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Abstract 
     Among various heuristics techniques, Genetic algorithm (GA) is one of the most widely 
used techniques which has successfully been applied on a variety of complex combinatorial 
problems. The performance of GA largely depends on the proper selection of its parameters 
values; including crossover mechanism, probability of crossover, population size and mutation 
rate and selection percent. In this paper, based on Design of Experiments (DOE) approach and 
regression modeling, the effects of tuning parameters on the performance of genetic algorithm 
have been evaluated. As an example, GA is applied to find a shortest distance for a well-known 
travelling salesman problem with 48 cities. The proposed approach can readily be implemented 
to any other optimization problem. To develop mathematical models, computational 
experiments have been carried out using a 4-factor 5-level Central Composite Design (CCD) 
matrix. Three types of regression functions models have been fitted to relate GA variables to its 
performance characteristic. Then, statistical analyses are performed to determine the best and 
most fitted model.  Analysis of Variance (ANOVA) results indicate that the second order 
function is the best model that can properly represent the relationship between GA important 
variables and its performance measure (solution quality). 
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Introduction 
With the advent of computer technology 

and growing complexity of engineering 
problems in the past few decades, there has 
been much research to develop and use 
heuristic algorithms that can solve large 
scale optimization problems efficiently and 
effectively. Since late 1980s, a large number 
of optimization algorithms based on 
principles of natural and physical 
phenomena have been proposed. Genetic 
algorithm (GA) [1, 2], Simulated Annealing 
[3], Ant Colony Optimization [4], and Tabu 
Search [5] are some of the well-known 
heuristics used in combinatorial 
optimization. Among these, Genetic 
algorithm (GA) is one of the oldest and most 
widely used optimization procedures. Now 
days, there are several versions of Genetic 
Algorithms (GAs) that have successfully 
been applied to a variety of optimization 
problems [1, 2]. Due to its several 

advantages, GA has become one of the most 
favorite evolutionary techniques in 
combinatorial optimization. GA performs 
multiple directional searches using a set of 
candidate solutions; while most conventional 
methods conduct single directional search. It 
deals directly with the solutions to the 
problem instead of problem itself. It requires 
no domain knowledge and uses stochastic 
transition rules to guide the search. 
Nevertheless, one of the challenging aspects 
of this algorithm is its numerous tuning 
variables. GA's major parameters include 
population size (P), number of generations 
(G), crossover operator (COP) probability of 
crossover (%C), and mutation rate (%M).  In 
terms of time and solution quality, the 
performance of the search, to a large extend, 
depends on its parameters settings. 
Moreover, when the problem size grows 
large, this technique faces difficulties to find 
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the global or near global solutions. 
Traditionally, time-intensive trial and error 
runs were used to determine the best 
parameter settings according to the nature of 
problem domain. However, these methods 
were limited in the sense that they were case 
dependent and would not give much insight 
into the effects of each parameter on the 
search performance. Each GA parameter 
may be considered in several levels and 
hence there are almost infinite numbers of 
possibilities. This combinatorial explosion 
on GA factors and its values makes it 
extremely difficult to set the proper levels 
through enumeration or any other trial and 
error approaches. Therefore, there is a need 
for more profound and effective way to find 
the influence of each parameter so as its 
proper values may be determined.  

Work on GA parameters is a well 
established research area. Todd [6] 
investigated the performance of fourteen 
crossover and five mutation operators within 
GA applied to five problem sizes of TSP. 
However, some important parameters such 
as probabilities of crossover (%C) and 
mutation (%M) were overlooked. For basic 
flow-shop scheduling problem, Pongcharoen 
et al. [7] used a Design of Experiments 
(DOE) approach to find appropriate setting 
of GA parameters. They have taken into 
account such GA parameters as the 
combination of population size and number 
of generations, probabilities of crossover and 
mutation as well as different crossover and 
mutation operators.  Ghrayeb and 
Phojanamongkolkij [8] have employed DOE 
along with Analysis of Variance (ANOVA) 
approaches to investigate the effects of GA 
parameters on its performance in solving job 
shop scheduling problem. Although, some 
important parameters including population 
size, number of generations, and 
probabilities of crossover and mutation have 
been considered on their work, they failed to 
account for two key GA operators; namely  
(COP and MOP). More recently, attempts 
have been made to improve GA performance 
by the means of more effective crossover 
(Kaya [9]) and mutation mechanisms 

(Albayrak and Allahverdi [10]). These 
works, however, did not consider the effects 
of other GA parameters on its performance. 
The details of the other works on GA 
operators and parameters are well 
documented in the related literatures [11-14]. 

