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Abstract

Oil production optimization is one of the main targets of reservoir management. Smart well
technology gives the ability of real time oil production optimization. Although this technology has
many advantages; optimum adjustment or sizing of corresponding valvesis still an issue to be solved. In
this research, optimum port sizing of inflow control devices (ICDs) which are passive control valvesis
focused on by designing a neural network to simulate reservoir behavior and applying Particle Swarm
Optimization algorithm to find optimum port size for ICDs. Indeed; this work eliminates the need for
lots of expensive and time consuming iterations through reservoir simulator. The objective of the work

isto maximize the oil production.

Keywords: Inflow control device (ICD), Smart well, Artificial neural network (ANN),
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Introduction

Heterogeneity of hydrocarbon reservoir
leads to various behavior in oil production
within different time periods. In this respect
smart well technology has been developed
in recent years which consists of a set of
down-hole sensors to measure temperature,
pressure, and flow rate and in higher level
inflow control vaves (ICVs) and inflow
control devices (ICDs) to control oil
production with respect to reservoir
characteristics. Meanwhile; the difference
between ICDs and ICVs is that ICDs have
constant port size and cannot be remotely
adjusted but ICVs are active valves with
various port sizes and can be adjusted
remotely. The advantages of smart well
technology with respect to conventional
completion are oil production increase,
water production decrease, better recovery
factor, and production cost reduction
[7,16-17,22].The first smart well technology
was implemented in North Sea in August
1997. So far, more than 300 smart well
systems have been implemented worldwide.
Consequently; optimization of the system
setting has become an important issue. In
2002 Gao.C; optimization of intelligent
control valves (ICVs) setting was

performed via conjugate gradient method.
This method was acknowledged in almost
researches up to 2011 to optimize
adjustment of ICVs, [1-2, 18, 20-21, 23]. In
2006, neural network (NN) method was
employed for optimization of smart wells
Moreno.J.C, (2006). In 2008, Multi-Step
Quasi-Newton (SSMQN) Method was used
as an adgorithm to optimum ICVs
adjustment [14]. In 2009, genetic algorithm
was implemented for ICVS  setting
optimization Ghreeb.Z.M, Al (2009).

As stated; 1CDs are passive control valves
with fixed port sizes which need optimum
port sizing before installing in downhole. In
this paper we try to find optimum port sizes
of 1CDs for ahorizontal well by integrating
Artificial Neural Network (ANN) with
Particle Swarm Optimization Algorithm.
Indeed; by solving non-linear partial
differential  equations through reservoir
simulator; the results can be input into the
optimization algorithm for identifying
optimum port sizes of ICDs within
predetermined period of production time. It
Is noted that solving these equations through
reservoir simulator is costly and time
consuming. Therefore, it is necessary to find
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a procedure with minimum error and
constraint-respected to simulate reservoir
behavior while eliminating the need for
reservoir simulator. This applied method in
this paper gives ability of high speed (time
reduction) generation of estimation function
(Meta model) with low error with respect to
objective function through integration of
ANN, Experimenta Design and PSO.
Comparison of productions from smart well

and conventional well both modeled in this
work shows good justification for future
decisions.

2. Problem description and

mathematical model

A mathematical model is developed for a
horizontal well with N numbers of ICDs.
The following notations are used to define
the mathematical mode!:

Name Description Units

i el ICD

t Time period

Parameters
W, Maximum Water cut Percentage
d, Maximum producible ail bbl/day

o Oil density lb/ft®

Do Water density |b/ft3

4y Oil viscosity Cp

L, Water viscosity Cp

S, Oil saturation Percentage
S, Woater saturation Percentage
K, Qil relative permeability

K. Water relative permeability

k Absolute permeability Md

9 Gravity m/s’

e, Vectors point in the direction of gravity

f Coefficient friction

D Pipe Diameter M

L Length of pipe between control valves m

a, Qil rate ft¥/s

ay, Weater rate bbl/day

C, Unit conversion factor, 2.159x10™ field units
C, Valve flow coefficient dimensionless
v, Fluid Velocity ft/s

A Cross Section ft?

