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Abstract 
A new powerful optimization algorithm inspired from colonizing weeds is utilized to solve 

the well-known quadratic assignment problem (QAP) which is of application in a large number 
of practical areas such as plant layout, machinery layout and so on. A set of reference numerical 
problems from QAPLIB is taken in order to evaluate the efficiency of the algorithm compared 
with the previous ones which had been applied to solve the addressed problem. The results 
indicate that the algorithm outperforms the competitive ones for a sizable number of the 
problems as the problems’ dimensions increase. 
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Introduction 
     The quadratic assignment problem (QAP) 
is known as a special type of assignment 
problems, which is too complex to be solved 
using the common exact solution methods 
(e.g. [1] and [2]). The main difference 
between QAP and the classic assignment 
problems is that there is an interaction 
between each two pairs of facilities, leading 
to a non-linear objective function. The 
problem is assigning n facilities to n 
locations in such a way as to minimize the 
transportation costs associated with the flow 
of materials between the facilities and the 
distances between the corresponding 
locations ([3]). 

QAP is known as an NP-Hard problem. 
The solution complexity of QAP is widely 
accepted among researchers (e.g. [3] and 
[4]). There is not any known polynomial 
time algorithm to solve QAP instances with 
more than a relatively small number of 
inputs. The exact solution of even small 
problems (20 < n < 30) is considered 
computationally non-trivial. To obtain 
optimal solutions for the modest size of QAP 
instances (i.e. 30<n<40), a massively parallel 
computing environment is required [3]. 
   There is a continuous interest in 
developing different formulations and 
solution methods among the researches on 
QAP. Initially, Koopmans and Beckmann [5] 

proposed the QAP as a mathematical model 
related to economic activities. Steinberg [6]  
used the QAP to minimize the number of 
connections between components in a 
backboard wiring. Heffley [7] applied the 
QAP to economics problems. Dickey and 
Hopkins [8] applied the QAP to the 
assignment of buildings in a University 
campus. Francis and White [9] developed a 
decision framework for assigning a new 
facility (e.g. police post, supermarket or 
school) in order to serve a given set of 
clients. Geoffrion and Graves [10] focused 
on scheduling problems. Pollatschek et al. 
[11] invoked the QAP to define the best 
design for typewriter keyboards and control 
panels. Elshafei [12] applied it to a hospital 
planning problem. Krarup and Pruzan [13] 
applied it to archeology. Hubert [14] applied 
it to statistical analysis. Bos [15] applied it to 
a problem related to forest parks. Brusco and 
Stahl [16] utilized it in a numerical analysis. 
Parallel computing and networking provide 
other location analysis problems, which can 
be formulated as QAPs (e.g. [17,18]. 
Benjaafar [19] introduced a formulation of 
the facility layout problem in order to 
minimize work-in-process. Ciriani et al. [20] 
explored assigning rooms to persons with 
undesirable neighborhood constraints could 
be well formulated as a QAP. A 
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generalization of the QAP is also used for a 
service allocation problem by Cordeau et al. 
[21] with the objective of minimizing the 
container re-handling operations at a 
shipyard. Rabak and Sichman [22] and 
Miranda et al. [23] studied the placement of 
electronic components as a QAP. For a 
comprehensive survey of the addressed 
researches and other applications of the QAP 
and corresponding special cases, the reader 
can refer to [24], [25], [26] and [3]. 

Generally, the methods used in 
combinatorial optimization problems can be 
either exact or heuristic. Exact algorithms 
reach a global optimum within an acceptable 
time; Some instances are dynamic 
programming, branch-and-bound, cutting 
planes or some combinations like branch-
and-cut. Heuristic algorithms do not give a 
guarantee of optimality for the best solution 
obtained. Meta heuristics are a type of 
heuristic algorithms with a relatively general 
structure. The difficulties due to using 
mathematical optimization methods for 
solving NP-hard combinatorial problems 
with a large number of variables and non-
linear objective functions have contributed to 
the development of meta heuristic 
algorithms. A number of meta heuristic 
algorithms are based on natural process 
metaphors such as simulated annealing (SA), 
genetic algorithms (GA), scatter search (SS) 
and ant colony optimization (ACO) while a 
number of them are based on theoretical and 
experimental considerations such as tabu 
Search (TS), greedy randomized adaptive 
Search Procedure (GRASP), variable 
neighborhood search (VNS) and iterated 
local search (ILS). There has been applied 
several meta heuristics algorithms in order to 
solve the QAP (e.g. [27] and [3]). We now 
mention to a number of well-known 
researches in this regard. 

