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Abstract 

Let 1,..., nX X  be a random sample from a normal distribution with unknown 

mean   and known variance 2.  The usual estimator of the mean, i.e., sample 
mean ,X  is the maximum likelihood estimator which under squared error loss 
function is minimax and admissible estimator. In many practical situations,   is 
known in advance to lie in an interval, say [ , ]m m  for some 0.m   In this case, 

the maximum likelihood estimator changes and dominates X  but it is no longer 
admissible. Minimax and some other estimators for this problem have been 
studied by some researchers. In this paper, a new estimator is proposed and the 
risk function of it is compared with some other competitors. According to our 
findings, the use of X  and the maximum likelihood estimator is not 
recommended when some information are accessible about the finite bounds on 
[ , ]m m  in advance. Based on the values taken by   in [ , ]m m , the appropriate 
estimator is suggested. 
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Introduction 

In the statistical literature it is often assumed that the 
parameter space is unbounded which seems to be never 
fulfilled in practice. In various physical, industrial and 
biological experiments, the experimenter has often some 
prior knowledge about the parameter(s) of the 
underlying population. The average per capita income 
of a developing country is likely to lie between those of 
an underdeveloped and a developed country. The 
average fuel efficiency of a new model of passenger car 

will lie between those of an old model and a formula 
one racing car. Examples of similar nature where mean 
of a real phenomena lies in a bounded interval abound 
in practice (e.g., physical attributes such as height or 
weight of people, average life of animals). Therefore 
there is practical interest to include such additional 
information into statistical procedures. 

Surprisingly, while the assumption of boundedness 
can be useful in practice, it introduces some challenging 
problems in theory. Such problems first arose with the  
practical problem in 1950 in which two probabilities 1  
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and 2  known to satisfy the restriction 1 2 ,   needed 

to be estimated. Maximum likelihood estimation was 
used for this purpose. Later Maximum Likelihood 
Estimators (MLEs) were shown to be inadmissible 
under Squared Error Loss (SEL) function 

2( , ) ( .)L       (1) 

That is, it was shown that there exist estimators 
which are better than the MLE in the sense that their 
expected loss, i.e., ( , ) [ ( , )]R E L    , as a function 

of the parameter to be estimated, is nowhere larger and 
somewhere smaller than that of the MLE. This then led 
to the search for dominators for these inadmissible 
estimators as well as for admissible estimators with 
“good properties”. One such property is that of 
minimaxity where an estimator is minimax when there 
does not exist an estimator with a smaller maximum 
expected loss. Examples of problems addressed in the 
restricted parameter spaces, can be found in [1], [21], 
[29] and the recent treatise by ven Eeden [30] for 
detailed discussion. 

Let 2~ ( , )X N    denote a random variable having 

normal distribution with the probability density function 

2
2
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( | , ) , ,
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

 


 
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where, it is supposed that variance 2  is known and the 
unknown mean ,  lies in an interval of the form 
[ , ],m m  for some known 0.m   The first study in 

estimating the bounded normal mean under SEL 
function dates back to 1981. Casella and Strawderman 
[5] showed that, when 00 1.05,m m    there exists a 

unique admissible and minimax  estimator of ,  
associated with a symmetric two-point prior on 

 ,m m  and proved that it dominates the MLE of ,  

when 0 1.m   They also gave a class of admissible 
and minimax estimators for the case when 
1.4 1.6m  . These estimators are minimax with 
respect to (w.r.t.) a symmetric three-point prior on 

 ,0, .m m  Bickel [3] presented an estimator which is 

asymptotically minimax as ,m   and showed that 
the weak limit of the least favourable prior (rescaled to 

[ 1,1] ) has the density 2 ,
2

cos
 
 
 

| | 1   and the 

minimax risk is 2 2 21 ( ).m o m     After these initial 

works, several authors considered the estimation 
problem in restricted parameter spaces under SEL 
function.  Moors [23, 24] assumed a bounded estimation 

problem is invariant w.r.t. a finite group of 
transformations and constructed dominators of a 
boundary estimator. He then applied his results into the 
estimation problem of a bounded normal mean. 
Gatsonis et al. [10], considered the Bayes estimator 
w.r.t. the uniform prior on the interval [ , ],m m  as a 