D Pressure psi

P Porosity fraction

AP Total pressure drop ps

AP‘ Frictional pressure losses ps

AP° Pressure losses due to the ICD ps
Variables

d, Total flow rate of fluid intime periodt  bbl/day
N, Cumulative QOil Bbl
W ) Cumulative Water Bbl
w Water flow rate out of control of valvei  Percentage
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The aim is to maximize the cumulative
oil production while minimizing cumulative
water production by means of optimum port
sizing of ICDs. In mathematical term we
have the following model:

Z=MAX (N,-W,) D
N, =>4, (L-w,) W
W, =thi W, 3

Equation (1) shows objective function in
terms of difference between cumulative
produced oil and water that defined as (2)
and (3) respectively. Here g, is total flow

rate and w, shows water percentage from
i™ICD.

q, =9, +q, @
LR 5)

Equation (4) shows relationship between
oil rate ¢, and water rate g, with total

flow rateq, . Equation (5) cites water cut w,
in terms of water rate g, and total flow

rateq, .
> q, <=, (6)
W, <=W,, (7

The constraints (6) and (7) bound the
total produced oil and water to constants q,

and W respectively.

k T o(ps,
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©)
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9, = 1(s,) (11)

a, = f(s,) (12)

Oil and water flow through porous media
of reservoir is modeled with partia
differential equations (8) and (9). The level
of saturation for oil and water can be
obtained by solving these equations for any
reservoir grid in different time period. Oil
and water flow rates are function of oil and
water saturation in the reservoir as shownin
equations (10), (11) and (12). These
eguations are governing when no ICDs are
implemented. When the production is
restricted by ICDs in addition to above
equations other equations must be taken into
account. By employing ICDs, the flow rate
from the reservoir to the well changes. This
causes additional pressure drop as shown in
equation (13). Thus total pressure variation
Isequal to pressure drop dueto fluid friction
with wellbore and that of cross section of
ICDsS ports. Equation (14) shows pressure
drop due to fluid flow through ICDs.

AP = AP, + AP, (13)
2

AP, =C,p e (14)
2C

v

This equation shows that variation of
pressure drop (AP.) due to fluid flow

through 1CDs and depends only upon fluid
velocity (Ve).

0,
V, =L 15
A (15)

Equation (15) shows the relationship
between fluid flow rates with cross section
of ICDs ports. The cross section (Ac)of
ICDs' ports has inverse relation with fluid
velocity (Vc) and direct relation with flow
rate. Cross section (Ac)can be calculated

with equation (16) Congeros. Rand
Lenoach.B (2004), Meun. P (2008).
0< A, = Do <9 (16)

otal
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In equation (16), At IS Cross section of
maximum ICDs' ports size available in the
market (manufacturer can make it- here is
0.022 t%) and Acnoke iS the required cross
section of ICDs which should be acquired
through reservoir simulator and
optimization algorithm.

Suppose T is production duration and a
horizontal well is equipped with N numbers
of ICDs. There are infinite situations and
combinations for port sizes of ICDs. Hence;
in this study we reduce the numbers of
combinations through Experimental Design
methods to train Neural Network. By then;
the optimum port sizes are obtained via
Particle Swarm Optimization (PSO).

3. Solution procedure

In this section we elaborate the role of
Neural Network as a replace for reservoir
simulator, Particle Swarm Optimization
Algorithm, and Centra Composite Design
of kind of Response Surface method to
select the samples. Figure 1 shows the
solution procedure.

3.1. Structureof artificial neural network

Neural Network simulates human’s brain
in the form of an Artificial System. It
consists of many processors [Artificia
Neurons) designed regularly (there is a
complete graph between each two layers]
Harrison. S.J and Marshall. R.F (1991).
Neural Network consists of variables such
as numbers of layers in one network,
activation function for each layer, numbers
of neurons in each layer, and connection
between neurons. The most important
element of neural network is Processing
Element. Neurons are organized in the form
of layers. ANN consists of three layers as
input layer, middle (hidden) layer, and
output layer [11].

