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Abstract 

The concept of algebraic hyperstructures introduced by Marty as a 
generalization of ordinary algebraic structures. In an ordinary algebraic structure, 
the composition of two elements is an element, while in an algebraic 
hyperstructure, the composition of two elements is a set. The concept of Γ-
semihyperrings is a generalization of semirings, a generalization of semihyper-
rings and a generalization of Γ-semirings. In this paper, we introduce an 
equivalence relation γ* on a Γ-semihyperrings R and we show that it is strongly 
regular. Furthermore, R/γ*, the set of all equivalence classes of this relation is a 
Γ/β*-semiring. The relation γ* is called the fundamental relation and the Γ-
semiring R/γ* is called the fundamental semiring. Fundamental relations are the 
main tools in the study of Γ-semihyperrings. We present some results about 
fundamental relations and fundamental semirings. Finally, we show that there is a 
covariant functor between the category of Γ-semihyperrings and the category of 
semirings. 
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Introduction 

Algebraic hyperstructures represent a natural 
extension of classical algebraic structures. In 1934, at 
the 8th Congress of Scandinavian Mathematicians, 
Marty [14] has introduced, for the first time, the notion 
of hypergroup, using it in different contexts: algebraic 
functions, rational fractions and non-commutative 
groups. In a classical algebraic structure, the 
composition of two elements is an element, while in an 
algebraic hyperstructure, the composition of two 
elements is a set. One of the first books, dedicated 
especially to hypergroups, is "Prolegomena of 
Hypergroup Theory'', written by P. Corsini in 1993 [4]. 
Another book on "Hyperstructures and Their 

Representations'', by T. Vougiouklis, was published one 
year later [18]. On the other hand, algebraic 
hyperstructure theory has a multiplicity of applications 
to other disciplines: geometry, graphs and hypergraphs, 
binary relations, lattices, groups, fuzzy sets and rough 
sets, automata, cryptography, codes, median algebras, 
relation algebras, C-algebras, artificial intelligence, 
probabilities and so on. A recent book on these topics is 
"Applications of Hyperstructure Theory'', by P. Corsini 
and V. Leoreanu, published by Kluwer Academic 
Publishers in 2003 [5]. Another book [7] is devoted 
especially to the study of hyperring theory. Several 
kinds of hyperrings are introduced and analyzed. The 
volume ends with an outline of applications in 
chemistry and physics, analyzing several special kinds 
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of hyperstructures: e-hyperstructures and transposition 
hypergroups. Finally, we mention here another 
important book for the applications in Geometry and for 
the clearness of the exposition, written by W. Prenowitz 
and J. Jantosciak [17]. 

Let H  be a non-empty set and : ( )H H P H   

be a hyperoperation, where ( )P H  is the family of all 

non-empty subsets of .H  The couple ( , )H   is called a 

hypergroupoid. For any two non-empty subsets A  and 
B  of H  and x H , we define 

,a A b B
A B a b

 
  , 

{ }A x A x   and { } .x A x A   A hypergroupoid 

( , )H   is called a semihypergroup if for all , ,a b c  in 

H  we have, ( ) ( ).a b c a b c     

In addition, if for every ,a H a H H H a   , 

then ( , )H   is called a hypergroup. A non-empty subset 

K  of a semihypergroup ( , )H   is called a sub-

semihypergroup if it is a semihypergroup. In other 
words, a non-empty subset K  of a semihypergroup 
( , )H   is a sub-semihypergroup if .K K K  We say 

that a hypergroup ( , )H   is canonical if 

(i) it is commutative, 
(ii) it has a scalar identity (also called scalar unit), 

which means that 

, , ,e H x H x e e x x        

(iii) every element has a unique inverse, which 
means that for all ,x H  there exists a unique 

1 ,x H   such that 1 1,e x x x x     

(iv) it is reversible, which means that if ,x y z   

then there exist the inverses 1y   of y and 1x   of z, 

such that 1z y x   and .y x z   

A Krasner hyperring is an algebraic structure 
( , ,.)R   which satisfies the following axioms: 

(i) ( , )R   is a canonical hypergroup, 

(ii) ( ,.)R  is a semigroup having zero as a bilaterally 

absorbing element, i.e., 0 0 0.x x    

(iii) The multiplication is distributive with respect to 
the hyperoperation +. 

In [2, 12], Davvaz et. al. studied the notion of a  
semihypergroup as a generalization of a semihyper-
group. Many classical notions of semigroups and 
semihypergroups have been extended to   semihyper-
groups and a lot of results on   semihypergroups are 
obtained. 