In general, in most existing research there 
is a lack of joint consideration of all 
important GA parameters simultaneously. 
The main objective of this work is, therefore, 
to investigate the mutual influences of GA's 
prominent parameters through statistical 
analysis and mathematical modeling. The 
proposed procedure is applied on a well-
known benchmark TSP for 48 (att48) cities 
[15]. It is noted, this approach may be used 
for any other problem with minor 
modifications. 
 

Genetic Algorithm  
Genetic algorithm (GA) is a meta-

heuristic inspired by the efficiency of natural 
selection in biological evolution. In GA the 
concepts of natural evolution are used to 
direct the search toward areas of high 
expected performance. This evolution is 
based on the past information which is 
summarized using a coding scheme. 

Each solution in GA is represented in the 
form of a string of numbers or symbols, 
resembling chromosomes and their 
associated genes. The algorithm works by 
generating a population of numeric vectors 
(called chromosomes), each representing a 
possible solution to the problem. The 
individual components within a chromosome 
are called genes. New chromosomes are 
created by crossover which is the 
probabilistic exchange of values between 
two selected chromosomes; or mutation, 
generating a new random chromosome by 
such means as random replacement of values 
in a vector. Mutation provides randomness 
within the chromosomes to increase 
coverage of the search space and help 
prevent premature convergence on a local 
optimum. Chromosomes are then evaluated 
according to a fitness (or objective) function, 
with the fittest surviving and the less fit 
being eliminated. To avoid losing good 
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solutions, the most fitted ones, called elites, 
are copied directly to the next generation. 
The result is a new population that evolves 
over time to produce better and fitter 
solutions to a problem. GA is stochastic 
iterative processes and is not guaranteed to 
converge on an optimal solution. Thus, 
search process typically terminates when a 
pre-specified fitness value is reached, a set 
amount of computing time passes or until no 
significant improvement occurs in the 
population for a given number of iterations 
[16]. In its general form, GA works through 
the following steps: 

 

1. Start: Generate a set of feasible random 
population of chromosomes   

2. Fitness: Evaluate the fitness of each 
chromosome in the population. The fitness 
value assigned to each individual is 
determined by the fitness function defined by 
the problem being solved. 

3. Check: If the termination criterion is 
reached, stop the search and show the best 
chromosomes of the current population as 
the final solution; otherwise proceed to the 
next step. 

4. Next generation: Create a new 
population using crossover, mutation and 
elitism operators and go to step 2.  

The details of this algorithm and its 
diverse applications can be found in related 
literatures [e.g. 1, 2 and 17]. 

 

Problem statement and 
computational results  

Travelling salesman problem (TSP) is one 
of the most famous combinatorial 
optimization problems. In its classical form, 
TSP consists of a set of N nodes or cities for 
which a closed tour with minimum distance 
should be constructed.  In other words, the 
salesman is expected to visit each city 
exactly once and return to the point of his 
departure with minimum total travelling 
distance. Many optimization problems can 
be transferred to a TSP, including 
manufacturing scheduling, transportation, 
facility layouts, etc. For a problem with N 
cities, there are N! possible solutions and 

hence TSP like problems are classified as 
non-polynomial (NP)-complete problems. It  
means that the required computational effort 
increases exponentially with the number of 
cities. This property makes exact algorithms 
based on enumeration, extremely time 
consuming and hence inefficient.  

