
 
    Journal of Chemical and Petroleum Engineering, University of Tehran, Vol. 46, No.2, Dec.2012, PP. 97-109                97 

* Corresponding author:         Tel: +98-311-52786435        Fax: +98-21-44739731            Email: m_hassanabadi@aut.ac.ir 

Optimization of ICDs' Port Sizes in Smart Wells Using 
Particle Swarm Optimization (PSO) Algorithm through 

Neural Network Modeling 
 

Morteza Hassanabadi*1, Seyyed Mahdia Motahhari 2 and Mahdi Nadri Pari 2 
1Amirkabir University of Technology Tehran Polytechnic, Tehran, Iran 

2 Research Institute Of Petroleum Industry, Tehran, Iran 
(Received 3 April 2012, Accepted 20 November 2012) 

 

Abstract 
Oil production optimization is one of the main targets of reservoir management. Smart well 

technology gives the ability of real time oil production optimization. Although this technology has 
many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In 
this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves is 
focused on by designing a neural network to simulate reservoir behavior and applying Particle Swarm 
Optimization algorithm to find optimum port size for ICDs. Indeed; this work eliminates the need for 
lots of expensive and time consuming iterations through reservoir simulator. The objective of the work 
is to maximize the oil production. 
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Introduction 
     Heterogeneity of hydrocarbon reservoir 
leads to various behavior in oil production 
within different time periods. In this respect 
smart well technology has been developed 
in recent years which consists of a set of 
down-hole sensors to measure temperature, 
pressure, and flow rate and in higher level 
inflow control valves (ICVs) and inflow 
control devices (ICDs) to control oil 
production with respect to reservoir 
characteristics. Meanwhile; the difference 
between ICDs and ICVs is that ICDs have 
constant port size and cannot be remotely 
adjusted but ICVs are active valves with 
various port sizes and can be adjusted 
remotely. The advantages of smart well 
technology with respect to conventional 
completion are oil production increase, 
water production decrease, better recovery 
factor, and production cost reduction   
[7,16-17,22].The first smart well technology 
was implemented in North Sea in August 
1997. So far, more than 300 smart well 
systems have been implemented worldwide. 
Consequently; optimization of the system 
setting has become an important issue. In 
2002 Gao.C; optimization of intelligent 
control valves’ (ICVs) setting was 

performed via conjugate gradient method. 
This method was acknowledged in almost 
researches up to 2011 to optimize 
adjustment of ICVs, [1-2, 18, 20-21, 23]. In 
2006, neural network (NN) method was 
employed for optimization of smart wells 
Moreno.J.C, (2006). In 2008, Multi-Step 
Quasi-Newton (SSMQN) Method was used 
as an algorithm to optimum ICVs 
adjustment [14]. In 2009, genetic algorithm 
was implemented for ICVs’ setting 
optimization Ghreeb.Z.M, Al (2009). 
As stated; ICDs are passive control valves 
with fixed port sizes which need optimum 
port sizing before installing in downhole. In 
this paper we try to find optimum port sizes 
of ICDs for ahorizontal well by integrating 
Artificial Neural Network (ANN) with 
Particle Swarm Optimization Algorithm. 
Indeed; by solving non-linear partial 
differential equations through reservoir 
simulator; the results can be input into the 
optimization algorithm for identifying 
optimum port sizes of ICDs within 
predetermined period of production time. It 
is noted that solving these equations through 
reservoir simulator is costly and time 
consuming. Therefore, it is necessary to find 
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a procedure with minimum error and 
constraint-respected to simulate reservoir 
behavior while eliminating the need for 
reservoir simulator. This applied method in 
this paper gives ability of high speed (time 
reduction) generation of estimation function 
(Meta model) with low error with respect to 
objective function through integration of 
ANN, Experimental Design and PSO. 
Comparison of productions from smart well 

and conventional well both modeled in this 
work shows good justification for future 
decisions. 
 

2. Problem description and  
mathematical model 

     A mathematical model is developed for a 
horizontal well with N numbers of ICDs. 
The following notations are used to define 
the mathematical model: 