The fundamental relation    was introduced on 

hypergroups by Koskas [13] for the first time and 
studied by many authors, for example see [4, 8, 9, 10 

and 20]. The fundamental relation    is defined on 

hypergroups as the smallest equivalence relation so that 
the quotient would be a group. 

Let H  be a hypergroup and U  be the set of all 
finite products of elements of H  and define the relation 
  on H as follows: 

x y  if and only if  ,x y u  for some .u U  

Freni proved in [9] that for hypergroups we have 
.    

Vougiouklis in [18] defined the fundamental relation 
  on hyperring R  as the smallest equivalence relation 

on R  such that the quotient /R    is a fundamental 

ring. Let ( , ,.)R   be a hyperring. Vougiouklis defined 

the relation as follows: 

a b  if and only if  , ,a b u  

where u is a finite sum of finite products elements of R (
u  may be a sum of only one element), and proved that 
   is the transitive closure of .  

The fundamental equivalence relation extended to 
some classes of hyperrings by Spartalis and Vougiouklis 
[16]. In [10], Freni introduced a new strongly regular 
equivalence and a new characterization of the derived 
hypergroup of a hypergroup is determined. 

By using a certain type of equivalence relations, we 
can connect   semihyperrings to   semirings. These 
equivalence relations are called strong regular relations. 
More exactly, starting with a   semihyperring and 
using a strong regular relation, we can construct a  
semiring structure on the quotient set. Let R  be a  
semihyperring and   be an equivalence relation on .R  

If 1R  and 2R  are non-empty subsets of ,R  then 

1 2R R  means that for every 1x R  there exists 

2y R  such that x y  and for every 2y R  there 

exists 1x R  such that .x y   1 2R R  means that for 

every 1x R  and 2y R , we have .x y  A relation 

  on R  is called right (resp. left) strongly regular if 

and only if x y  implies that ( ) ( )x a y a   and 

( ) ( )x a y a    for every    and a R  (resp. 

( ) ( )a x a y    and ( ) ( )),a x a y   and R  is called 

strongly regular if it is both left and right strongly 
regular. 

By using a certain type of equivalence relations, we 
can connect Γ-semihyperrings to Γ-semirings. These 
equivalence relations are called strong regular relations. 
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More exactly, starting with a Γ-semihyperring and using 
a strong regular relation, we can construct a  
semiring structure on the quotient set. Let R  be a  
semihyperring and   be an equivalence relation on .R  

If 1R  and 2R  are non-empty subsets of ,R  then 

1 2R R  means that for every 1x R  there exists 

2y R  such that x y  and for every 2y R  there 

exists 1x R  such that .x y   1 2R R  means that for 

every 1x R  and 2y R , we have .x y  A relation 

  on R  is called right (resp. left) strongly regular if 

and only if x y  implies that ( ) ( )x a y a   and 

( ) ( )x a y a    for every    and a R  (resp. 

( ) ( )a x a y    and ( ) ( )a x a y  ), and R  is called 

strongly regular if it is both left and right strongly 
regular. 

In this study, we introduce a relation   on a given 

  semihyperring .R  and we show that the transitive 
closure of this relation is strongly regular, and the 
quotient /R    is a /    semiring. 

Let A  and B  be two non-empty subsets of  
semihyperring .R  We define 

1

( ) = { |   , },

( ) { |  , , },

( ) = { | ,

, ,  }.

n

i i ii

i i i

i A B t R x a b a A b B

ii A B t R t a b a A b B

iii A B t R t a b

a A b B n

 







     

      

  

   




 

Results 

Definition 2.1. Let ( , )R   and ( , )   be semihyper-

groups. Then R  is said to be a   semihyperring if 
there exists a mapping ( )R R P R   (image to be 

denoted by a b  for ,a b R  and   ) such that the 

following conditions are satisfied for all , , :a b c R  

(i) ( ) = ,a b c a b a c     

(ii) ( ) = ,a b c a c b c     

(iii) ( ) = ,a c a c a c      

(iv) ( ) = ( ) .a b c a b c     

In the above definition if ( , )R   and ( , )   are 

canonical hypergroups, then R  is called a  
hyperring. For example, let ( , , )R    be a Krasner 

hyperring and   be an ideal of .R  Then R  is a  
hyperring with respect the following hyperoperation: 

,x y x y     

where ,x y R  and .   