Computational research on the TSP began 
in earnest with the classic paper of Dantzig 
et al. [18], where the cutting-plane algorithm 
was used to calculate an optimal TSP tour 
through 49 cities in the United States. TSP 
has received considerable attention over the 
last two decades [19] and still is an attractive 
ongoing research topic. In this work, the 
problem with 48 cities is used as a 
benchmark to model and evaluate significant 
parameters in GA. The structure of this 
problem and its optimal tour are given by 
Germany Heidelberg University database 
[15]. The objective is to investigate the 
effects of GA parameters and operators on its 
solution quality while solving this kind of 
problems. This is done by regression 
modeling on the data gathered through 
Design of Experiment approach.  

The parameters under study include 
population size, probabilities of crossover 
(%C), mutation (%M) and selection (%S), as 
well as crossover operators (COP). In our 
computational experiments, all GA 
parameters are studied in five levels, while 
three types of crossovers: partially mapped 
crossover (PMX), ordered crossover (OX) 
and heuristic crossover are used. To obtain 
required data, Design of Experiments (DOE) 
approach has been employed. DOE is a 
powerful technique used for exploring new 
processes, gaining knowledge of the existing 
processes and/or optimizing these processes 
for achieving desirable performance. 
Experimental design consists of a group of 
techniques used in the empirical study of 
relationship between one or more measured 
responses and a number of input variables. 
There are different DOE techniques 
including full factorial design, fractional 
factorial design, etc [20]. It is shown that 
Central Composite Design (CCD) matrix is 
the most popular design when there are large 
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numbers of parameters that provides equal 
precision of estimation in all directions. 
Therefore, CCD matrix is selected in this 
study for experimental runs.  

Central Composite Design is a rotatable 
matrix that provides equal precision for fitted 
response at points (factor level 
combinations) that are of equal distance from 
the centre of the factor space. In its basic 
form, CCD is a design requiring 5 levels of 
each parameter (0, ±1, ±a). The selected 
designed matrix is a standard central 
composite rotatable four-factor five-level 
factorial design with 31 experiments. To 
facilitate design matrix construction, a 
coding system is employed to indicate 
different ranges of parameters. The upper 
and lower limits are coded as +2 and −2, 
respectively. The intermediate values are 
calculated using Eq. (1). 

 

)(

)](2[2

minmax

minmax

XX

XXX
Xi 


                   (1)                                                                                   

 
Where, Xi is the coded value of variable 

X ranging between Xmin and Xmax. For each 
parameter under study, +2 and -2 correspond 
to the upper limit (Xmax) and lower limit 
(Xmin) respectively. The values of GA 
parameters, given by this coding scheme, are 
shown in Table 1. 
 

Parameters -2 -1 0 +1 +2 

Pop 50 150 250 350 450 

Cr 0.3 0.45 0.6 0.75 0.9 

Pm 0.001 0.026 0.050 0.075 0.100 

Sr 0.35 0.5 0.65 0.8 0.95 

Table 1: GA parameters levels in CCD matrix  
 

For four-factor five-level CCD matrix 
there are a total of 31 experiments out of 
which 16 are factorial points, 8 axial (star) 
points and 7 replicates at the centre points, as 
shown in Table 2. In this table, Pop, Cr, Pm, 
Sr are the number of population, probability 

of crossover, mutation probability and 
selection rate, respectively. Also the last 
three columns are associated with the three 
types of crossovers used in this research. 

The computer code was prepared using 
Matlab software. For comparison purposes, 
in all runs computational experiments were 
performed for the same amount of CPU 
times. The algorithm was run five times for 
each combination of parameters and the 
mean of results was used as the final 
solution. Since, computational experiments 
have been performed for three types of 
crossover, there are a total of 93 (31×3) 
solutions, as shown in the last three columns 
of Table 2. In this table, each solution 
represents the length of a tour found by GA 
using the corresponding parameters setting. 
These 93 experimental runs are sufficient to 
gather required data for regression modeling 
relating the total distance of each tour to 
GA's tuning parameters.  

  
A. Comparing types of crossover  

The pairwise comparisons between 
different crossover operators are shown in 
Figures 1and 2. As illustrated, in all 31 runs 
OX is superior to PMX and Heuristic in 
terms of solution quality. Therefore, this 
crossover is selected in our future analysis 
and the mathematical models are developed 
based on computational results using OX as 
the crossover operator. 