3.1.1. Selection of training samples
Training samples set includes input data
and corresponding output. The selection of
appropriate set is important and should be
included by many input data. In fact; the
quality of output depends on selected
training samples in the stage of training.

3.1.2. Validation of estimation function
(Meta model) designed by ANN
Factors in estimation function designed by
ANN are anayzed through regression
curves passed over training data, validation
data and test data. The numbers of training
data, test data and validation data are 80%,
15% and 5% of total data respectively. If
Coefficient Of Correlation in regression
curve (R? is near to one it indicates that
estimation function has high accuracy.
Another method to investigate accuracy of
estimation function is Mean Square Error
(MSE)with equation 17 Graudenz. S and
Bornholdt. D (1992).
S (0 - T.)
MSE = gl(l—l) (a7

n

In this equation (17) O,is desired (target)
output and T, is ANN outputs for training

data, i and n are the numbers of training
samples set. Here; the best result is for that
ANN with the least MSE Moseahi.T,
Fazio.O and Hegazy.P (1994).

3.2. How to select training samples for
ANN through Experimental Design
method

Experimental Design is a set of tests to
realize effective factors on a process and
their effectiveness. The applications of this
method can be found in identification of
effective factors on a process, identification
of optimum conditions, process correction
in terms of results obtained from feasible
conditions, identification of resistant
conditions and reduction of variations in

process response [5].

To fit quadratic model in RSM there are
three applied methods as Central Composite
Design (CCD), Box-Behnken Design
(BBD) and Doehlert Design. Among these;
CCD is the best. By using CCD; better
training samples for ANN can be selected.
Moreover we could select to training
samples by simulator for ANN.

Suppose the manufacturers have 1CDs
with port sizes of between zero and 0.022
ft2. This range shows availability of ICDsin
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the market and all studies should be based
on that. There are infinite cases in
mentioned range. CCD helps us to reduce
the numbers of cases to arbitrarily five as
shown in Table 1. In fact; we transform
continuous range of ICDsS port size to
discrete range but covering continuous one
to obtain training samples. Hence;
according to the mathematical model for N
numbers of ICDs, CCD transforms
mentioned range to 5" different port sizes as
training samples for ANN.

Tablel:ICDs Port Size (ft?) Number

ICDs Port Size Port Size (ft%)
Number
1 0
2 0.3*0.022
3 0.5*0.022
4 0.8*0.022
) 1*0.022
3.3. Particle Swarm  Optimization
Algorithm

Particle Swarm Optimization Algorithm
was adopted from group flying of birds.
This algorithm is a group intelligence
method for solving global optimization
(gbest) problem. PSO includes particles
looking for their optimum positions (pbest)
in authorized space. This process is based
on experiences of particles themselves or of
other particles to achieve globa
optimization. These particles are correcting
their knowledge over authorized space
within considered time. The particles in
PSO are recognized in terms of ther
position and velocity. Searching process
dispatches any particle toward optimum
positions [12].

The particle identifies their next position
with equations 18 and 19.

Vir1= Wt Vi + ¢;. rand () (pbest-present;) +
Co. rand () (gbest-present;)

(18)
present,,, = present, +V,, (19)
In equation 18;c, and c, are learning

parameters.rand () is a function for random

generation of number within [0, 1].
present, andV, indicate current position and
velocity of particles respectively. W, is a
control parameter to adjust next velocity
with respect to current velocity and creates

equilibrium between local and global search
in the algorithm [6].

Particle Swarm Optimization
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Figure 1: Solution Procedure

4. Implementation  of  solution

procedur e- case study

In this section we apply aforementioned
procedure on a smart horizontal well drilled
in an oil reservoir. The reservoir
specifications are mentioned in the
following section.