   Hahn et al. [4] presented a new branch-
and-bound algorithm for solving the QAP. 
The algorithm is based on a dual procedure 
similar to the Hungarian method for solving 
the linear assignment problem. It solves the 
small and large size QAP, however, does not 
guarantee an optimal solution. Angel and 

Zissimopoulos [28] declared that local 
search was widely used to solve 
approximately NP-complete combinatorial 
optimization problems while little was 
known about the quality of obtained local 
minima, for a given neighborhood. They 
proposed an upper bound for the quality of 
solutions obtained from the deepest local 
search for the QAP.  

   Ahuja et al. [1] suggested a genetic 
algorithm for the QAP and reported its 
computational behavior. Since the genetic 
algorithm incorporated many greedy 
principles in its design, they named it 
“greedy genetic algorithm”. They tested the 
proposed algorithm on all the benchmark 
instances of QAPLIB ([29]), a well-known 
library of QAP instances. Out of the 132 
total instances in QAPLIB of varied sizes, 
the greedy genetic algorithm obtained the 
best known solution for 103 instances, and 
for the remaining instances (except one) 
found solutions within 1% of the best known 
solutions. Talbi et al. [30] proposed a 
parallel model for ant colonies to solve the 
QAP. The cooperation between simulated 
ants was provided by a pheromone matrix 
that played the role of a global memory. The 
exploration of the search space was guided 
by the evolution of pheromones levels, while 
exploitation had been boosted by a tabu local 
search heuristic.  

   Hasegawa et al. [31] proposed a novel 
method in order to solve the QAP. Initially, 
they modify the conventional tabu search 
into a chaotic version, and then they compare 
the performance of the novel chaotic search 
with the conventional tabu search and an 
exponential tabu search. It is indicated that 
the exponential tabu search has higher 
performance than the conventional tabu 
search, and further that the novel method 
with a chaotic neural network exhibits the 
best performance. Misevicius [32] proposed 
a genetic algorithm hybridized with so-called 
ruin and recreate a procedure for solving the 
QAP. The results indicated that the proposed 
algorithm was of a high performance for the 
QAP.  
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   In Chawki et al. [33], the network 
structure of basic solutions to the QAP was 
revisited. The concept of a relative local star 
minimum was introduced.  

Results characterizing a relative local star 
minimum were obtained, and an extreme 
point algorithm was proposed. Misevicius 
[34] proposed an improved hybrid genetic 
algorithm (IHGA). It used a robust local 
improvement procedure as well as an 
effective restart mechanism that was based 
on so-called ‘shift mutations’. IHGA was 
applied to the QAP. The results obtained 
from the experiments on different QAP 
instances indicated that the proposed 
algorithm appeared to be superior to other 
approaches that were among the best 
algorithms for the QAP.  

   Erdogan and Tansel [35] declared that 
exact solution attempts proposed for 
instances of size larger than 15 had been 
generally unsuccessful. They presented two 
new integer formulations based on the flow-
based linearization technique which required 
fewer variables and yielded stronger lower 
bounds than existing formulations. They also 
strengthened the formulations with valid 
inequalities and reported computational 
experience with a branch-and-cut algorithm.  

Drezner [36] introduced the compounded 
genetic algorithm. They proposed to run a 
quick genetic algorithm several times as 
Phase 1, and compile the best solutions in 
each run to create a starting population for 
Phase 2. This new approach was 
implemented on the QAP and caused very 
good results. In Stützle [37], iterated local 
search (ILS) as a simple and powerful 
stochastic local search method was applied 
to the QAP. Enhanced ILS extensions was 
also proposed in this research. An 
experimental evaluation indicated the 
excellent performance of the enhanced ILS 
when comparing to the similar state-of-the-
art algorithms.  