Suppose that    is the fundamental relation on   

and RU  is the set of all finite sums of elements of R . 

We define the relation   as follows: 

 { , } ,a b a b u    

where = ( ).R Ru U U R R U R R        

We denote the transitive closure of   by .   The 

equivalence relation    is called fundamental 

equivalence relation on .R  We denoted the equivalence 
class of the element a  by ( ).a   Hence, ( ) = ( )a b    

if and only if there exist 1 2 1, ,..., nx x x   with 

1 1= ,..., =nx a x b  and 1,..., nu u  such that 1{ , }i ix x 

iu  for {1,2,..., }.i n  

Let 1 1( , )R   and 2 2( , )R   be 1   and 2 
semihyperrings, respectively and 1 2:f     be a map. 

Then 1 2: R R   is called a 1 2( , )   homomorphism 

or shortly homomorphism, if for every ,x y R  and 
,   

(i) ( ) = { ( )| } ( ) ( ),x y t t x y x y         

(ii) ( ) = { ( ) | } ( ) ( ) ( ),x y t t x y x f y         

(iii) ( ) = ( ) ( ).f x y f x f y   

In the above definition if ( ) = ( ) ( )x y x y     

and ( ) = ( ) ( ) ( ),x y x f y      then   is called a 

strong homomorphism. The set ker  {( , )a b  

1 2 | ( ) ( )}R R a b    is called the kernel  of  . The 

homomorphism ( , )f  is an epimorphism if   and f  

are onto and is an isomorphism if   and f  are 

isomorphisms. 
 

Proposition 2.4. The relation    is a strongly regular. 

Proof. Suppose that a b   and x  is an arbitrary 

element of .R  It follows that there exist 0 =x

1, ,..., =na x x b  such that for all {0,1,..., 1}i n   we 

have 1.i ix x   Let 1s a x   and 2 .s b x   We check 

that 1 2s s  . From 1i ix x   it follows that there is 

,iu U  such that 1{ , }i i ix x u   and so iu x   and 

1 ,i ix x u x     which means that 1( ) ( ).i ix x x x    

Hence for all {0,1,..., 1}i n   and for all i it x x   

we have 1.i it t   If we consider 0 1= ,t s  and 2= ,nt s  
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then we obtain 1 2 .s s   In the same way, we can prove 

( ) ( )a x b x    where .   Then    is strongly 

regular on the right and similarly, it is strongly regular 
on the left. � 
 
Theorem 2.5. Let R  be a   semihyperring. Then the 
relation    is the smallest equivalence relation on R  

such that the quotient /R    is a /    semiring with 

the following operations: 
( ) ( ) = ( ),a b c      for some ( ) ( ),c a b     

( ) ( ) ( ) = ( ),a b d           

for some ( ) ( ) ( ).d a b       

 
Proof. The proof is straightforward. � 

In Theorem 2.5, if R  is a   hyperring, then /R    

is a /    ring such that (0)   is a zero element of 

( / , )R     and for every ( ),a     (-a) is an inverse 

element of ( ).a   

Let G  be the free commutative semigroup generated 
by / / .R     We define a relation   on G  as 

follows: 

=1 =1

( ( ) , ( )) ( ( ) , ( )) ,
n m

i i j j
i j

x y           
  

   
   

if and only if 

=1

=1

( ) ( ) ( )

= ( ) ( ) ( )

n

i ii

m

j jj

x a

y a

   

   

  

  





 

 
, 

for all ( ) /a R   . This relation is a congruence on 

.G  We denote congruence class containing 

=1
( ( ) , ( ))

n

i ii
x     by  =1

( ( ) , ( )) .
n

i ii
x      

Hence /G   forms a semiring with the following 
multiplication: 

=1 =1

,

( ( ) , ( )) ( ( ) , ( )

= ( ( ) ( ) ( ) , ( )) .

n m

i i j j
i j

i i j j
i j

x y

x y y

       

     

   

   

  
  

   

 
 
 

 

  

 

Obviously, ( (0) , ( ))      is a zero element of G  

and 
1

( ( ) , ( ))
n

i i
i

x    



  is an inverse element of 

1

( ( ) , ( )).
n

i i
i

x    


  

The above semiring is called fundamental semiring 
of   semihyperring .R  If R  is a   hyperring, then 
G  is a ring and is called fundamental ring of  
hyperring R . We denote the fundamental semiring by 

( ).F R  The category G H  of all   semihyperring in 

which the objects are  -semihyperrings, for    and 
  semihyperrings 1R  and 2 ,R  respectively, 