4.1. Reservoir characteristics

In this study we have a heterogeneous
symmetric anticline sandstone reservoir
with high permeability and porosity
channel. The reservoir dimensions are 4x4
km? and thickness of 50 m. The reservoir
does not have gas cap and it has a strong
aquifer. The reservoir characteristics are
presented in Table 2 and 3. Figure 2 shows
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three-dimensional view of smart horizontal
well equipped with ICDs.

Table 2:Characteristics of thereservoir model

Type of repository The sand channel
Total grade for(X)Ny 83
Total grade for (Y) Ny 73
Total grade for (Z) N 20
Total number of grades 121180
Grid sizein order (X) /ft 100
Grid sizein order (Y) /ft 100
Grid sizein order (Z) /ft 8
Table 3: The properties of the reservoir under
study
Reservalr temperature(0F) 110 Fomation vohume factor(Rbbsth) 111
Qil Viscosty(ep) 38 Gasol ntiofuef STE) 017
Average matix porosity (%) 11 BaseDepihtss) 11808
5

The average percentage of o satwation (0) 64 Mecium pressure deep nthe tank base(ps)
Rock compressiity ) 0% Ol density ()

The aversge pemeabilty on the horzonmnd) 17 Contactthe depth of water- i fsg 160
Average pemeablity In the verticalfnd) A b)

The most important characteristics of
this reservoir are its porosity and
permeability. The permeability isillustrated
in the three directions x, y and z in the
reservoir in Figures (3-a), (3-b) and (3-c)
respectively. Also, porosity distribution can
be observed in Figure 4.

- | (i o |

Figure 2: Three-dimensional views of the
reservoir model

Figures (3-a): Cross-section on the axis
X of the permeability distribution in
thereservoir

Figures (3-b): Cross-section on the axis
Y of the permeability distribution in
thereservoir

Figures (3-c): Cross-section on the axis
Z of the permeability distribution in the
reservoir

Figure 4. Cross-section of the porosity
distribution in the reservoir

The horizonta well has 1400m
horizontal section equipped with three ICDs
with 400m distance from each other. The
first ICD is located in heel part, the second
in middle part and the third in toe part of
horizontal section. ICDs are fixed port size
valves.

In this study, the production time horizon
IS set to 10 years. To implement
mathematicall model the  maximum
acceptable water cut is equal to 60 % and
total summation of oil produced from ICDs
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utmost equal to 3000 bbl/day. These
constraints are based on limitations of
surface production equipments to handle
water production and anaysis over
authorized daily oil production which is
done by experts.

4.2. Implementation of ANN on the
mathematical model

As previously mentioned; for N numbers
of ICDs there are 5" situations for fixed port
sizes to be investigated. In this study; the
horizontal well is equipped with three ICDs
resulting to 125 situations for fixed port
sizes (Note: By accepting one of these
situations we cannot update port size unless
we pull the completion out of the hole).
In this paper; two neural networks are
employed to solve the mathematical model
named as Multilayer Perceptron (MLP) of
kind of feed forward trained by back
propagation algorithm (Conjugate Gradient
with Powell/Beale Restarts (CGB)) and
Generalized Regression Neura Network
(GRNN) includes a radia basis layer and
particular linear layer. Figure 5 illustrates
back propagation algorithm for error in a
MLP.

-
. Forward Propagation

Error Estimation

e

Output Layer

44414

- Hidden Layer
Input Layer .
Backward Propagation

e
®

Figure5: MLP with Back Propagation Algorithm
with a hidden layer

Two independent validation methods are
used to investigate validity of our work.
They are Mean Square Method and
Regression on responses of cumulative oil
and water production.

To find an appropriate neural network
from MLP and GRNN; various neural
networks with different training algorithms
are investigated. Investigated neural
networks in this study are Radia basis
function (RBF), Fletcher-Powell Conjugate
Gradient (CGF), Polak- Ribiére Conjugate
Gradient (CGP), Scaled Conjugate Gradient
(SCG) and CGB with different hidden layer.
In al investigated neural networks the
transform function is Tangent Hyperbolic
which is used for selection of network type
and training algorithms.