competitor for the sample mean ,X  and showed that it 

dominates .X  They further numerically compared risk 
performance of their Bayes estimator, the MLE, the 
minimax estimator, and the Bayes estimator w.r.t. the 
Bickel’s prior, and finally recommended the use of their 
proposed estimator.  In addition to [23, 24], the 
estimation in restricted parameter spaces under SEL 
function, in a very general setting, was considered in [7] 
and [6].  DasGupta [7] in estimating a vector ( )h   

when   is restricted to a small bounded convex subset 
  of k  and derived sufficient conditions under which 
the Bayes estimator w.r.t. a least favourable prior on the 
boundary of   is minimax. He then applied his results 
in some distributions including the normal distribution 
and showed that the Bayes estimator w.r.t. two-point 
prior considered in [5] is minimax when 0.643.m   
Conditions for inadmissibility or either methods of 
constructing dominators within a given class of 
estimators were given in [6]. Kumar and Tripathi [14], 
on the basis of MLE, proposed another estimator and 
compared the risk performance of it with the above-
mentioned estimators. Dou and van Eeden [8], showed 
the inadmissibility conditions in [6] are satisfied for the 
bounded normal mean problem and hence, by giving an 
explicit form of a dominating estimator, derived 
inadmissibility of MLE of the mean .  Lately, the 
general theory of estimating parameters of a symmetric 
distribution which is subject to an interval constraint, 
under SEL function developed in [20]. See also [16] for 
a similar development done under SEL function. 

It is worth mentioning that the problem of estimating 
a normal mean   in the case where   is bounded 
below, i.e., ,a   for some constant ,a  also received 
considerable attention in the literature. Estimation of a 
positive normal mean was first considered in Katz [12]. 
Katz proposed the generalized Bayes estimator of   
w.r.t. the uniform prior on [0, )  and proved its 

admissibility and minimaxity under SEL function. He 
also proved that the restricted MLE, is minimax. The 
results of Katz were independently proved in [25] and 
generalized in [9] to a general location parameter family 
under certain conditions. Thereafter, the problem of 
estimating a positive normal mean has developed in the 
literature, see for example, [28], [26] and references 
there in. 



Estimating a Bounded Normal Mean Relative to Squared Error Loss Function 

269 

The concept of Bayesianity, admissibility and 
minimaxity highly depends on the choose of loss 
function. It is worth noting that there exist some other 
works related to restricted parameter estimation 
problem, considering other losses. Zeytinoglu and Mintz 
[31] obtained an admissible minimax estimator of 

[ , ]m m    for the zero-one loss function 

1 | |
( , )

0 | | ,

e
L

e

 
 

 

  
 

 

where 0e   is known and .m e  For the case where  
2 ,e m e   their admissible minimax estimator is 

given by 

( ) | |

.
Z

m e X m e

d X X X m e

m e X m e

    
  
   

 

Bischoff et al. [4] under the LINear Exponential 
(LINEX) loss function 

( )( , ) ( ) 1, 0,cL e c c          

where c  is a known constant, showed that the Bayes 

estimator w.r.t. a two-point prior on { , },m m  when 

min{ ( 3 1) / 2, log3 / (2 )}m c c   and 0,c   is 

minimax. Towhidi and Behboodian [27] considered the 
so-called reflected normal loss function 

2 2( ) / 2( , ) 1 ,L e        

where   is a known positive value. They proved that 

the Bayes estimator w.r.t. a symmetric two-point prior 
on { , },m m  when 2 ,m   is minimax but their result 

needs correction (see [30], p. 48). Iwasa and Moritani 
[11] under Absolute Error Loss (AEL) function 

( , ) | |,L       

showed that MLE of the bounded mean   is the unique 
Bayes estimator associated with a specific prior and 
hence, achieved the admissibility of the MLE. 