1 2( , )Mor R R  is the set of all strong epimorphism from 

1R  to 2 .R  For 1 1( , ),R   2 2( , ),R   3 3( , )R   and 1 1( , )f

1 2( , ),Mor R R  2 2 2 3( , ) ( , ),f Mor R R   2 2 1 1( , ) ( , )f f 

1 3( , )Mor R R  denotes the usual composition of maps 

and is a homomorphism. For every ( , )R   the map 

( , ) :RI I R R   is a strong epimorphism and it 

satisfies ( , ) ( , ) = ( , )RI I f f    for every ( , )f 
'( , )Mor R R  and ( , ) ( , ) = ( , )Rf I I f   for every 

( , ) ( , ).f Mor R R   The usual composition of maps 

satisfies the associative law and is true for 
homomorphism. 

The category SR  of all semirings in which the 
objects are semirings, for semiring 1R  and 2R , 

1 2( , )Mor R R  is the set of all homomorphism and 

:RI R R  is the usual identity map and it is semiring 

homomorphism satisfying =RI   for every  
( , )Mor R R   and = ,RI     for ( , ),Mor R R   the 

composition is the usual composition of 
homomorphisms. 

 
Theorem 2.6. Let 1R  and 2R  be 1   and 2 
semihyperrings, respectively and 1 1( , ) : ( , )f R 

2 2( , )R   be a strong epimorphism. Then there is a 

homomorphism 1 2: ( ) ( )F R F R  . Moreover, if 

( , )f  is an isomorphism, then   is an isomorphism. 

 
Proof. We define 

  
 

1 1 1=1

2 2 2=1

( ( ) , ( ))

= ( ( ( )) , ( ( ))

n

i ii

n

i ii

x

x f

    

    

 

 




, 

first, we prove that   is a well-defined. If 

   1 1 1 1 1 1=1 =1
( ( ), ( ) = ( ( ), ( ) ,

n m

i i j ji j
x y             

then 
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=1 1 1 1

=1 1 1 1

( ) ( ) ( )

= ( ) ( ) ( )

n
i i i

m
j j j

x a

y a

   

   

  

  





 

 
, 

for every 1 1 1( ) / .a R    

We define 

1 1 1 1 2 2 2 2( , ) : ( / , / ) ( / , / )f R R           

1 1 2 2( ( ) , ( )) ( ( ( )) , ( ( )).x x f           

Let 1 1 2 2( ( ) , ( )) = ( ( ) , ( ))x y         . Then there are 

1 2 1, ,..., my y y   and 

1 2 1 1 1 11 1
, ,..., ( ) ( ),m R Ru u u U R R U R R        

with 1 = ,y x 1 =my y  such that 1{ , }i i iy y u   for 

{1,2,..., }i m , which implies that { ( ),iy

1( )} ( ).i iy u    Since   is a homomorphism, 

2 2 2 22 2
( ) ( ) ( ).i R Ru U R R U R R         

Hence, * *
2 2( (x)) = ( (y)).     In the same way, 

2 2( ( )) = ( ( )).f f      Thus ( , )f  is well-defined. We 

have ( , )f  is a homomorphism. Because 

1 1 1( , )( ( ) ( )) = ( , )( ( ))f a b f c        for some 

1 1( ) ( ),c a b     

we know that 1 1( ) = ( )c d    for some d a b  . 

Hence, 

1 1 2

2 2

1 1

( , )( ( ) ( )) ( )

= ( ) ( )

=( , )( ( )) ( , )( ( )).

f a b d

a b

f a f b

   

 

   

  

 

 

 





 

In the same way, 

1 1 1

1 1 1

( , )( ( ) ( ) ( ))

= ( , )( ( )) ( , )( ( )) ( , )( ( )).

f a b

f a f f b

    

      

  

  

 

 
 

Since ( , )f  is a homomorphism, we have 

=1 1 1 1

=1 1 1 1

( , )( ( ) ( ) ( ))

= ( , )( ( ) ( ) ( )).

n
i i i

m
j j j

f x a

f y a

    

    

  

  





 

 
 

Hence, 

=1 2 2 2

=1 2 2 2

( ( )) ( ( )) ( ( ))

= ( ( )) ( ( )) ( ( )).

n
i i i

m
j j j

x f a

y f a

     

     

  

  





 

 
 

Since   is onto, 

2 2 2
=1

2 2 2
=1

( ( ( )) , ( ( )))