 
Name Description Units 
i I  ICD  
t Time period  
Parameters   

cW  Maximum Water cut Percentage 

oq  
Maximum producible oil bbl/day 

o  
Oil density lb/ft3 

w  
Water density lb/ft3 

o  
Oil viscosity Cp 

w  
Water viscosity Cp 

oS  
Oil saturation Percentage 

wS  
Water saturation Percentage 

rok  
Oil relative permeability  

rwk  
Water relative permeability  

k Absolute permeability Md 
g Gravity m/s2 

ze  
Vectors point in the direction of gravity  

f Coefficient friction  
D Pipe Diameter M 
L  

ioq  

iwq  

uC  
vC  

cV  

cA  
p  
  

tP  

cP  
tP  

Length of pipe between control valves 
Oil rate 
Water rate 
Unit conversion factor, 2.15910-4 
Valve flow coefficient 
Fluid Velocity 
Cross Section 
Pressure  
Porosity 
Total pressure drop  
Frictional pressure losses 
Pressure losses due to the ICD 

m 
ft3/s 
bbl/day 
field units 
dimensionless 
ft/s 
ft2 
psi 
fraction 
psi 
psi 
psi 

Variables   

tq  
Total flow rate of fluid in time period t bbl/day 

pN  
Cumulative Oil Bbl 

pW
 

Cumulative Water Bbl 

icW
 

Water flow rate out of control of valvei Percentage 
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     The aim is to maximize the cumulative 
oil production while minimizing cumulative 
water production by means of optimum port 
sizing of ICDs. In mathematical term we 
have the following model: 

    ( )p pZ MAX N W 
 

(1)
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i i

N

p t c
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N q w


                            (2) 
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i i

N

p t c
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                                     (3) 

     Equation (1) shows objective function in 
terms of difference between cumulative 
produced oil and water that defined as (2) 
and (3) respectively. Here 

itq is total flow 

rate and 
icw shows water percentage from 

ithICD.  
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     Equation (4) shows relationship between 
oil rate 

ioq  and water rate 
iwq  with total 

flow rate
it

q . Equation (5) cites water cut cw  

in terms of water rate 
iwq  and total flow 

rate
it

q . 
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        c cW W                             (7) 

     The constraints (6) and (7) bound the 
total produced oil and water to constants oq  

and 
0cW  respectively.   
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     Oil and water flow through porous media 
of reservoir is modeled with partial 
differential equations (8) and (9). The level 
of saturation for oil and water can be 
obtained by solving these equations for any 
reservoir grid in different time period. Oil 
and water flow rates are function of oil and 
water saturation in the reservoir as shown in 
equations (10), (11) and (12).  These 
equations are governing when no ICDs are 
implemented. When the production is 
restricted by ICDs in addition to above 
equations other equations must be taken into 
account. By employing ICDs, the flow rate 
from the reservoir to the well changes. This 
causes additional pressure drop as shown in 
equation (13). Thus total pressure variation 
is equal to pressure drop due to fluid friction 
with wellbore and that of cross section of 
ICDs’ ports. Equation (14) shows pressure 
drop due to fluid flow through ICDs. 

t c fP P P   
                                   

(13) 

2

2
C

c u
v

V
P C

C
                                     (14) 

     This equation shows that variation of 
pressure drop ( cP ) due to fluid flow 

through ICDs and depends only upon fluid 
velocity (VC). 

t
C

c

q
V

A
                                          (15) 

     Equation (15) shows the relationship 
between fluid flow rates with cross section 
of ICDs’ ports. The cross section (AC)of 
ICDs’ ports has inverse relation with fluid 
velocity (VC) and direct relation with flow 
rate. Cross section (AC)can be calculated 
with equation (16) Conejeros. Rand 
Lenoach.B (2004), Meun. P (2008). 

0 1choke
C

Total

A
A

A
                             (16) 
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In equation (16), Atotal is cross section of 
maximum ICDs’ ports size available in the 
market (manufacturer can make it- here is 
0.022 ft2) and Achoke is the required cross 
section of ICDs which should be acquired 
through reservoir simulator and 
optimization algorithm. 
     Suppose T is production duration and a 
horizontal well is equipped with N numbers 
of ICDs. There are infinite situations and 
combinations for port sizes of ICDs. Hence; 
in this study we reduce the numbers of 
combinations through Experimental Design 
methods to train Neural Network. By then; 
the optimum port sizes are obtained via 
Particle Swarm Optimization (PSO). 
 

3. Solution procedure 
     In this section we elaborate the role of 
Neural Network as a replace for reservoir 
simulator, Particle Swarm Optimization 
Algorithm, and Central Composite Design 
of kind of Response Surface method to 
select the samples. Figure 1 shows the 
solution procedure. 
 

3.1. Structure of artificial neural network 
    Neural Network simulates human’s brain 
in the form of an Artificial System. It 
consists of many processors [Artificial 
Neurons) designed regularly (there is a 
complete graph between each two layers] 
Harrison. S.J  and Marshall. R.F (1991). 
Neural Network consists of variables such 
as numbers of layers in one network, 
activation function for each layer, numbers 
of neurons in each layer, and connection 
between neurons. The most important 
element of neural network is Processing 
Element. Neurons are organized in the form 
of layers. ANN consists of three layers as 
input layer, middle (hidden) layer, and 
output layer [11]. 
 