Recently, Kucerovsky et al. [13] investigated 
Bayesianity of MLEs under AEL, for estimating the 
location parameter of symmetric and unimodal density 
functions in the presence of a lower (or upper) bounded 
and interval constraints. Their results in the bounded 
normal mean case, extends the results obtained in [11]. 
Marchand and Strawderman [22] studied the problem of 
estimating a location parameter   for loss functions of 
the form ( , ) ( ),L        under the restriction 

a   (known a ). They showed that the Bayes 

estimator with respect to a uniform prior on [ , )a   is 

minimax. Then extending some previous dominance 
results due to [12] and [9], they obtained classes of 
dominators and extended their results to the case when 

[ , ].a b   

In a historical view, it is worth noting that Marchand 
and Perron [17, 19] showed, in the multivariate version 
of the estimation problem of a bounded normal mean, 
that the Bayes estimator w.r.t. the uniform prior on 

 0:|| || m     (known 0 ) dominates MLE of   on 

the restricted parameter space  0:|| ||m m       

whenever m p  for the model ( , ).p pX N I  For 

the case 1,p   their result yields the result obtained in 

[5] (with 0 0  ). Findings concerning the minimaxity 

of the Bayes estimator for small enough m  were given 
in [2], [18] and [21]. 

In this paper we considered estimation of mean of a 
normal distribution under the additional assumption that 
the mean lies in the interval [ , ], 0.m m m     Based 

on a random sample of size ,n  a new estimator is 
proposed and assuming SEL function, it is compared 
with the other estimators derived by some researches 
until 2009. To this end, first, all competitors for MLE of 
the mean   are extended to the case when the sample 
size is n  and then, a new estimator is derived. Note that 
the distribution of the obtained estimators is unknown 
and impossible to obtain. Risk function of the estimators 
is quite complicated, as well. Hence, using a simulation 
study, risk performance of estimators is compared to 
reach the appropriate one. It will be seen that the new 
estimator takes the minimum risk estimated values 
among the estimators for moderate values of   in the 
interval [ , ].m m  

Estimators for the Normal Mean  
When [ , ]m m    

Let 1, , nX X  be a random sample from 2( , )N    

where [ , ]a b   and 2  is known. Without loss of 

generality, we assume 1   and [ , ], 0.m m m     

Under SEL function, the sample mean, ,X  is not 
admissible and dominated by MLE of ,  which is given 
by 

( ) | |

.
MLE

m X m

d X X X m

m X m

  
 
   

Hence, when   belongs to the bounded parameter 
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space [ , ], 0,m m m    X  is no longer minimax 

and MLEd  is preferred to .X  Now, considering risk 

value as a comparative criterion, finding competitors for 

MLEd  becomes interesting. 

In the rest of this section, we extend the result of the 
previous works in estimating a bounded normal mean to 
the case when the sample size is .n  The idea is based 

on the fact that *~ ( ,1),nX N   where * n   and 
* [ , ].m n m n    

The following lemma plays a pivotal role in pursuing 
the theories. 
 
Lemma 1 (Lehmann and Casella [15], P. 228) Let 
given ,  X have distribution .P  Then in problem of 

estimating   with non-negative SEL function (1), the 
Bayes estimator is given by ( ) [ | ].X E X   

I. Bayes Estimator w.r.t. a Symmetric Two-point Prior 

Casella and Strawderman [5] considered the 
following symmetric two-point prior 

0

 
1

2( )
1

.
2

m

m

m


 



   
 
  

It can be easily verified that the posterior distribution 
of   given X x  is 

0 { ( )}
( | )

{ ( )} { ( )}
m

n x
x

n x m n x m

  
 




   , 

 ,m m   , 

where, (.)  denotes the density functions of a standard 

normal random variable. Using Lemma 1, the Bayes 
estimator w.r.t. SEL function is the mean of the 
posterior distribution and can be obtained as 

0 ( ) tanh( ),md X m mnX  

where tanh(.)  is the tangent hyperbolic function. 

The result of Casella and Strawderman [5] implies 
that 0

md  is the unique minimax and admissible estimator 

for 1.0567.m n   It also can be deduced that 0
md  

dominates MLEd  when 1.m n   

II. Bayes Estimator w.r.t. a Symmetric Three-point 
Prior 

For large values of ,m  Casella and Strawderman [5] 
considered the following symmetric three-point prior 

0
( ) 1

, .
2

m m m


 
   


  

 

 

Hence, the posterior distribution of   given X x  
is 

( | )

2 { ( )}
, 0,

(1 ) { ( )} (1 ) { ( )} 2 { ( )}

2(1 ) { ( )}
, , .