= ( ( ( )) , ( ( ))) .

n

i i
i

m

j j
j

x f

y f

    

    

 

 

 
 
 

 
 
 




 

Therefore,   is well-defined. We prove that   is a 

homomorphism. 
Since, for ,i j i i jd x y , 1 , 1 ,( ) = ( )i j i jc d    we 

have 

1 1 , 1
,

1 1 , 1
,

2 2 , 2
,

( ( ) , ( ))

= ( ( ) , ( ))

( ( ( )) , ( ( )))

i j j
i j

i j j
i j

i j j
i j

c

d

d f

    

    

    

 

 

 

  
     

  
     

 
  

 







 

We know that ,( )i jd ( )i i jx y  =

( ) ( ) ( )i i jx f y   2 2 2( ( )) ( ( )) ( ( ))i i jx f y        . 

Hence 

1 1 1
=1

1 1 1
=1

1 1 1 1 1
=1 =1

2 2
=1 =1

2 2 2

( ( ) , ( ))

( ( ) , ( ))

= ( ( ) , ( ))( ( ) , ( ))

= ( ( ( )) ,

( ( )))( ( ( )) , ( ( )))

=

n

i i
i

m

j j
j

n m

i i j j
i j

n m

i
i j

i j j

x

y

x y

x

f y f

    

   

       

  

     

 

 

 

   



  

  
  

 

 
   

  
     





















1 1 1
=1

1 1 1
=1

( ( )) , ( ))

( ( ) , ( )) .

n

i i
i

m

j j
j

x

y

  

    

 

 

  
  

  

  
      




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1 1 1 1 1 1
=1 =1

1 1 1 1 1
,

1 1 , 1
,

2 2 , 2
,

( ( )), ( )) ( ( ), ( ))

= ( ( ) ( ) ( ), ( ))

= ( ( ), ( ))

( ( ( )), ( ( )))

n m

i i j j
i j

i i j j
i j

i j j
i j

i j j
i j

x y

x y

c

d f

        

       

    

    

   

   

 

 

   
        

  
     

  
     






 







 



2 2 2
,

2 2

1 1 1
=1

1 1 1
=1

= ( ( ( )) ( ( ))

( ( )), ( ( )))

= ( ( ), ( ))

( ( ), ( )) ,

i i
i j

j j

n

i i
i

m

j j
j

x f

y f

x

y

    

   

    

    

 

 

 

 


 







  
  

  

  
     











 

where , 1 1 1( ) ( ) ( ).i j i i jc x y       

Hence   is a homomorphism. Let ( , )f  is an 

isomorphism. We prove that   is an isomorphism. It is 

enough to we prove that   is one-to-one. Suppose that 

1 1 1
=1

1 1 1
=1

( ( ) , ( ))

= ( ( ) , ( )) .

n

i i
i

m

j j
j

x

y

    

    

 

 

  
  

  

  
     




 (*) 

Firstly, we prove that ( , )f  is one-to-one. Suppose 

that 

1 1 1 1( , )( ( ) , ( )) = ( , )( ( ) , ( )).f x f y            

Then, 2 2( ( )) = ( ( ))x y      and 2 ( ( ))=f 

2 ( ( )).f   Hence there exist 1 2 1, ,..., my y y   

2R  and 

2 2 2 22 2
( ),i R Ru U R R U R R        

for {1,2,..., }i m  such that 1 = ( )y x , 1 = ( )my y  

and 

1{ , }         {1, 2,..., }.i i iy y u for i m    

Since,   and f  is one-to-one and onto, there are 

1ix R  and 

1 1 1 11 1
( ),i R Rv U R R U R R        

such that ( ) =i ix y  for {1,2,..., 1}i m   and 

1{ , }i i ix x v   for {1,2,..., }.i m  It conclude that 

1 1( ) = ( ).x y    Similarly, one can see that 

1 1( ) = ( ).      Therefore ( , )f  is an isomorphism. 