 

 
Figure 1: Comparison between PMX and OX 

crossovers  
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Obs. 
No Pop Cr Pm Sr 

Fitness 
fun. of 
PMX 

Fitness 
fun. of 

OX 

Fitness 
fun. of 

Heuristic 

1 -1 -1 -1 -1 15558 14996 16764 
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24 0 0 0 +2 18566 15505 18915 

25 0 0 0 0 16941 16558 18495 
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31 0 0 0 0 18753 15616 18998 

 
Table 2: CCD matrix for process variables in coded and real units along with the observed responses 

 

 
Figure 2:  Comparison between OX and Heuristic 

crossovers 
 

B. Model development and analysis 
A model is a mathematical relationship 

that states changes in dependent variable 
when there are changes in independent 
variables. In many instances, it is of interest 
to model and explore the relationship 
between dependent and independent 
variables. The relationship between these 
variables is usually characterized by a 
regression model. The regression model is an 
approximate fit to a set of sample data in a 
way that the sum of the square errors is 
minimized [20]. In this study, Linear, 
Curvilinear and Logarithmic functions have 
been fitted on the experimental data to 
establish the relationships between GA 

parameters and its performance characteristic 
(solution quality). The general forms of the 
three functions are as follows:  

 
Linear model: Dist1= b0 +b1Pop +b2Cr 
+b3Pm +b4Sr                                               (2) 
 
Curvilinear model: Dist2= b0 +b1Pop +b2Cr 
+b3Pm +b4Sr +b11Pop2 +b22Cr2 +b33Pm2 

+b44Sr2 +b12Pop×Cr +b13Pop×Pm 
+b14Pop×Sr +b23Cr×Pm +b24Cr×Sr 
+b34Pm×Sr                                               (3)  
 
Logarithmic model: Dist3= eb0 × Popb1    
×Cr b2 × Pmb3 × Srb4             (4) 

 
In the above equations, Dist is the length 

of the tour for a given TSP. The GA 
parameters values are stated by Pop, Cr, Pm 
and Sr. Finally, b0 is the intercept term; 
while b1, b2, …., b34, b44 are coefficients of 
variables. 

Based on experimental data for the att48 
TSP example, the mathematical models 
representing the relationship between GA 
parameters and its performance measure 
(solution quality), can be stated by: 

 
Linear model:  Dist1= 7263 + 17.5 Pop +  
8702 Cr + 5612 Pm - 1604 Sr                     (5) 
 

Factorial point  

Axial point 

Center point 
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Curvilinear model:  Dist2= 20786 – 7.9928 
Pop – 5852.5 Cr – 181811 Pm – 6278 Sr – 
0.0001 Pop2 + 263.16 Cr2 + 666074 Pm2 + 
257.61 Sr2 + 26.829 Pop×Cr + 131.57 
Pop×Pm + 4.2458 Pop×Sr + 111183 Cr×Pm 
+ 2863.9 Cr×Sr + 30583 Pm× Sr          (6) 
 
Logarithmic model: Dist3=e8.56×Pop0.225 × 
Cr0.305 × Pm -0.0090× Sr -0.0599                       (7) 
 

These models can predict GA solution 
(final length of the tour) for any given set of 
parameter settings. They may also give an 
insight into the relative importance of each 
GA parameters. 
 

C. Statistical analysis and model selection 
To assess the quality of the proposed 

models and to determine their adequacies, 
Analysis of variance (ANOVA) has been 
performed within the confidence limit of 
95%. Given the Pr and F values resulted 
from ANOVA, all models are considered 
adequate within the specified confidence 
limit, as tabulated in Table 3. 