   Loiola et al. [3] presented some of the 
most important QAP formulations and 
classified them according to their 
mathematical sources; then, they gave a 
discussion on the theoretical resources used 

to define lower bounds for the exact and 
heuristic algorithms for QAP. They also 
gave a detailed discussion of the progresses 
made in both exact and heuristic solution 
methods. Drezner [38] solved QAP using 
various variants of a hybrid genetic 
algorithm and tested several modifications of 
the hybrid genetic algorithm. The results 
indicated the high efficiency of the proposed 
algorithms. 

   James et al. [2] introduced a cooperative 
parallel tabu search algorithm (CPTS) for the 
QAP. CPTS is a cooperative parallel 
algorithm in which the processors exchange 
information throughout the run of the 
algorithm in contrast to independent 
concurrent search strategies that aggregate 
data only at the end of execution. A set of 41 
test problems obtained from QAPLIB were 
used to analyze the quality of the CPTS 
algorithm. Xia [39] proposed a Lagrangian 
smoothing algorithm for the QAP where the 
continuation sub problems were solved by 
the truncated Frank–Wolfe algorithm. 
Limited numerical results were also provided 
in order to measure the efficiency of the 
proposed algorithm.  

   In this paper, the invasive weed 
optimization algorithm (IWO) which has 
recently proposed by Mehrabian and Lucas 
2006 [40] is applied to the QAP. As it will 
be indicated in Section 4, the addressed 
algorithm shows a higher performance 
compared to other similar meta-heuristics, 
especially when the problem size increases.   

   The rest of the paper is structured as 
follows: In Section 2, the formulation of the 
problem is given. In Section 3, we describe 
the solution algorithm and customize it to 
QAP. Section 4 represents the results from 
utilizing the proposed algorithm on a set of 
numerical problems. Section 5 gives 
conclusions and recommends some further 
research. 

 
Problem formulation 

QAP is one of the most difficult problems 
as a combinatorial optimization problem in 
which a given set of facilities should be 
assigned to a set of locations in such a way 
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that each facility is designated to exactly one 
location and inversely each location to one 
facility. The distances between locations, the 
demand flows between the facilities and the 
allocation cost of each facility to each 
location are known. There are different 
formulation methods for QAP in the 
literature (e.g. [27] and [3]).  The problem’s 
parameters are as follows: 

F= [ ]: The flow matrix between 
facilities i and j; 

 
D= : The distance matrix between 

locations k and l;  
B= : The allocation costs of facility i 

to location k. 
The decision Variable is , a binary 

variable whose value is 1 if facility  is 
assigned to location k. 

In general, the objective function can be 
stated as follows: 

 
   Since the linear term is easy to solve, we 

do not consider it; thus, the problem can be 
stated as follows: 
 

 

 

 
 

 
 

The objective function within Eq. (2) 
represents the total weighted flows between 
facilities i and j while they are located in 
locations k and l respectively. Constraint (3) 
and (4) guarantee each facility being exactly 
located in one location and each location 
accommodate exactly one facility. Constraint 
(5) represents all decision variables must be 
binary. 

Invasive weed optimization 
algorithm 

   IWO algorithm is motivated by a 
common phenomenon in agriculture, which 
is colonization of invasive weeds. According 
to the common definition, a weed is any 
plant growing where it is not wanted. Any 
tree, vine, shrub, or herb may qualify as a 
weed, depending on the situation; generally, 
however, the term is reserved for those 
plants whose vigorous, invasive habits of 
growth pose a serious threat to desirable, 
cultivated plants. Baker and Stebbins [41] 
mentions that a plant is called weed, if in any 
specified geographical area, its population 
grows entirely or predominantly in situations 
markedly disturbed by man (without, of 
course, being deliberately cultivated plants). 
Weeds have shown very robust and adaptive 
nature, which turns them to undesirable 
plants in agriculture. The algorithm is simple 
but has shown to be effective in converging 
to the optimal solution by employing basic 
properties, e.g. seeding, growth and 
competition, in a weed colony [40]. 

