes an 
electric arc between a continuous metal filler 
electrode and the weld pool. The process 
variables are reference voltage (T), wire feed 
speed (F) and welding speed (S), which we 
called 21 , xx  and 3x  in our general 

formulation. The response variables (y) are 
deposition efficiency (dexp), penetration 
(pexp), width (Wexp) and reinforcement (Rexp). 
Target values at the optimum for these 
responses are in Table 3. 
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Figure 2: Overview of MRSA & MRPSO proposed algorithm in multiple response optimization 
 

Correia et al. 2004 used a CCD (Central 
Composite Design), the values of the four 
responses from which are in Table 2 [32]. 
The function they used for aggregating the 
responses is; 
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where Of(i) is the aggregated function 
value for the ith experiment in their RSM and  

GA method, cp, cd, cw and cr are weights of 
the responses ( 1 , 2 , 3  and 4  in our 
MRSA method) and Pt, Dt, Wt, Rt are target 
values for penetration, deposition efficiency, 
width and reinforcement respectively 
( 4,...,1, jT j  in our proposed method). 

Also )(exp ip , )(exp id , )(exp iw  and )(exp ir  are the 

predicted values for each response ( )(ˆ xy j  in 

our method). The ranges of settings for input 
variables are given in Table 1. The 
experimental settings, as well as the values 
of each response, are in Table 2. 
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Table 1: Range of setting for input variables 

 in welding process example   
Parameter Range 
Reference Voltage ,T (V) 36.0-39.1 
Wire feed speed, F (m/min) 3.9-9.7 
Welding speed, S (cm/min) 50-70 

 
Table 2: Experiments and results in welding  

process example    
Factor Response 

T F S Pe De We Re 

36.8 5.4 55.0 3.5 81.8 5.1 1.2 

38.4 5.4 55.0 3.8 79.6 4.7 1.3 

36.8 8.3 55.0 5.1 91.3 9.1 1.8 

38.4 8.3 55.0 5.3 90.4 9.1 1.6 

36.8 5.4 65.0 3.0 79.4 4.8 1.0 

38.4 5.4 65.0 3.1 79.6 4.6 1.5 

36.8 8.3 65.0 4.5 70.9 7.0 1.3 

38.4 8.3 65.0 4.5 69.6 6.8 1.1 

36.0 6.9 60.0 3.5 84.2 6.7 2.0 

39.1 6.9 60.0 3.5 88.3 6.2 1.8 

37.7 3.9 60.0 3.1 79.7 3.8 1.0 

37.7 9.7 60.0 5.5 90.8 7.8 2.0 

37.7 6.9 51.6 4.3 88.0 6.1 1.0 

37.7 6.9 68.4 3.8 69.0 4.1 0.8 

37.7 6.9 60.0 4.0 74.3 5.5 1.3 

37.7 6.9 60.0 3.9 78.0 5.6 1.3 

37.7 6.9 60.0 4.0 72.1 6.2 1.2 

37.7 6.9 60.0 4.0 73.3 6.3 1.2 

37.7 6.9 60.0 3.8 73.5 6.2 1.3 

37.7 6.9 60.0 3.4 76.3 5.9 1.5 
 

The fitted response functions with coded 
variables are: 
 

222 43.057.026.049.035.181.3ˆ SFTSFy pe   

FSFTSFyde 4.1910.10047.1165.1079.232.74ˆ 22   
FSTSFywe 99.177.015.159.293.5ˆ 2   

FSTF

SFTSFyre

49.045.0

58.02.059.0196.037.028.1ˆ 222


  

 

     In this study the preferences for all 
responses are not equal but the priorities are: 
0.5, 0.3, 0.1 and 0.1 for penetration, 
deposition, width and reinforcement 
respectively. The target values and 
maximum and minimum values ( jj ul , ) for 

each response are reported in Table 3. 
We solved the welding process problem 

by MRSA ( =0.99, T=10, T0=0.001 and 
p=1) and MRPSO (number of particles=40, 

W=4.5, B1=1.5, B2=2.5). The methods and 
results are shown in Table 4, which also 
includes a comparison with the GA and 
RSM methods. 
If we take weights of 0.5, 0.3, 0.1 and 0.1 for 
the response preferences the ND (non 
desirability) values for RSM, GA, MRPSO 
and MRSA are 0.65, 0.71, 0.12 and 0.32 
respectively; the MRSA and MRPSO 
methods outperform GA and RSM in the 
GMAW problem.  Note that there is no 
attention to Robustness in the RSM and GA 
methods so that in calculating the MRSA 
and MRPSO for this comparison it has been 
assumed that 0pr . 

 

Table 3 : Target values, limits and types of 
responses in the welding process example    

 

 Penetration Deposition Width Reinforcement

Target value
5.3 100% 8.5 1.5 

Maximum 
5.5 100 9.1 2 

Minimum 
3 65 4.1 0.8 

Type NTB LTB NTB NTB 

 
 

As described above, interest in the MRSA 
and MRPSO methods, is in minimizing the 
overall non-desirability by using of equation 
(10). The final results for the controllable 
factors (T, F and S) in MRSA are -0.2884, 
0.4289 and -0.9098 and for MRPSO -0.3194, 
0.6002, and -0.0648 respectively. We can see 
that MRSA has the better result when 
compared to the MRPSO and the other 
approaches in this example. 