By   we have  

=1 2 2 2

=1 2 2 2

( ( )) ( ( )) ( ( ))

= ( ( )) ( ( )) ( ( )).

n
i i i

m
j j i

x f a

y f a

     

     

  

  





 

 
 

Hence, 

=1 1 1 1

=1 1 1 1

( , )( ( ) ( ) ( ))

= ( , )( ( ) ( ) ( )),

n
i i i

m
j j i

f x a

f y a

    

    

  

  





 

 
 

which implies that, 

=1 1 1 1

=1 1 1 1

( ) ( ) ( )

= ( ) ( ) ( ).

n
i i i

m
j j i

x a

y a

   

   

  

  





 

 
 

Therefore, 

1 1 1 1 1 1
=1 =1

( ( ) , ( )) = ( ( ) , ( )) .
n n

i i j j
i i

x y             
   
   
   

This implies that   is one-to-one. � 

 
Theorem 2.7. Let G H  be the category of Γ-
semihyperrings and SR  be the category of semirings. 
Then there is a covariant functor between G H  and 

.SR  
 
Proof. Suppose that 1R  and 2R  be 1   and 2 
semihyperrings, respectively. We define, ( ) = ( )T R F R  

which is a fundamental semiring and ( , ) = ,T f   

where 1 2( , ) ( , )f Mor R R   and   is defined 

homomorphism in Theorem 2.6. We prove that 
:T G H SR   is a covariant functor. Let 1 1( , ):f

1 1 2 2( , ) ( , )R R    and 2 2 2 2 3 3( , ):( , ) ( , )f R R     be 

strong epimorphisms. Let 1 1 1( , ) =T f   and 2 2( , )T f

2= .  We have  
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 1 1 2 2 1 1 1
=1

3 3 2 1 3 2 1
=1

( , ) ( , ) ( ( ) , ( ))

= ( ( ( )) , ( ( )) .

n

i i
i

n

i i
i

T f f x

x f f

     

     

 

 

  
  

  

 
 
 







 

 

Moreover, 

2 1 1 1 1
=1

2 2 2 1 2 1
=1

3 3 2 1 3 2 1
=1

( ( ) , ( ))

= ( ( ( )) , ( ( )))

= ( ( ( ( )) , ( ( ( ))) .

n

i i
i

n

i i
i

n

i i
i

x

x f

x f f

     

     

     

 

 

 

  
  

  

  
  

  

 
 
 









 

Thus, 2 2 1 1(( , ) ( , ))T f f  2 2 1 1= ( , ) ( , ).T f T f   

Let ( , ) : ( , ) ( , )RI I R R     be the identity 

homomorphism. Then 

( , ) : ( ) ( ),RT I I F R F R   

is an identity homomorphism. Therefore, T  is a 
covariant functor. � 
 
Proposition 2.8. Let 1R  and 2R  be 1   and 2 
semihyperrings, respectively, 1 1 2 2( , ):( , ) ( , )f R R     

be a strong epimorphism, 1, 1 1 1:( , ) ( )R F R    and 2, :

1 2 1( , ) ( )R F R   be maps, where defined by 1, ( )x

1 1 1= ( ( ), ( ))x      and 1, 1 2 2( )= ( ( ), ( )).x x       

Then there is a homomorphism 1 2: ( ) ( )F R F R   

such that the following diagram is commutative. 

( , )
1 1 2 2

1 2

( , ) ( , )

( ) ( )

fR R

F R F R





  
 


 

 

Proof. Suppose that   is the homomorphism defined in 

Theorem 2.6. We prove that 

1, 2, ( )= ( , ).f f       

Let x  be an element of R . Then  

1, 1,

1 1 1

2 2 2

( )( ) = ( ( ))

= ( ( ( )) , ( ))

= ( ( ( )) , ( ( ))),

x x

x

x f

    

    

    

 

 



 

and  

2, ( ) 2 2 2( , )( ) = ( ( ( )), ( ( )).f f x x f         

Therefore, 1, 2, ( ) ( , )f f       and this 

completes the proof. � 
Suppose that R  is a semiring. A relation   on R  

is called compatible if 1 1( , )a b   and 2 2( , )a b   

imply 1 2 1 2( , )a a b b   and 1 2 1 2( , )a a b b     for 

every 1 1 2 2, , , .a b a b R  

A compatible equivalence relation is called 
congruence. If   is a congruence on semiring R , then 

we can define a binary operations on the quotient 
/ { ( ) | }R x x R    in a natural way as follows: 

1 2 1 2

1 2 1 2

( ) ( ) = ( ),

( ) ( ) = ( ).

a a a a

a a a a

  
  

 


 

for every 1 2, .a a R  

One can see that the above operations are well-
defined and /R   is a semiring. Let R  and R   be 

semirings and : R R   be a homomorphism. Then 

the relation = {( , ) | ( ) = ( )}ker a b R R a b     is 

congruence on R  and there is a monomorphism 
: /R ker R    such that =Im Im  . 