   The feasibility, the efficiency and the 
effectiveness of IWO are tested in details 
through a set of benchmark multi-
dimensional functions, including ‘Sphere’, 
‘Griewank’ and ‘Rastrigin’ by Mehrabian 
and Lucas [40]. The reported results are 
compared with other recent evolutionary-
based algorithms: genetic algorithms, 
memetic algorithms, particle swarm 
optimization, and shuffled frog leaping. The 
results are also compared with different 
versions of simulated annealing, which are 
simplex simulated annealing and direct 
search simulated annealing. The performance 
of IWO has a reasonable performance for all 
the test functions. Mallahzadeh et al. [42] 
utilized IWO algorithm for designing an e-
shaped mimo antenna. Karimkashi and 
Kishk [43] studied IWO Features in 
Electromagnetics. 

    To simulate the colonizing behavior of 
weeds, some basic properties of the process 
turn out as following ( [42]: 

1) A finite number of seeds is being 
spread out over the search area. 
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2) Every seed grows to a flowering plant 
and produces seeds depending on its fitness. 

3) The produced seeds are being dispersed 
randomly over the search area and grow to 
new plants. 

4) This process continues until the 
maximum number of plants is reached; now 
only the plants with lower fitness can survive 
and produce seeds, others are being 
eliminated. The process continues until 
reaching a maximum number of iterations. 
Hopefully, the plant with the best fitness is 
closest to the optimal solution.  

The process is addressed in details as 
follows [40]: 

 

Initialize a population 
A population of initial solutions is being 

dispersed over the d dimensional problem 
space with random positions. The initial 
search area is notated by iniX which is 

bounded by a lower and upper bound. The 
lower bound value is usually a negative real 
number while the upper bound is usually a 
positive real number.  

 

Reproduction 
A member of the population of plants is 

allowed to produce seeds depending on its 
own and the colony's lowest and highest 
fitness: the number of seeds each plant 
produces, increases linearly from a minimum 
number of seeds, minS , to a maximum 

number, maxS . In other words, a plant will 

produce seeds based on its fitness, the 
colony's lowest fitness and highest fitness to 
make sure the increase is linear. Thus, the 
above reproduction technique is proposed to 
give a chance to infeasible individuals to 
survive and reproduce similar to the 
mechanism happens in the nature. Moreover, 
quite often the system can reach the optimal 
point more easily if it is possible to “cross” 
an infeasible region (especially in non-
convex feasible search space) [44]. 
 

Spatial dispersal 
The generated seeds are distributed 

randomly over the d dimensional search 
space by normally distributed random 

numbers with mean equal to zero; but 
varying variance. This means that seeds will 
be distributed randomly so that they abode 
near to the parent plant. However, standard 
deviation of the random function will be 
reduced from an initial value, initial , to a 

final value, final , in every step (generation). 

In simulations, a nonlinear alteration has 
shown satisfactory performance, which is 
given as in (6). 

 

 
 

 
Where maxiter  is the maximum number of 

iterations, iter  is the standard deviation at 

the present time step and n is the nonlinear 
modulation index.  

 

Competitive exclusion 
If a plant leaves no offspring then it would 

go extinct, otherwise it would take over the 
world. Thus, there is a need of some kind of 
competition between plants for limiting 
maximum number of plants in a colony. 
After passing some iterations, the number of 
plants in a colony will reach its maximum by 
fast reproduction, however, it is expected 
that the desirable plants are reproduced more 
than the undesirable ones. Reaching the 
maximum number of plants in the colony, 

maxp , a mechanism for eliminating the plants 

with poor fitness in the generation activates. 
When all seeds have found their position in 
the search area, they are ranked together with 
their parents' (as a colony of weeds). Next, 
weeds with lower fitness are eliminated to 
reach the maximum allowable population in 
a colony. This mechanism gives a chance to 
plants with lower fitness to reproduce, and if 
their offspring has a good fitness in the 
colony than they can survive. 
In this algorithm, number of the initial 
population 0N , maximum number of 

iterations maxit , maximum number of plants 
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BEGIN

END

in the colony maxp , nonlinear modulation 

index n is the key IWO parameters whose 
effective tuning is very important for the 

algorithm convergence. The general structure 
of the addressed algorithm can be 
represented as in Fig. 1.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Generate the initial 
population of weeds 

Compute the initial 
seeds fitness 

Compute the number of 
new seeds for each 

plant with respect to 
fitness values 

Dispread the new 
generated seeds 

The seeds grow and change to the new plants 

Compute the new seeds fitness 

Number 
of the 

weeds > 
Pmax?