For the proposed MRSA and MRPSO 
approaches, a sensitivity analysis was made 
using a factorial design. Figure 3 illustrates 
the results of the factorial design analysis of 
the MRSA approach as main effects plots. It 
shows that the best settings for the 
parameters are Alpha=0.99, T=10 and T0=0. 

The main effects plots from the same 
analysis for the MRPSO are in Figure 4. The 
results show that the best parameter settings 
for this algorithm are: number of 
particles=40, W=4.5, B1=1.5, B2=2.5. 
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Table 4: Computed optimal values for each response with four methods in welding process example    

response Target 
RSM GA MRSA MRPSO 

Final value Difference 
(%) 

Final value Difference 
(%) 

Final value Difference(
%) 

Final value Difference(%)

Penetration 5.3 5.5 3.8 5.5 3.8 5.27 0.56 4.83 8.86 
Deposition 100 93.8 6.2 92.2 7.8 95.56 4.44 82.21 17.79 
Width 8.5 8.3 2.3 6.5 23.5 8.93 7.59 7.71 9.30 
Reinforcemen
t 

1.5 2.0 33.3 2.2 46.7 1.47 2 
1.75 16.66 

Solution 
Time(s) 

- - - 0.175130 
0.250514 

ND value 0 0.6574 0.7094 0.1193 0.3208 
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Figure 3:  Main Effects plot of general Factorial Design of ND response according to the MRSA 

parameter settings for Example 1  
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Figure 4:  Main Effects plot of general Factorial Design of ND response according to the MRPSO 
parameter settings for Example 1  

 
 

Table 5: Experimental results with 5 replications for wheel cover component example 

run 1x  2x  3x  4x 5x  6x  7x  
replicate 1 replicate 2 replicate 3 replicate 4 replicate 5 

1y  2y  1y  2y  1y  2y  1y  2y  1y  2y  

1 -1 -1 -1 -1 -1 -1 -1 711.9 0.59 713.4 0.59 712.3 0.47 712.4 0.71 711.9 0.63 

2 -1 -1 -1 1 1 1 1 725 0.7 720.1 0.91 711.8 1.13 723.9 0.79 720.9 0.78 

3 -1 1 1 -1 -1 1 1 711.6 0.56 711.7 0.44 711.3 0.46 712.1 0.53 711.7 0.46 

4 -1 1 1 1 1 -1 -1 733.7 1.5 724.1 1.55 732 1.38 732.7 1.45 733.3 1.45 

5 1 -1 1 -1 1 -1 1 725.4 1.25 721.6 1.36 722.6 1.51 723.1 1.22 721.1 1.25 

6 1 -1 1 1 -1 1 -1 728.1 1.17 721.1 0.97 722.9 0.98 723 0.97 719.7 0.73 

7 1 1 -1 -1 1 1 -1 726.6 1.52 731.4 1.58 731.4 1.61 729.6 1.4 731.3 1.57 

8 1 1 -1 1 -1 -1 1 714.3 0.57 714.4 0.51 713.6 0.44 716.3 0.44 714.6 0.56 
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2. Wheel Cover Component Experiment 

Harper, Kosbe, and Peyton (1987) report 
an experiment for finding the optimum 
combination of injection molding parameters 
to minimize the imbalance of a plastic wheel 
cover component [33]. The purpose of the 
experiment was to determine the effects of 
seven injection molding parameters (denoted 
as 721 ,...,, xxx ) on the quality characteristics of 
the component. These are measured by the 
total weight ( 1y  in grams) and the balance 

( 2y  in inch-ounces). Both 1y  and 2y  are 
NTB-type responses with limits of (710, 
715) and (0.3, 0.4) as the specification 
region, respectively. The results of the 
experiment are in Table5. 
 

The fitted response functions for 1y  and 2y  
are: 

7511 408.3318.5873.1763.720ˆ xxxy   

7512 174.0328.0113.0967.0ˆ xxxy   
 

If we assume that Y has a normal 
distribution with mean  ),( 21   and 
variance-covariance matrix , we can then 
find the probability of all responses being in 
their specification region for each run 
 SYp R   where RY  is the m dimensional 

response vector in the Rth run and S is the 
defined specification region. 
The covariance matrix and mean responses 
for each run were computed from the results 
of Table 5 and are given in Table 6. 

Table 6: computed ,  in each run for wheel 
cover component example. 