(1 ) { ( )} (1 ) { ( )} 2 { ( )}

m x

n x

n x m n x m n x

n x
m m

n x m n x m n x
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   
    

   
    



 


     


         

 

Hence, the Bayes estimator of   under SEL function 
is obtained as 

2

2

(1 ) tanh( )
( ) ,

(1 ) sech( )
m nm

m mnX
d X

e mnX

 

 




   

where sech(.)  is the secant hyperbolic function. 

The result of Casella and Strawderman [5] implies 

that when 1.40 1.60,m n   there exists a unique   

for which md   is the unique minimax and admissible 

estimator of .  

III. Bayes Estimator w.r.t.Bickel's Prior 

Bickel [3] introduced the following prior in 
estimation of ,  

21
( ) cos , | | .

2mg m
m m

  
 
 

 
 

The posterior density of   is then 

{ ( )} ( )
( | ) ,

{ ( )} ( )

m
m

m

m

n x g
g x

n x g d

  

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





 

 m m   . 

As before, the Bayes estimator is the mean of 
posterior distribution and can be expressed as 

( ) 2

( )

( ) 2

( )

( ) cos { ( )}
1 2

( ) .
( ) cos { ( )}

2

n m X

n m X

B n m X

n m X

u
u u X du

m nd X X
un u X du

m n
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

 


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
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


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IV. Bayes Estimation  w.r.t. a Uniform Prior 

Gatsonis et al. [10] considered the uniform prior 

1
( ) , | | .

2mu m
m

  
 

The posterior distribution of   given X x  is 

{ ( )}
( | )

{ ( )} { ( )}
m

n n x
u x

n m x n m x

  

     , 

 m m   . 

where (.)  and (.)  denote the distribution and density 

functions of a standard normal random variable, 
respectively. The Bayes estimator under SEL function is 
obtained as 

   
   

( ) ( )1
( ) ,

( ) ( )
m

n X m n X m
d X X

n n X m n X m 

   
 

  
 

The results of Gatsonis et al. [10] imply that md  

dominates the sample mean X  (see also [14]). 

V. A Linearly Invariant Estimator 

Another competitor for MLEd  is obtained considering 

the works done by Moors [23, 24]. He considered a 
linearly invariant estimator based on a given boundary 
estimator, i.e., an estimator which takes boundary 
values of the parameter space with positive probability, 
and proved inadmissibility of the boundary estimator 
under SEL function. Obviously, in the estimation 
problem of a bounded normal mean, MLEd  is such a 

boundary estimator and applying his results, it is 
inferred that MLEd  is inadmissible and dominated by its 

projection onto 

[ tanh( | |), tanh( | |)].x m mn x m mn x    

(see also Kumar and Tripathi [14]). So, the dominating 
estimator of MLEd  is given by 

tanh( | |) tanh( | |)

( ) | | tanh( | |)

tanh( | |) tanh( | |)

Mr

m mn X X m mn X

d X X X m mn X

m mn X X m mn X

  
 




 

VI. Kumar and Tripathi's Estimator 

The last but not the least competitor for MLEd  

presented by Kumar and Tripathi [14]. They considered 
the average of MLE of   based on each random 
variable iX  alone, i.e., 

1

1
( ) ( ).

n

Km MLE i
i

d d X
n 

 X
 

They applied Rao-Blakwell theorem (see Lehmann 
and Casella [15], p. 47) and derived the following 
improved estimator of   

ˆ ( ) ( ) { ( )}
1

( ) { ( )}
1

1
[ { ( )}

1

{ ( )}].
1

Km

n
d X X m X m X

n

n
m X m X

n

n n
m X

n n

n
m X

n





     


    



 



 


 

Kumar and Tripthi [14], introduced ˆ
Kmd  as a 

competitor for MLEd  and numerically compared risk 

performance of all the estimators mentioned above with 
each other. 

A New Smooth Estimator 

In this section, we introduce a new competitor for 
.MLEd  This new and smooth estimator is based on the 

estimator suggested by Dou and van Eeden [8] and 
using the idea of Kumar and Tripathi [14]. For a single 
normal random variable, they suggested the use of the 
shrinkage estimator 

( ) | |

,
Ch

m X m

d X X X m

m X m

   
  
   

 



 

 

where 0 m  , and obtained sufficient conditions on 
  for which Chd  dominates MLE of .  Their main 

result is as follows. 
 