In paralel with above investigation;
effect of changes in number of hidden
layers and neurons on MSE for each neural
network is evaluated. Based on this
evaluation the best one is CGB. Table 4
shows how to find the best number of
hidden layers and neurons for CGB.

Table 4: Effect of various numbersof hidden
layersand neuronson CGB

Number of No. of Hidden Validation
ANN Layers and Neurons  with MSE
1 10 3.56=10°
2 12 7.79=10!
3 (3.5 2.73=10°
4 (7.5 1.17=10t
3 (7.7 2.47=10r3
6 (10.5) 2.98x10r?
7 (5.10,9) 3.5=10

3 (10.10,%) 1.33=104
9 (1,7,7) 4x10
10 (3.10,10,3) 2.2x10°0

As Table 4 and Figures 6 and 7 show
due to less MSE for cumulative oil and
water production the best numbers of
hidden layers and neurons are three layers
with seven neurons for each. It is noted that
GRNN in comparison with MLP has less
MSE (10°°) and high accuracy in regression.
Table 5 and Figures 8 and 9 show the result
of GRNN.
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Figure 6: Regression on responses of cumulative oil and water
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Figure 8: Regression on training responses of cumulative oil
and water production for validation of meta model obtained by

ANNGRNN
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Figure 9: Regression on test responses of cumulative oil and
water production for validation of meta model obtained by

ANN ey
Table 5: Comparison of two designed neural networks
Neural Network Mean Square  Coefficient Of  Recovery  Optimum  Cumulative Oil  Error in comparison with
Emor (MSE)  Comelation (R?) Factor RF) PortSize  Production results of reservoir
MMbbl simulator
MLP 4104 0.995 %9.5 02:02:1) 615 %3
GRNN 10 0.9998 %9.5 (1:054:1) 6027 %1

fgis]a10y vomInpoud o

Symbol legend
—Qil production curmulative Mew — Qil production cumulative OpenFlow
= * “Water production cumulative Mew = *Water production cumulative OpenFlow

Figure 10: Comparison of cumulative oil production and water levelsusing
thel ntelligentcontrol (New) and conventional (Open Flow)
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Figure 12: Theratesof oil production and water cut without control
(conventional)

In this work; ANN's inputs are port sizes
set and outputs are cumulative oil and water
production calculated from reservoir
simulator.

High accuracy in above curves indicates
good training and convergence of test data
to training data.

4.3. Particle Swarm  Optimization

Algorithm (PSO)

After validation of estimation function
obtained by ANN; PSO is implemented to
find the best port sizes for the ICDs within
10 years of production.
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Indeed; we apply PSO on the Meta model
with priority of maximization of cumulative
oil production to find the optimum port
Sizes set. By then; we put Np in interval of
+0.09% of Np means [N,-0.0009* N,
Np+0.0009* Ng] to find optimum port
Sizesset based on cumulative water
production minimization. Figure 1 shows
the solution procedure.

In this study; the optimum port sizes for
three ICDs obtained from MLP-CGB are
vector of (ICDL ICD2,1CD3) =(0.2,0.2,2) .

The results for Np and W, for 10 year
production period are 6.15 and 7 MMbbl
respectively. Also we put these optimum
port sizes in the reservoir simulator. The
error between above results and those of
reservoir simulator is only three percent.
Similarly; the optimum port sizes for three
ICDs obtained from GRNN are vector of
(ICDLICD2,ICD3)=(1,054,1) . The
results for Np and W,, for 10 year production
period ae 6.027 and 7.05 MMbbI
respectively. Also we put these optimum
port sizes in the reservoir ssimulator. The
error between above results and those of
reservoir simulator is only one percent.

Reported errors in Table 5 show that the
estimation function could simulate reservoir
behavior perfectly. In continuation; we
compare above cumulative oil production
with one obtained from running reservoir
simulator for horizontal well equipped with
conventional completion as shown in Figure
10. It shows 55% increase in Np by
employing ICDs.

4.4. Comparison of performance of
conventional completion with intelligent
completion

Figures 11 and 12 show that oil
production from intelligent completion
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