Run Variance-covariance Mean 

1 










00752.00018.0

0018.0377.0  








598.0

38.712  

2 










028.083935.0

83935.0923.26  








862.0

34.720  

3 







0027.000525.0

00525.0082.0  








49.0

68.711  

4 










004030.015945.0

15945.0988.15  








466.1

16.731  

5 










01437.004485.0

04485.0803.2  








318.1

76.722  

6 







02438.048335.0

48335.0742.11  








964.0

08.723  

7 







00683.007955.0

07955.0328.4  








536.1

06.730  

8 










00393.001645.0

01645.0003.1  








5040.0

64.714  

 SYp R    is computed from (15). And the 
results are reported in Table7. 
 

   

   
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2/1

2/1
1715

710

4.0

3.0

2

dydye

SYp

RRRRR YY

RR






   
 (15)

 

Table 7: Computed prŷ
 for each run of the   wheel 

cover component example. 
Run x1 x2 x3 x4 x5 x6 x7  SYp   

1 -1 -1 -1 -1 -1 -1 -1 0.0109 
2 -1 -1 -1 1 1 1 1 2.38E-51 
3 -1 1 1 -1 -1 1 1 0.0415 
4 -1 1 1 1 1 -1 -1 8.86E-142 
5 1 -1 1 -1 1 -1 1 2.97E-25 
6 1 -1 1 1 -1 1 -1 1.11E-04 
7 1 1 -1 -1 1 1 -1 4.60E-44 
8 1 1 -1 1 -1 -1 1 0.0205 

Now  SYp R    is again treated as another 
response variable with its value depending 
on the settings of the factors. So we can fit a 
response surface to our new probability 
response. For the data of Table7 the fitted 
response function is: 

7654

321

0064.00013.00091.0004.0

0013.00064.00040.00091.0

xxxx

xxxy pr



   
 

In the MRSA & MRPSO approach we 
have used the data to find the probability and 
fitted a surface to predict the probability for 
any setting of the control variables. Chiao 
and Hamada (2001), on the other hand, fitted 
response surfaces to the mean, standard 
deviation and correlation of the responses in 
order to compute the probability [13]. Also 
in our problem, finding the probability 
response is not our main objective; we need 
to optimize the probability response 
simultaneously with the other responses.  

In this example we had two responses 
with separate functions to which we added 
another response. It is necessary to optimize 
all three responses simultaneously. 
We used the MRSA with 99.0  as a cooling 
ratio, T=10, T0=0.001 and the MRPSO 
algorithm with the number of particles=40, 
W=4.5, B1=0.5, B2=1.5 and p=1. For both 
responses 1j . The computed optimal 

values for input and response variables are 
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given in Table 8. In order to find the best 
parameter settings for both algorithms we 
again used a factorial design with the 
parameters selected according to the results 
of this analysis. The main effects plots for 
the parameters of the algorithm are in 
Figures 5 and 6. 
 

Table 8: Comparison of MRSA and 
Chiao&Hamada (C&H) method for wheel cover 

component example 

 
C&H 

method* 
MRSA 
method 

MRPSO 
method 

ND  1.8970 1.0803 1.0002 

Improvement 
of overall 
result (%) 

0% 42.05% 47.27% 

*
1x  -1 -0.8479 -0.6093 

*
2x  +1 0.2079 -0.7194 

*
3x  0 -0.3373 0.8492 

*
4x  -1 -0.0764 0.0213 

*
5x  -1 -0.9976 -0.9392 

*
6x  0 0.8607 -0.2725 

*
7x  +1 0.3746 0.6242 

*
1y  710.1640 712.5929 712.4996 

*
2y  0.3520 0.4788 0.4815 

*
pry  0.0390 0.0263 0.0201 

Solution 
Time(s) 

- 0.192279 0.310988 

    *- Chiao and Hamada, (2001)  
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Figure 5:  Effects plot of general Factorial Design 
of ND response according to the MRSA parameter 
settings in Wheel Cover Component Experiment 
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Figure 6:  Effects plot of general Factorial Design 
of ND response according to the MRPSO 

parameter settings in Wheel Cover Component 
Experiment 

 

From Table 8 it can be seen that the 
aggregated function (ND) of the MRSA and 
MRPSO methods is lower than that for the 
C&H method. Also, for this example, the 
MRPSO method has better results than the 
MRSA approach. The computational time 
for both algorithms is reasonable, with that 
for MRSA lower than that for MRPSO.  
 

Conclusion 
In this paper, we have proposed an 

approach to improve quality and to achieve 
robust quality by the use of the statistical 
design of experiments with multiple 
responses and metaheuristic optimization 
methods that we have called MRSA & 
MRPSO. The proposed approach uses the 
desirability value of all responses and also 
their proportion of conformance in meeting 
their specifications. The MRSA & MRPSO 
approaches we have developed are flexible 
in the number of input variables, number of 
response variables and their respective 
weights. The methods can easily be applied 
to different optimal process setting problems. 
The results show that the proposed 
algorithms have an improved objective 
function value and so outperform previous 
ones. 

Future research will investigate the 
combination of other methods, such as the 
loss function approach, with the proposed 
method as well as the solution of MRS 
problems by other metaheuristic algorithms.  
We also hope to report in future on the use of 
these methods in practical examples. 
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