Eliminate plants with 
lower fitness 

NO

Number of 
iterations> 

itmax ? 

NO 

YES

YES

NO

Figure 1: General structure of the IWO algorithm
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Customizing IWO algorithm to QAP 
IWO can be implemented as the following 

steps:  
 
Step 1: Define two matrices, the flow 

matrix between machines (facilities) and the 
distance matrix between locations: [ ] and 

 
 
Step 2: Generate initial solutions (initial 

seeds’ population) with the dimension of 
dim in the defined initial search area 

iniX , by uniformly distributed random 

numbers with mean equal to zero (each 
solution is represented by a dim vector, 
so the addressed matrix represents  
solutions. For example if 

( 1, 1)iniX Mx Mn      a 4 solution 

may be (-053, 0.72, -0.22, 0.30). If the 
solution is sorted in ascending order, it will 
be equal to (1 3 4 2) which means that 
facility 1 is located in location 1, facility 3 is 
located in location 2 and, etc.).  

 
Step 3: Compute the fitness value of each 

seed: calculate the matrix of [ ] and 
thus the values of the fitness functions for 
the solutions. After assigning each fitness 
value to the corresponding seed, it is called a 
plant. 

 
Step 4: Rank the plants and reproduce 

new seeds: Plants are ranked due to the 
corresponding fitness values. They are 
enabled to generate seeds based on the rank 
in the colony. The number of new seeds to 
be generated is calculated for each plant 
using the linear relationship considering minS  

and maxS . 

 
Step 5: Dispread the new produced seeds: 

The produced seeds dispread over the search 
area based on the standard deviation of each 
step, which is determined using (6). 

 
Step 6: Calculate the fitness values of the 

new flowering plants. 

Step 7: Check the condition I: Is the 
number of the plants in the current step less 
than ? 

Yes: Go to step 8 
No: Competitive exclusion: the plants 

with lower fitness values (the higher values 
of the objective function for the QAP 
problem) are being eliminated. 

 
Step 8: Check the condition II: Is the 

iteration number less than ? 
Yes: Repeat the algorithm again. 
No: Stop. Calculate the objective function 

values of the current solutions and select the 
best value from among them (the minimum 
value for the objective function of the QAP). 

 

Numerical results 
   In this section, we aim at evaluating the 
efficiency of the proposed algorithm using 
a number of reference pilot numerical 
problems. The tai*a and tai*b test 
instances are selected since they are the 
most famous test problems utilized by 
other competing algorithms in the 
literature (James et al. (2009) [18]). As 
pointed out before, IWO involves some 
parameters, which should be tuned to 
provide the QAP best solutions. We have 
used full factorial design of experiments 
to tune the algorithm parameters. We have 
run the algorithm for each problem 
several times using the different values of 
the parameters and then have selected the 
best solution along with the corresponding 
parameters values. 
The parameters’ values are as in Table 1. 

Tables 2-4 represent the objective 
function value for the selected test instances 
along with the best values of the parameters 
in the considered range. As it can be seen 
from Table 1-3, the efficiency of the 
algorithm is nearly increasing as the problem 
dimension increases. The algorithm gives 
better results while dim is more than 50. The 
improvement percentage in the objective 
function versus the problem dimension for 
the problems with dim>50 is represented in 
Fig 2. 
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Table 1: Initial values of the IWO parameters before tuning 

Parameter Value Parameter Value 

0N  15, 20 minS  1 

iniX  (-5, 5), (-10, 10) maxS  3, 4 

maxp  15, 20, 30 initial  20 

maxit  20, 25 final  0.25, 0.5 

N 3, 5 dim Due to the problem 

 
 
 

Table 2: IWO best value in comparison to the best known for QAP (chr12 to tai 20) and the best set of 
parameters 