Theorem 1. (Dou and van Eeden [8]) Let ~X

( ,1)N   when | | ,m   0m  . Then  

is a class of dominating estimators of MLEd , where '  is 

the unique root of ( ) 0x  , where 

( ) (2 ) ( ) 2x g m x g x x      (2) 

'{ :0 }Chd   
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and ( ) 2 ( )g x x x   . 

In connection with Theorem 1, the unique root of eq. 
(2) for some selected values of m  have been calculated. 
These values are given in Table 1. 

Now, let Avd  be the average of Chd  based on each 

random variable alone, i.e. 

1

1
( ) ( ).

n

Av Ch i
i

d d X
n 

 X
 

Obviously, Avd  does not depend on the sufficient 

statistic ,X  and it can be improved using Rao-Blakwell 
theorem. Hence, a new estimator of   is derived by 

conditioning Avd  on the sufficient statistic .X  This 

estimator is given in the following theorem. 
 

Theorem 2 Avd  is an inadmissible estimator and its 

improvement is given by the following estimator 

' '

' '

'

'

ˆ ( ) ( ) |
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1
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  


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

X

 

 




 

where '  is the unique root of eq. (2). Moreover ˆ
Avd  has 

following properties 

(a) 'ˆ| ( ) |Avd x m m    for all .x   

(b) ' 'ˆ ˆlim ( ) , lim ( ) .Av Avx x
d x m d x m

 
      

(c) ˆlim ( ) .Avm
d x x


  

 
Proof. Notice that 

1

1

ˆ ( ) ( ) |

1
( )

( ) ,

Av Av

n

Ch i
i

Ch

d X E d X

E d X X
n

E d X X



   

   

   



X

 

where the last equality holds because iX ’s are 

identically distributed. Now using the fact that 
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Now, substituting the above relations in (3) and 

letting ,x X  the estimator ˆ
Avd  is obtained. To com-

plete the proof, note that Avd  takes its value between 

m    and .m   The properties (a), (b) and (c) are 
easily observed by using the properties of   and .  

Results and Discussion 

In the previous sections, estimation of the normal 
mean   when it is known to lie in an interval [ , ],m m  

has been considered. In this case, As noted, X  is 
dominated by MLEd . Hence in finding competitors for  

 
 

Table 1. Values of the unique root '  given by Eq. (2) 

m 0.25000 0.50000 0.75000 1.00000 1.25000 1.50000
' 0.19867 0.27846 0.21852 0.10119 0.03273 0.00824
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Table 2. Values taken by estimators when 4, 0.5n m   and ' 0.27846  

  X  MLEd  0
md  md   Bd  md  Mrd  ˆ

Kmd  ˆ
Avd  

0.00 -0.108026 -0.108026 -0.106376 -0.062929 -0.012896 -0.031374 -0.106376 -0.047022 -0.021756 

0.05 0.404061 0.404061 0.334277 0.219130 0.047934 0.113870 0.334277 0.170737 0.078776 

0.10 -0.100459 -0.100459 -0.099129 -0.058567 -0.011993 -0.029186 -0.099129 -0.043742 -0.020239 

0.15 0.273371 0.273371 0.249037 0.154421 0.032549 0.078390 0.249037 0.117524 0.054311 

0.20 0.349158 0.349158 0.301649 0.192929 0.041492 0.099192 0.301649 0.148727 0.068672 

0.25 0.099063 0.099063 0.097787 0.057761 0.011827 0.028782 0.097787 0.043137 0.019959 

0.30 0.655338 0.500000 0.432223 0.318931 0.076910 0.175863 0.432223 0.263289 0.120933 

0.35 -0.017732 -0.017732 -0.017724 -0.010388 -0.002118 -0.005162 -0.017724 -0.007736 -0.003580 

0.40 0.073097 0.073097 0.072581 0.042717 0.008728 0.021257 0.072581 0.031858 0.014742 

0.45 1.324101 0.500000 0.495015 0.450209 0.147837 0.293735 0.495015 0.426451 0.192650 

0.50 0.620883 0.500000 0.422979 0.307221 0.072996 0.167915 0.422979 0.251497 0.115599 

 
 

Table 3. Values taken by estimators when 4, 1n m   and ' 0.10119  

  X  MLEd  0
md  md   Bd  md  Mrd  ˆ

Kmd  ˆ
Avd  

0.0 0.109818 0.109818 0.413042 0.106345 0.040913 0.084637 0.109818 0.082421 0.076804 