 

Table 3:  ANOVA table for GA models 
 

In regression modeling, the choice of the 
best model depends on the nature of initial 
data and the required accuracy. Generally, 
the higher value of the correlation coefficient 
R2 the higher significance of the model. In 
Table 3, curvilinear model has the highest 
correlation coefficient of 97%. This means it 
can predict GA performance with the highest 
possible accuracy. To further investigate the 
adequacy of the selected model, tests of 
normal plot of residuals were also performed 
on the models. The spread of calculated and 
actual values of final tours around the 
regression lines for the three functions are 
shown in Figures 3 to 5. As illustrated, the 

best model to relate GA parameters settings 
and its performance characteristic, found to 
be second degree polynomial function. 
Therefore, further statistical analyses would 
be performed on this model only. 

 

 
Figure 3:  Normal probability plot of residuals for 

linear model 

 
Figure 4: Normal probability plot of residuals for 

curvilinear model 
 

 
Figure 5:  Normal probability plot of residuals for 

logarithmic model 

 

Model 
F 

Value 
Pr> F R2 

R2- 
(adj) 

Linear 45.88 0.000 87.6% 85.7% 

Curvilinear 37.17 <.0001 97.0% 94.4% 

Logarithmic 50.49 0.000 88.6% 86.8% 
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    The significance of each parameter in 
curvilinear model is determined using t-test 
and P-values which are listed in Table 4. 
Student’s t-test is employed to determine the 
mean square error which can be obtained by 
dividing each coefficient by its standard 
error.  

A large t-value implies that the coefficient 
is much greater than its standard error. The 
P-values are necessary to understand the 
pattern of the mutual interactions between 
the test variables. For any parameter, larger 
t-value and smaller P-value indicate that the 
factor is very significant. 

 
 

Variab
le 

DF 
Parameter 
Estimate 

Standar
d Error 

t 
Value 

Pr > |t| 

Interce
pt 

1 20786 4170.45 4.98 0.0001 

Pop 1 -7.99 9.11 -0.88 0.3932 

Cr 1 -5852.46 6722.05 -0.87 0.3968 

Pm 1 -181811 35547 -5.11 0.0001 

Sr 1 -6278.04 6895.83 -0.91 0.3761 

Pop2 1 -0.001 0.01 -0.01 0.9898 

Cr2 1 263.16  4136.67 0.06 0.9501 

Pm2 1 666074 
148920.0
0 

4.47 0.0004 

Sr2 1 257.61 4136.67 0.06 0.9511 

Pop_Cr 1 26.83 8.29 3.23 0.0052 
Pop_P

m 
1 131.57  49.77 2.64 0.0177 

Pop_Sr 1 4.24 8.29 0.51 0.6158 

Cr_Pm 1 111183 33181.00 3.35 0.0041 

Cr_Sr 1 2863.89 5530.21 0.52 0.6116 

Pm_Sr 1 30583.00 33181.00 0.92 0.3704 

Table 4: Least squares fit and parameters 
estimates (significance of regression coefficients) 

 

With respect to the above results, the most 
important parameter affecting GA 
performance is the probability of mutation 
(Pm). Statistical analysis shows that both first 

order and second order of Pm are highly 
significant since their respective P-values are 
very small. Moreover, the interactions 
between the population size and crossover 
probability (Pop-Cr), population size and 
mutation probability (Pop-Pm), probabilities 
of crossover and mutation (Cr-Pm) are also 
significant. These interactions have positive 
effects on response variable. 
 

Conclusion 
     In this research, the relations between 
input parameters and solution quality 
(output) of Genetic Algorithm have been 
established using a TSP benchmark problem 
(att 48). Central composite design matrix 
with 31 experiments was used to gather the 
required data for regression modeling. Based 
 on computational results, the effects of three 
types of crossover have also been studied. 
Results show that in all cases OX crossover 
is better than PMX and heuristic. Next, 
various functions were fitted on the data to 
model the optimization process. Among 
various regression function, curvilinear is 
found to be the best model based on 
correlation coefficient and Analysis of 
Variance (ANOVA) criteria. Statistical 
analyses show that mutation probability as 
well as interaction effects between 
population and crossover, population and 
mutation and between mutation and 
crossover are significant factors. The 
proposed approach is promising in the sense 
that it may be used to determine the proper 
set of parameter settings for a given 
optimization problem. Nevertheless, it 
should be noted that the performance of such 
procedures is case-dependent and may vary 
with problem size and its structure.
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