Instance 
Name 

chr12a chr15a tai12a tai12b tai15a tai15b tai17a tai20a tai20b 

In
it

ia
l P

ar
am

et
er

s 

0N  20 15 20 20 20 20 20 20 20 

dim 12 15 12 12 15 15 17 20 20 

Mx 10 10 5 10 5 5 5 10 5 

Mn -10 -10 -5 -10 -5 -5 -5 -10 -5 

maxp  15 30 20 15 20 15 20 15 20 

maxit  20 20 25 20 25 20 25 20 25 

maxS  3 3 4 3 4 3 4 3 4 

minS  1 1 1 1 1 1 1 1 1 

initial  20 20 20 20 20 20 20 20 20 

final  0.5 0.5 0.25 0.5 0.25 0.25 0.25 0.5 0.25 

n 3 3 3 3 3 3 3 3 3 

IWO 
Value* 

16910 17519 243764 40604857 410378 52098752 533660 750047 
1336700

25 

QAPLIB 
Best 

Value 
9552 9896 224416 39464925 388214 51765268 491812 703482 

1224553
19 
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Table 3: IWO best value in comparison to the best known for QAP (tai25 to tai60a) and the best set of 
parameters 

Instance 
Name 

tai25a tai25b tai30b tai35b tai40b tai50a tai50b tai60a 

In
it

ia
l P

ar
am

et
er

s 

0N  20 20 20 15 15 15 20 20 

dim 25 25 30 35 40 50 50 60 

Mx 5 10 10 10 10 10 10 10 

Mn -5 -10 -10 -10 -10 -10 -10 -10 

maxp  20 15 15 30 15 15 20 15 

maxit  25 20 20 20 25 20 20 25 

maxS  4 3 3 3 3 3 3 3 

minS  1 1 1 1 1 1 1 1 

initial  20 20 20 20 20 20 20 20 

final  0.25 0.5 0.5 0.5 0.25 0.5 0.5 0.5 

n 3 3 3 3 3 3 3 3 

IWO 
Value 

1294446 367149221 660051474 300436903 647243698 5043300 
46092
8519 

718573
3 

QAPLIB 
Best 

Value 
1167256 344355646 637117113 283315445 637250948 4938796 

45882
1517 

720596
2 
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Figure 2: The improvement percentage in the objective function versus the problem dimension 



 
   122                                                              Journal of Industrial Engineering, University of Tehran, Special Issue, 2011                      

 
 

 
 

Table 4:  IWO best value in comparison to the best known for QAP (tai60b to tai256) and the best set of 
parameters 

Instance 
Name 

tai60b tai64c tai80a tai80b tai100a tai100b tai150b tai256c 

In
it

ia
l P

ar
am

et
er

s 

0N  20 20 20 15 20 20 15 20 

dim 60 64 80 80 100 100 150 256 

Mx 5 5 5 5 5 10 5 5 

Mn -5 -5 -5 -5 -5 -10 -5 -5 

maxp  15 30 30 20 20 20 20 20 

maxit  20 20 20 20 20 20 20 20 

maxS  3 3 4 4 3 3 3 3 

minS  1 1 1 1 1 1 1 1 

initial  20 20 20 20 20 20 20 20 

final  0.5 0.5 0.25 0.25 0.5 0.5 0.25 0.5 

n 3 3 3 3 3 3 3 3 

IWO Value 603355774 1849510 13619277 819916528 20877903 1179216180 480136527 44043511 

QAPLIB 
Best Value 

608215054 1855928 13515450 818415043 21052466 1185996137 498896643 44759294 

 
*Note: The algorithm was run by different value of initial parameters. The best results among these 

parameters’ value are displayed as “IWO Value” row. QAP best values are taken from 
www.qaplib.com. 

 
 
 
The average percentage of improvement in 
the objective function value is about 0.8 % 
for the addressed problems. The algorithm 
was coded in MATLAB 7.6 and run on an 
Intel Pentium Dual Core of 1.5 GHz CPU 
computer. 
 

Conclusions and further research 
Heuristics or suboptimal algorithms are 

often used to obtain solutions for QAP 
instances. IWO is a numerical stochastic 
search algorithm inspired from natural 
behavior of weeds colonizing in opportunity 
spaces for function optimization. Mehrabian  

and Lucas [40] studied the convergence of 
IWO for three benchmark problems. The 
performance of the algorithm was enough 
good to be applied to QAP. A brief 
description of the algorithm was given and 
the algorithm was run on a set of reference 
numerical problems from QAPLIB 
(www.qaplib.com). The results indicated that 
IWO dominated the best solution given by 
QAPLIB when the problem dimension is 
more than 50. The average percentage of 
improvement in the objective function value 
is about 0.8 % for the addressed problems. 
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