Abstract

Ghrelin, a peptide hormone, has several functions, of which the best known is its growth hormone (GH)-releasing effect in the pituitary. It also increases appetite and feeding behavior. Recent studies have implicated ghrelin in the regulation of gastrointestinal, cardiovascular, and immune function, and suggest a role for ghrelin in bone physiology. In this study, the effect of chronically administered ghrelin on the histomorphometrical properties of stomach and different parts of intestinal mucosa were evaluated in a rat model. Significant differences between control and ghrelin-treated groups were observed in gastrointestinal mucosa, stomach gland length, and duodenal mucosal thickness, villus length and crypt depth (P<0.05). Chronic administration of ghrelin could therefore exert a gastrointestinal protective effect, as it promotes mucosal growth in the proximal gut and enhances gastric glands in oxyntic mucosa.

Introduction

Ghrelin, a 28-amino acid peptide, is identified as an endogenous ligand for the growth hormone secretagogue receptor (GHSR) (Kojima et al., 1999). GHSR is synthesized mainly in neuroendocrine cells (X/A-like cells in rodents) of the gastric fundus, and secreted into the circulation (Inui et al., 2004). It is also expressed in the small intestine, colon, pancreatic islets, hypothalamus, pituitary, and several tissues in the periphery (Nass et al., 2000). GHSR-1a is the receptor to which ghrelin binds and through which it exerts its physiological functions. Ghrelin release may be influenced by the status of fasting and nutrient feeding, because central and peripheral administration of this peptide to rats resulted in an increase in their feeding behavior (Nakazato et al., 2001). Ghrelin has several functions, the best known of which is its growth hormone (GH)-releasing effect in the pituitary (Kojima et al., 1999; Hataya et al., 2001). It also increases appetite and feeding behavior (Ghatei and Bloom, 2000; Wren et al., 2001a). Recent studies have implicated ghrelin in the regulation of gastrointestinal, cardiovascular, and immune functions and suggest a role for ghrelin in bone physiology (Tritos and Kokkotou, 2006). The receptor for ghrelin was reported to be expressed equally in all parts of the gastrointestinal tract, with similar expression levels in mucosal and muscle layers (Nass et al., 2000). Therefore, the digestive tract is considered as both the main organ that secretes ghrelin and an important target of ghrelin through its receptors (Wang et al., 2007). The effect of ghrelin on gastrointestinal mucosa has been little investigated, but recent studies have revealed that its central or peripheral administration results in gastrointestinal protection against mucosal injury induced by noxious agents (Brzozowski et al., 2006; Sibilia et al., 2003; Brzozowski et al., 2004, Konturek et al., 2004; Iseri et al., 2005; Slomiany and Slomiany, 2010; Khalefa et al., 2010). Ghrelin was also shown to have a direct proliferative action on the hypotrophic gut (De Segura et al., 2010). In these pathological conditions, the pharmacological effect of ghrelin on gastrointestinal mucosa has been investigated.

In the present study, the effect of ghrelin on the histomorphometrical properties of gastrointestinal mucosa was evaluated in rats. Ghrelin was used at a dose resulting in serum levels in the range of those induced by fasting (Wren et al., 2001b), a physiological state.

Materials and Methods

Drugs and chemicals

Rat lyophilized acylated ghrelin (n-octanoylated research grade) was purchased from Tocris Cookson Ltd. (Bristol, UK) and was dissolved in sterile physiological saline solution before injection.

Animals

All investigations were conducted in accordance
with the Guiding Principles for the Care and Use of Research Animals. All animals were treated in compliance with the recommendations of the Animal Care Committee for the Lorestan University of Medical Sciences (Khorraram Abad, Iran). 60-day adult male Wistar rats (n = 14) purchased from Pasteur Institute of Iran were used for all experiments. All animals were allowed free access to standard rat food and tap water ad libitum. All rats were housed under standard conditions in groups of seven rats per cage at 21–24°C, with a constant 12 h light/dark cycle. All experimental procedures were carried out between 08.00 hours and 11.00 hours.