Let R  be a  -semihyperring and   be an 

equivalence relation on /R   . We define 

 
 

=1

=1

= ( ( ) , ( ) ,

( ( ) , ( )) :

n

i ii

m

j jj

x

y

    

   

  

 




 

     
     

*

1

1

, ,

, :

n

i ii

m

i ij

x

y

    

   

 


 


 


 






=1

=1

( ) ( ) ( ),

( ) ( ) ( )

,  ( ) / .

n

i ii

m

j jj

x y

y y

for every y R

   

   

  

  

  

  





 

   

 

Proposition 2.9. Let 1R  and 2R  be 1   and 2 
semihyperrings and 1( )F R , 2( )F R  be corresponding 

semirings, respectively. Suppose that there exists a 
strong epimorphism ( , )f  of the 1 -semihyperring 1R  
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to the 2  semihyperring 2R  and ( , ) :f

1 1 1 1( / , / )R    2 2 2 2( / , / )R     . Then, 

1
2

( )
( ).

( (( , ))

F R
F R

ker f 
  

 

Proof. Let us define a mapping 1 2: ( ) ( )F R F R   by 

1 1 2
=1

2 2 2
=1

( ( ) , ( ))

= ( ( ( )) , ( ( )) ,

n

i i
i

n

i i
i

x

x f

    

    

 

 

  
  

  

 
 
 




 

for every  1 1 2 1=1
( ( ) , ( )) ( )

n

i ii
x F R      . By 

Theorem 2.6, ( , )f  and   are homomorphisms. 

Hence,  

 
 

1 1 1=1

1 1 1=1

= ( ( ), ( )) ,

( ( ), ( )) :

n

i ii

n

j ji

ker x

y

    

   

 

 




 

  
  

1 1 1=1

1 1 1=1

( ( ) , ( ))

= ( ( ) , ( )) .

n

i ii

n

j ji

x

y

    

    

 

 




 

This implies that = ( ( , ))ker ker f   . This 

completes the proof. � 
Let 1R  and 2R  be 1   and 2  semihyperrings. 

Then 1 2R R  is a 1 2( , )   semihyperring with respect 

the following hyperoperations: 

1 1 2 2 1 2 1 1 2 2 1 2( , ) ( , )={( , )| , },a b a b z z z a a z b b      

1 1 1 2 2 2

1 2 1 1 1 2 2 1 2 2

( , ) ( , ) ( , )

= {( , ) | , }.

a b a b

z z z a a z b b

 

 

 

 
 

 

Proposition 2.10. Let 1R  and 2R  be 1   and 2 
semihyperrings, respectively. Then 

1 2 1 2( ) ( ) ( ).F R R F R F R   

 

Proof. Let , 
1
  and 2

  be fundamental relations on 

1 2 ,R R 1R  and 2 ,R  respectively. It is easy to see that 

1 2 1 2

1 2

.
R R R R

    


  

Let G  be a free commutative semigroup on 

1 2 1 2

1 2 1 2

( ) ( )
R R

      

 
   . We define relation   on G  as 

follows: 

1 2 1 2
=1

1 2 1 2
=1

(( ( ) , ( )) , ( ( ) , ( )) ,

(( ( ) , ( )) , ( ( ), ( ))) ,

n

i i i i
i

m

j j j j
j

x y

x y

     

      

   

   






    






 

if and only if 

1 2 1
=1

2 1 2

1 2 1
=1

2 1 2

( ( ) , ( )) ( ( ) ,

( )) ( ( ) , ( ))

= ( ( ) , ( )) ( ( ),

( )) ( ( ), ( )).

n

i i i
i

i

m

j j j
j

j

x y

x y

x y

x y

   

   

   

   

  

  

  

  





  

 




 

For every 1 2
1 2

1 2

( ( ), ( ))
R R

x y 
 

 
   . We define 

1 2 1 2: ( ) ( ) ( )F R R F R F R     

1 2 1 2
=1

1 1 2 2
=1 =1

(( ( ),( ( )),( ( ), ( ))

( ( ), ( )) , ( ( ), ( )) .

n

i i i i
i

n n

i i i i
i i

x y

x y

      

       

   

   

 
 
 

    
    

    



 



 

Obviously, this function is well-defined. We prove 
that   is a homomorphism. We have 

1 2 1 2
=1

1 2 1 2
=1

(( ( ) , ( )) , ( ( ), ( ))