0.1 -0.422565 -0.422565 -0.934180 -0.438604 -0.155198 -0.309361 -0.422565 -0.309903 -0.288155 

0.2 0.633724 0.633724 0.987511 0.658815 0.228490 0.436249 0.633724 0.450835 0.418053 

0.3 0.344863 0.344863 0.880828 0.352437 0.127302 0.257012 0.344863 0.255008 0.237294 

0.4 0.549323 0.549323 0.975613 0.575551 0.199686 0.388357 0.549323 0.396122 0.367759 

0.5 1.102342 1.000000 0.999704 0.928212 0.373597 0.636100 0.999704 0.705435 0.648657 

0.6 0.702436 0.702436 0.992773 0.719387 0.251397 0.472408 0.702436 0.493583 0.457204 

0.7 0.692585 0.692585 0.992183 0.711149 0.248144 0.467379 0.692585 0.487558 0.451695 

0.8 1.010425 1.000000 0.999383 0.899349 0.347305 0.604924 0.999383 0.662671 0.610435 

0.9 0.088560 0.088560 0.340129 0.085504 0.033006 0.068347 0.088560 0.066505 0.061976 

1.0 1.203685 1.000000 0.999868 0.951027 0.401315 0.666698 0.999868 0.748347 0.686729 

 
 

Table 4. Estimated Risk values when 4, 0.5n m   and ' 0.27846  

  ( , )MLER d  0( , )mR d  ( , )mR d  ( , )BR d  ( , )mR d  ( , )MrR d  ˆ( , )KmR d  ˆ( , )AvR d  

0.00 0.129643 0.099390 0.053518 0.003422 0.016953 0.099390 0.037568 0.007885 

0.05 0.128461 0.098245 0.053018 0.005252 0.017831 0.098245 0.037469 0.009355 

0.10 0.127330 0.098524 0.055481 0.011195 0.022232 0.098524 0.040851 0.014544 

0.15 0.123908 0.096847 0.057329 0.020779 0.028482 0.096847 0.044339 0.022686 

0.20 0.123873 0.098594 0.062638 0.034618 0.038446 0.098594 0.051343 0.034825 

0.25 0.119793 0.097408 0.067461 0.052111 0.050403 0.097408 0.058885 0.049918 

0.30 0.119413 0.097056 0.076369 0.074072 0.066509 0.100554 0.070425 0.069355 

0.35 0.115743 0.100554 0.081094 0.098394 0.082007 0.097056 0.079004 0.089871 

0.40 0.113317 0.103939 0.094672 0.128577 0.104664 0.103939 0.095700 0.116953 

0.45 0.111153 0.104499 0.104697 0.161470 0.127352 0.104499 0.110151 0.145622 

0.50 0.113898 0.111489 0.129830 0.199333 0.155200 0.111489 0.129965 0.179412 
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,MLEd  several alternatives have been pointed out. All 

the proposed estimators with the exception of ,X  are 
range-preserving, i.e., satisfy 

 ( ) [ , ] 1,P X m m    
 

and all are invariant with respect to the finite group of 
transformations  ,G e g  where ( )e x x  is an 

identity transformation and ( )g x x   for all .x   

Values taken by the estimators for some selected values 
of m  and ,n  have been computed based on a numerical 
simulation. These values are shown in Tables 2 and 3. 
Note that the values taken by X  for some ,  are 
outside the interval [ , ],m m  while the other estimates 

take values in the interval [ , ].m m  Especially ˆ
Avd  

takes values in the interval [ , ],m m     where   is 

the unique root of eq. (2). This property can be seen 
from Theorem 2. It is worth mentioning that the risk of 
X  is the constant 1 / n  but the risk functions of other 
estimators, cannot be evaluated in a closed form. 
Estimated risk values of all estimators have been 
presented for some selected values of n  and .m  Note 
that   has been chosen equal to 0.30,  when computing 

the risk function of .md   This is due to the minimaxity 

condition (see [5] and [14]). Note that in the interval 
'(0, ],  as   tends to ' ,  the difference between the risk 

function of Chd  and MLEd  becomes larger. So,   has 

been chosen equal to '  (this property can be seen from 
the results in [8]). Since the risk function of all 
estimators are symmetric about 0,   the estimated 
risks have been tabulated for [0, ].m   The estimated 

risks have been evaluated using a simulation study 
based on 10,000 generations of sample size n  from 

( ,1)N   population using a MATLAB package. The 

following conclusions can be drawn from the results: 
(a) The performance of MLEd  is very good w.r.t. .X  

As mentioned in the proceeding section, MLEd  

dominates the usual estimator .X  The risk function of 

MLEd  decreases, as   increases in the interval [0, ]m  

and takes its maximum when   is close to zero. But in 

these parts of the interval [0, ],m ˆ
Avd  has a sensible 

improvement. These properties are obviously observed 
from Tables 4-7. 