Experimental design

The animals were divided into two groups (n = 7 per group) as control and treatment groups. To verify the hypothesis that ghrelin treatment might alter the histomorphometrical parameters in gastrointestinal mucosa, a general protocol of subcutaneous (S.C.) injection of ghrelin (1 nmol per 100 μl saline), or 100 μl vehicle (physiological saline) to the control group, was applied once a day for 10 consecutive days. The dose of ghrelin used in our in vivo experiment was comparable with amounts of ghrelin secreted into the blood during starvation. Exogenous administration of 1 nmol/rat of ghrelin is able to induce a significant elevation (2.4–2.6 fold increase) in serum levels of total ghrelin 1 h after injection (Fernandez-Fernandez et al., 2005), whose magnitude is in the range of that induced by fasting (Wren et al., 2001b). The animals were injected under conscious conditions after careful handling to avoid any stressful influence.

Tissue sampling and study parameters

The rats from both groups were killed by decapitation under diethyl ether anesthesia (May & Baker Ltd, Dagenham, UK) 3 h after injection on day 10 (n = 14) from the first day of ghrelin injection. The stomach and the intestine (from the duodenum to the colon) were then removed with gentle manipulations for light microscope analysis. They were opened longitudinally, rinsed with saline solution and pinned flat, with the mucosal surface facing upwards, in a box coated with paraffin wax. The specimens, including different parts of the stomach (cardiac, body and pylorus), the duodenum, the ileum and the colon, were fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned at 5 μm and stained with hematoxylin and eosin for routine light microscopic examination. Histological examinations were performed by a histologist who was blinded to the study design. The lengths of glands and mucosal thickness of stomach (Figure 1), and duodenal and ileal villous lengths, crypt depths, villi per centimeter (V/cm), and total mucosal thickness (measured from the tip of the villus to the muscularis mucosa) (Figure 2), were assessed. Additionally, the mucosal thickness and crypt depths were measured in the colon (Figure 3) using light microscopy.

Statistical Analysis

All data from the parameters studied, namely total mucosal thickness, number of villi per centimeter, crypt depth and villous length were expressed as mean values ± standard error of mean. An independent t-test was then performed using the SPSS for Windows statistical package program, version 12.0.0 (SPSS Inc., Chicago, IL), to compare the differences between the two groups receiving or not receiving ghrelin. The level of statistical significance was set at P<0.05.

Results

Among the assessed parameters, the gland lengths of the stomach were significantly different between ghrelin-treated and control groups (P<0.05) (Figure 1). The mucosal thicknesses, villi lengths and crypt depths of the duodenum were also significantly different between ghrelin-treated and control groups (P<0.05) (Table 1; Figure 2). The other parameters examined, including the mucosal thickness of the stomach, duodenum and ileum mucosal thickness villi per cm and villi lengths, crypt depths of the ileum, and mucosal thickness and crypt depths of the colon, showed no significant differences between ghrelin-treated and control groups (Figure 3).

Discussion

The present study demonstrated for the first time that the peripheral (S.C.) administration of ghrelin for 10 days significantly increased the length of gastric gland in oxyntic mucosa. As these glands are attributed to acid secretion, our data is in line with previous observations (Brzozowski et al., 2006; Date et al., 2001; Masuda et al., 2000), which suggests that the peripheral and central administration of ghrelin increases gastric acid secretion in conscious rats. While a gastroprotective effect of ghrelin in pathological conditions has been shown (Brzozowski et al., 2006; Sibilia et al., 2003; Brzozowski et al., 2004; Konturek et al., 2004; İseri et al., 2005; Slomiany and Slomiany, 2010; Khalefa et al., 2010). Brzozowski et al. (2006) revealed that alterations in gastric secretion do not play any significant role in the gastroprotective activity of this peptide. Therefore, ghrelin can be considered as a truly cytoprotective substance. The physiological role of ghrelin in gastric acid secretion is still unclear. Our data further indicates that S.C. chronic administration of ghrelin leads to significant increases in duodenal villi length, crypt depth and mucosal thickness when compared to controls. The villus size is an important measure in studies of intestinal cell proliferation, as the
function of crypt cell production is to provide an influx of cells to the functional compartment, the villus, the compartment size being the difference between cell influx and cell loss (Papavramidis et al., 2009). In this study we found no significant changes in the mucosal parameters of the ileum and colon in ghrelin-treated rats compared to controls. A differentiated action of ghrelin on the proximal and distal gut might be a consequence of a variable expression of the ghrelin receptor, where nutritional status may be involved (Tung et al., 2005). In fact, this may act as an adaptive mechanism governing intestinal growth and function.