3.1.1. Selection of training samples 
     Training samples set includes input data 
and corresponding output. The selection of 
appropriate set is important and should be 
included by many input data. In fact; the 
quality of output depends on selected 
training samples in the stage of training. 

 

3.1.2. Validation of estimation function 
(Meta model) designed by ANN 

Factors in estimation function designed by 
ANN are analyzed through regression 
curves passed over training data, validation 
data and test data. The numbers of training 
data, test data and validation data are 80%, 
15% and 5% of total data respectively. If 
Coefficient Of Correlation in regression 
curve (R2) is near to one it indicates that 
estimation function has high accuracy. 
Another method to investigate accuracy of 
estimation function is Mean Square Error 
(MSE)with equation 17 Graudenz. S and 
Bornholdt. D (1992). 

 2

1

n

i i
i

O T
M S E

n






                      (17) 

 

In this equation (17) iO is desired (target) 

output and iT  is ANN outputs for training 

data, i  and n  are the numbers of training 
samples set. Here; the best result is for that 
ANN with the least MSE Moselhi.T, 
Fazio.O and Hegazy.P (1994). 
 

3.2. How to select training samples for 
ANN through Experimental Design 
method 

   Experimental Design is a set of tests to 
realize effective factors on a process and 
their effectiveness. The applications of this 
method can be found in identification of 
effective factors on a process, identification 
of optimum conditions, process correction 
in terms of results obtained from feasible 
conditions, identification of resistant 
conditions and reduction of variations in 
process response [5]. 
     To fit quadratic model in RSM there are 
three applied methods as Central Composite 
Design (CCD), Box-Behnken Design 
(BBD) and Doehlert Design. Among these; 
CCD is the best. By using CCD; better 
training samples for ANN can be selected. 
Moreover we could select to training 
samples by simulator for ANN. 
     Suppose the manufacturers have ICDs 
with port sizes of between zero and 0.022 
ft2. This range shows availability of ICDs in 
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Indeed; we apply PSO on the Meta model 
with priority of maximization of cumulative 
oil production to find the optimum port 
sizes set. By then; we put Np in interval of 
 0.09% of Np means [Np-0.0009* Np, 
Np+0.0009* Np] to find optimum port 
sizesset based on cumulative water 
production minimization. Figure 1 shows 
the solution procedure.  
     In this study; the optimum port sizes for 
three ICDs obtained from MLP-CGB are 
vector of ( 1, 2, 3) (0.2,0.2,1)ICD ICD ICD   . 
The results for NP and Wp for 10 year 
production period are 6.15 and 7 MMbbl 
respectively. Also we put these optimum 
port sizes in the reservoir simulator. The 
error between above results and those of 
reservoir simulator is only three percent. 
 Similarly; the optimum port sizes for three 
ICDs obtained from GRNN are vector of
( 1, 2, 3) (1, 0.54,1)ICD ICD ICD   . The 
results for NP and Wp for 10 year production 
period are 6.027 and 7.05 MMbbl 
respectively. Also we put these optimum 
port sizes in the reservoir simulator. The 
error between above results and those of 
reservoir simulator is only one percent. 
   Reported errors in Table 5 show that the 
estimation function could simulate reservoir 
behavior perfectly. In continuation; we 
compare above cumulative oil production 
with one obtained from running reservoir 
simulator for horizontal well equipped with 
conventional completion as shown in Figure 
10. It shows 55% increase in NP by 
employing ICDs.   
 

4.4. Comparison of performance of 
conventional completion with intelligent 
completion 
   Figures 11 and 12 show that oil 
production    from    intelligent   completion  

survives within 10 years of study but in the 
case of conventional completion it dies after 
5 years of production. Indeed; lack of 
control over liquid production causes water 
production exceeds its limit and 
consequently shuts the well in. 
   In this study; recovery factor from 
conventional and intelligent wells are 6 
% and 9.5 % respectively. 
 

5. Conclusions 
   In this paper we presented a novel 
approach for smart well optimization. We 
elaborated the role of Neural Network as a 
replace for reservoir simulator, Particle 
Swarm Optimization Algorithm, and 
Central Composite Design of kind of 
Response Surface method to select the 
samples. The conclusions of this study are 
as follow: 
 

 Considerable increase in oil 
production from intelligent well with 
respect to conventional well 

 Increasing the production period for 
intelligent well with respect to 
conventional well 

 Considerable increase in recovery 
factor for intelligent well with 
respect to conventional well. 
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