(b) The performance of 0
md  w.r.t. MLEd  is noticeable 

especially when 1m n  . As mentioned earlier, 
extending the results of Casella and Straderman [5], it is 
inferred that the Bayes estimator w.r.t. the symmetric 

two-point prior, i.e., 0
md  dominates ,MLEd  when 

1.m n   Obviously in Tables 4-7, the minimaxity 
condition holds true only in Table 4 and this  confirms 
the mentioned claim. However, for small and moderate 

values of   in the interval [0, ],m ˆ
Avd  has better 

performance than 0 .md  These properties are obviously 

observed from Tables 4-7. 

(c) The performance of md   when 1.40  m n

1.60,  is satisfactory. As mentioned in the previous 

section, when 1.40 1.60,m n  md   is a unique 

minimax and admissible estimator. Obviously the 
values of n  and m  in Table 6 satisfy this condition. 
Under minimaxity condition, estimated risk of md   

varies slowly but among the estimators better 
alternatives there exist. Tables 4-7 show that for small 

and moderate values of   in the interval [0, ],m ˆ
Avd  

performs better than .md   

(d) The performance of Bd  when   is close to zero 

is quite good. However, its risk increases rapidly as   
closes to .m  Numerical calculations yield that for some 
values of m  and ,n  when   closes to ,m  the risk of 

Bd  exceeds that of X (see Tables 5-7). It is worth 

noting that for moderate and large values of   in 
[0, ],m  md  performs better than Bd . As mentioned in 

the previous section, md  dominates .X  This desired 

property can be seen from Tables 4-7. 
(e) Mrd  has better risk performance than MLEd  for 

small values of m  and n . But its improvement for 
large values of  m  and n  is insignificant. However as 
mentioned earlier, Mrd  dominates MLEd . But for small 

and moderate values of   in the interval [0, ],m ˆ
Avd  

has better performance than Mrd  and .MLEd  These 

properties can be seen from Tables 4-7. 

(f) The risk performance of ˆ
Kmd  for small and 

moderate values of   in the interval [0, ]m  is 

satisfactory. But in these parts ˆ
Avd  improves upon 

ˆ .Kmd  This can be seen from Tables 4-7. Further, for 

large values of , MLEd  and Mrd  perform better than 

ˆ
Avd  and ˆ

Kmd . 

(g) Similar observations are made for other various 
values of m  and n . 
 
Remark 1. In a carefully view on the estimated risk 
values in Table 2, one will find that ( , )MrR d  and 
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Table 5. Estimated Risk values when 4, 1n m   and ' 0.10119  

  ( , )MLER d  0( , )mR d  ( , )mR d  ( , )BR d  ( , )mR d  ( , )MrR d  ˆ( , )KmR d  ˆ( , )AvR d  

0.0 0.234271 0.636863 0.234920 0.031686 0.108105 0.234245 0.119478 0.102194 

0.1 0.230517 0.622033 0.226725 0.035227 0.107050 0.230492 0.118090 0.101479 

0.2 0.220742 0.579401 0.215745 0.046915 0.106005 0.220715 0.116909 0.101830 

0.3 0.210912 0.522805 0.204360 0.066768 0.106884 0.210885 0.117278 0.104474 

0.4 0.203971 0.453772 0.194873 0.097063 0.113111 0.203938 0.123088 0.113036 

0.5 0.186759 0.366342 0.176310 0.134576 0.118479 0.186726 0.126502 0.120688 

0.6 0.173964 0.294625 0.162964 0.183324 0.132167 0.173931 0.136698 0.135886 

0.7 0.152328 0.208765 0.141759 0.235838 0.143513 0.152301 0.143074 0.148326 

0.8 0.143431 0.152593 0.134932 0.306316 0.172474 0.143410 0.164624 0.176990 

0.9 0.128981 0.089191 0.118735 0.380658 0.198472 0.123969 0.180380 0.201682 

1.0 0.123922 0.072575 0.127634 0.472322 0.246623 0.128322 0.215759 0.246360 

 
 