(( ( ) , ( )) , ( ( ) , ( ))

n

i i i i
i

m

j j j j
j

x y

x y

       

      

   

   

  
  

 

 
      




 



1 1 2
,

2 2 1 2

(( ( ) ( )) ( ) , ( )

( ) ( ) , ( ( ) , ( ))

i i j i
i j

i j j j

x x y

y

      

      

   

   

 
   

  

  

 

 

' '
1 , 2 , 1 2

,

( ( ) , ( )) , ( ( ) , ( )) .i j i j j j
i j

c d          
  

      
  
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1 2 1
=1

1 2 1
=1

( ( ) , ( ( )) , ( ( ) , ( )

( ( ) , ( ( )) , ( ( ) , ( ) ,

n

i i i i
i

n

j j j j
i

x y

x y

       

       

   

   

  
   

  

       
  




 

where, , 1 1 1( ) ( ) ( )i j i i jc x x        and , 2 ( )i j id y 

2 ( )i 
1 ( ).jy    Hence   is a homomorphism. One 

can see that   is one-to-one and onto and this 

completes the proof. � 
 
Theorem 2.11. Let 1R , 2R  and 3R  be 1  , 2   and 

3  hyperrings, respectively and 1 1 1 1( , ) : ( , )f R 

3 3( , ),R   2 2 2 2 3 3( , ) : ( , ) ( , )f R R     be strong 

epimorphisms. Then there is a ring R  and 

3 2: ( )R F R  , 4 1: ( )R F R   such that the 

following diagrams is commutative. Moreover, if R   is 

a semiring and 4 1: ( )R F R    , 4 2: ( )R F R     are 

homomorphisms such that following diagrams 
commutative, then there exists a unique homomorphism 

: R R    such that 4 4     and 3 3 .     

3

1

2

1 3

( )

( ) ( )

R F R

F R F R






 


 

3

1

2

1 3

( )

  

( ) ( )

R F R

F R F R





 
 


 

 
Proof. Suppose that 1( )F R , 2( )F R  and 3( )F R  are 

fundamental rings of 1 1( , ),R  2 2( , )R   and 3 3( , ),R   

respectively. Let 2 2 3: ( ) ( )F R F R   and 1 1: ( )F R

3( )F R  be homomorphisms defined in Theorem 2.6. 

Take 

 
 
1 1 11

2 2 2 1 21

( ( ) , ( )) ,

( ( ) , ( )) ( ) ( ) |

n

i ii

m

j jj

R x

y F R F R

   

   

 


 




 




 

  
  

1 1 1 11

2 2 2 21

( ( ) , ( ))

( ( ) , ( )) ,

n

i ii

m

j jj

x

y

    

    

 


 







 

and we define 3 2: ( )R F R   and 4 1: ( )R F R   

by 

 
 

 

4 1 1 1=1

2 2 2=1

1 1 1=1

( ( ) , ( )) ,

( ( ) , ( ))

= ( ( ) , ( )) ,

n

i ii

m

j jj

n

i ii

x

y

x

    

   

   

 

 

 







 

 
 

 

3 1 1 1=1

2 2 2=1

2 2 2=1

( ( ) , ( )) ,

( ( ) , ( ))

= ( ( ) , ( )) .

n

i ii

m

j jj

m

j jj

x

y

y

    

   

   

 



 







 

The maps 3  and 4  are homomorphisms and 

1 4 2 3     . 

Let R   be a semiring with homomorphism 

3 2: ( )R F R     and 4 1: ( )R F R     such that 

1 4 2 3=      . Define : R R    by ( ) =x

4 3( ( ), ( ))x x    x R . Since, for every ,x R  

1 4 2 3( ) = ( )x x      , χ is well-defined. Obviously, 

  is a homomorphism. Let :R R    be a homo-

morphism such that 4 4      and 3 3     . 

Then 

4 4( ) ( , ) ,x a b b      

where ( ) ( , )x a b  . Hence 4 ( ) .x b    In the same 

way, '
3 ( ) .x a   Therefore, .   This completes the 

proof. � 
In this paper, we consider   semihyperrings which 

is a new kind of hyperalgebra and is a generalization of 
semihyperrings, hyperrings and rings. Some related 
properties of   semihyperrings are described. In 
particular, we introduce strongly regular relation, 
fundamental relation and fundamental semiring. The 
main tools in the theory of hyperstructures are the 
fundamental relations. By using these concepts, we 
obtain a covariant functor between the category of  
semihyperrings and the category of semirings. 
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