To our knowledge, the effect of exogenous ghrelin on gastrointestinal mucosa with a dose (1 nmol/rat, S.C.) that induces plasma levels of ghrelin similar to that in fasting (Wren et al., 2001b) has not been previously investigated. Recently, de Segura et al. (2010) showed that intraperitoneal administration of ghrelin (with a dose higher than used here) restored normal levels of proliferation in the ileum of rats subjected to intestinal hypotrophy. Other authors have also demonstrated that exogenous ghrelin suppresses intestinal mucosal apoptosis in fasting rats (Park et al., 2008). Ghrelin and its receptors are now recognized as components of the growth hormone axis, and are therefore potentially involved in tissue growth and development (Wang et al., 2007). Previously, Konturek et al. (1988) have shown the effects of GH on the healing of gastric ulcers and mucosal growth in rats. Moreover, it has been revealed that the GH receptor is widely expressed throughout the intestinal mucosa (De Segura et al., 2010). Alternatively, emerging evidence indicates that ghrelin may directly modulate cell proliferation and differentiation (Xu et al., 2008; Gaytan et al., 2005; Andreis et al., 2003; Jeffery et al., 2002). The mitotic effects of ghrelin have been demonstrated in numerous cell lines such as preosteoblasts (Kim et al., 2005), neuronal precursors (Sato et al., 2006), preadipocytes (Zhang et al., 2004), and cardiomyocytes (Pettersson et al., 2002). Very recently, a proliferative effect of ghrelin in gut mucosa was revealed by immunohistochemical analyses (de Segura et al., 2010). It has been reported that the ghrelin functional receptor, GHSR-1a, is expressed in all parts of the gastrointestinal tract, with similar levels in mucosal and muscle layers and with highest expression in the cytoplasm of epithelial cells (Wang et al., 2007). The release of ghrelin from endocrine cells in the oxyntic mucosa of the stomach is pulsatile and directly related

Table 1: Morphometric results (mean ± SE) of stomach and duodenum mucosa for control and ghrelin-treated groups that had significant differences (\(P<0.05\)).

<table>
<thead>
<tr>
<th></th>
<th>Stomach</th>
<th>Duodenum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gland Length</td>
<td>432.01±71.81</td>
<td>637.29±18.42</td>
</tr>
<tr>
<td>Mucosal Thickness</td>
<td>4885±1.45</td>
<td>601.65±14.16</td>
</tr>
<tr>
<td>Vill Length</td>
<td>290.27±9.24</td>
<td>420.95±20.44</td>
</tr>
<tr>
<td>Crypt depth</td>
<td>128.57±10.04</td>
<td>176.11±7.84</td>
</tr>
</tbody>
</table>

![Figure 1](image1.jpg) The stomach showing epithelium (E), gastric pit (P), length of gland (G) and muscularis mucosae. H & E staining (×100).

![Figure 2](image2.jpg) Duodenal mucosa showing villi (V), crypt length (C) and serosa (S). H & E staining (×40).

![Figure 3](image3.jpg) Mucosa of colon. Epithelium (E), muscularis mucosa (MM) and submucosa (SM) have been shown. H & E staining (× 00).
to feeding behavior (Tolle et al., 2002), and it is upregulated during acute nutrient restriction (i.e. fasting and protein deprivation) (Nakazato et al., 2001; Toshiani et al., 2001). Additionally, a high density of ghrelin cells in oxyntic mucosa is associated with hypoglycemia (El-Salhy and Rauma, 2009). It is well known that situations such as prolonged starvation or chronic fasting may lead to hypotrophy of the gastrointestinal mucosa (de Segura et al., 2010; Papavramidis et al., 2009). Taken together, one would assume that proliferation of mucosal cells by ghrelin might be a physiological response to fasting-induced hypotrophy in gastrointestinal mucosa.

In conclusion, our data indicate that chronic administration of ghrelin could exert a gastrointestinal protective effect, as ghrelin promotes mucosal growth in the proximal gut and enhances gastric glands in oxyntic mucosa.

References