Table 6. Estimated Risk values when 10, 0.5n m   and ' 0.27846  

  ( , )MLER d  0( , )mR d  ( , )mR d  ( , )BR d  ( , )mR d  ( , )MrR d  ˆ( , )KmR d  ˆ( , )AvR d  

0.00 0.081933 0.139832 0.064293 0.006356 0.025192 0.081598 0.014944 0.003133 

0.05 0.080139 0.138263 0.063120 0.007551 0.025226 0.079821 0.015474 0.004710 

0.10 0.079422 0.132712 0.062500 0.011842 0.026980 0.079080 0.018431 0.009859 

0.15 0.075482 0.122624 0.059983 0.018705 0.029229 0.075161 0.022864 0.018252 

0.20 0.072447 0.112194 0.058379 0.028875 0.033519 0.072126 0.029852 0.030420 

0.25 0.066252 0.095970 0.054127 0.040688 0.037156 0.065946 0.037150 0.045117 

0.30 0.063131 0.085030 0.053718 0.056980 0.045077 0.062872 0.048623 0.064462 

0.35 0.057105 0.069576 0.050877 0.075093 0.052664 0.056895 0.060534 0.086503 

0.40 0.054159 0.058925 0.051309 0.097173 0.063801 0.054011 0.075896 0.112826 

0.45 0.051133 0.049586 0.051665 0.121218 0.075511 0.051048 0.091976 0.141935 

0.50 0.050800 0.043818 0.055322 0.149730 0.091424 0.050797 0.112142 0.175733 

 
 

Table 7. Estimated Risk values when 10, 1n m   and ' 0.10119  

  ( , )MLER d  0( , )mR d  ( , )mR d  ( , )BR d  ( , )mR d  ( , )MrR d  ˆ( , )KmR d  ˆ( , )AvR d  

0.0 0.100955 0.751881 0.089058 0.034653 0.081306 0.097097 0.045465 0.038878 

0.1 0.097097 0.729511 0.100594 0.037220 0.083360 0.100955 0.047864 0.041374 

0.2 0.098702 0.661062 0.110639 0.041836 0.079380 0.098702 0.050234 0.045079 

0.3 0.097987 0.545296 0.131363 0.048541 0.074610 0.097987 0.053753 0.050455 

0.4 0.093752 0.418567 0.142655 0.059108 0.067915 0.093752 0.059180 0.058826 

0.5 0.090639 0.301427 0.144453 0.073677 0.062510 0.090639 0.067366 0.070566 

0.6 0.081839 0.195776 0.130346 0.091955 0.056890 0.081839 0.077039 0.084916 

0.7 0.074422 0.112011 0.109441 0.120561 0.058858 0.074422 0.095065 0.108589 

0.8 0.063924 0.052567 0.080792 0.154443 0.064243 0.063924 0.115903 0.136247 

0.9 0.056685 0.016776 0.057413 0.197403 0.079105 0.056685 0.143851 0.171881 

1.0 0.051855 0.002080 0.041255 0.248287 0.101354 0.051855 0.176775 0.213971 
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0( , )mR d  are the same. For a single observation, the 

reason can be found in [8]. They showed that for a 
single normal random variable, when 1m  , 

0) )( (mMrd dx x , for all x  . Extending their result 

to a random sample of size n , one can deduce that 

when 1m n  , 0) )( (mMrd dx x , for all .x   

Clearly, in Table 4, 1m n   and ( , )MrR d 
0( , ).mR d  This relation also can be seen in Table 1 of 

[14], but they did not mention anything about it. 

Conclusion 

On the basis of our numerical results, using X  and 

MLEd  is not recommended when some information are 

accessible about the finite bounds on [0, ]m . In this 

case, ,Mrd Bd  or ˆ
Avd  can be used instead. When the 

prior information indicates   to be close to zero or 

moderate values of the interval [0, ]m , ˆ
Avd  or Bd  can 

be used. Otherwise, it is recommended to use .Mrd  
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