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Abstract 
 
     The main objective in the present study was to assess the spatial variation of chemical and physical soil properties 
and then use this information to select an appropriate area to install a pasture rehabilitation experiment in the 
Zereshkin region, Iran. A regular 250 m grid was used for collecting a total of 150 soil samples (from 985 
georeferenced soil pits) at 0 to 30, and 30 to 60 cm layers. Soil samples were analyzed for pH, EC, N, K, P, Na, Ca, 
Mg and SAR. Conventional statistical methods and geostatistics were performed in order to analyze soil properties 
spatial dependence. Mean, standard deviation, skewness, and kurtosis for all measured variables were evaluated. All 
variograms generally were well structured with a relatively large nugget effect. Soil properties such as pH, P 
semivariograms were best fitted by spherical models, while SAR, Na were best fitted by spherical models. In the 
beginning kriging were performed in order to analyze spatial variation of chemical and physical soil properties, then 
for enhancing estimation accuracy and comparing results we used cokriging technique. Comparison of the results using 
statistical techniques showed that kriging technique has acceptable accuracy in characterizing the spatial variability. Also 
results showed that although kriging technique has acceptable accuracy in characterizing the spatial variability of soil 
properties but if higher accuracy is needed, cokriging is preferred to kriging particularly when the extra variable has been 
used.     
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1. Introduction 
 
     The need to take account of spatial variability 
when modeling soil forming and environmental 
processes is now abundantly clear. Understanding 
the distribution of soil properties in the field is 
important in refining agricultural management 
practices (McBratney and Pringle, 1999) while 
minimizing environmental damage. Soil property 
variation within a field often has been described  
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by classical statistical methods assuming a 
random distribution (Goovaerts, 1999; Webster,  
2000; Conant and Paustian, 2002). Determining 
the risk of exceeding a threshold, or more 
generally estimating a function of a soil property, 
can be dealt with either stochastic simulations or 
nonlinear geostatistical methods like indicator 
kriging or disjunctive kriging, which have found 
wide acceptance in soil science (Webster and 
Oliver, 1989, 2001; Wood et al., 1990; Oliver et 
al., 1996; Van Meirvenne and Goovaerts, 2001; 
Lark and Ferguson, 2004). An alternative to 
indicator and disjunctive kriging is the 
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conditional expectation estimator. However, in 
practice this estimator is hardly used, except in 
the scope of the multigaussian model (Goovaerts, 
1997, p. 271; Chile`s and Delfiner, 1999, p. 381). 
Natural soil spatial variation occurs primarily 
from pedogenetic factors (Trangmar et al., 1985). 
In addition, variation can occur as a result of land 
use and management (Paz-Gonza´lez et al., 2000; 
Stenger et al., 2002). As a consequence, soils 
usually exhibit marked spatial variation on macro 
(White et al., 1997) and micro scales (Yang et al., 
2001). In many instances, spatial variation is not 
random but tends to decrease as distances 
diminish between points in space (Goovaerts, 
1998; Webster, 2000). Spatial dependence has 
been observed for a wide range of soil physical 
(Mapa and Kumaragamage, 1996; Castrignano et 
al., 2000), chemical (Boyer et al., 1996; Bragato 
and Primavera, 1998) and biological properties 
(Robertson et al., 1997; Goovaerts, 1998; Gaston 
et al., 2001), but typically the size of the studied 
area is relatively small, commonly ranging from 
1 m2 to 1 ha. 
     Increasingly geostatistical techniques are 
being used in soil science for spatial variation 
studies on scales ranging from centimeters to 
kilometers (White et al., 1997; Goovaerts, 1998; 
Castrignano et al., 2000; Yang et al., 2001). 
These techniques have provided the means to 
characterize and quantify spatial variation have 
been used to process this information for rational 
interpolation, and have been applied to estimate 
the variance of interpolated values (Isaaks and 
Srivastava, 1989; McBratney and Pringle, 1999; 
Webster, 2000; Gaston et al., 2001; Stenger et al., 
2002). 
     Despite the predominance of degraded pasture 
areas, little information exists about the spatial 
variation of soil properties including nutrients and 
carbon. The first results obtained at a regional 
scale have shown large variations of C, N, Ca and 
pH, due to vegetation and soil type (Bernoux et 
al., 1998; Cerri et al., 1999). At the field scale, 
variation s may also occur and have to be better 
understood. Indeed, it is in that scale that 
agronomic experiments have been installed and 
carried on to support strategies for conservation 
practices and policies. However, soil property 
variation has been a familiar problem to 
agricultural scientists who must constantly deal 
with cumulative effects of micro and macro 
variation that can easily mask treatment 
differences in agronomic experiments (Perrier 
and Wilding, 1986; Goovaerts, 1999). An ideal 

experimental field is a land area in which the plot 
size and soil variability have been minimized for  
a specific plant or soil physical/chemical 
treatment (Davis, 1986). It should have a 
minimum point-to-point variability (Trangmar et 
al., 1985). In addition, proper interpretation of 
experimental data largely depends on the ‘‘best’’ 
estimation of experimental error (Webster, 2001). 
     MC Bratney et al (2003) developed 
comprehensive biological and chemical maps by 
using geostatistics methods, GIS and remote 
sensing. Neal et al (2004) used geostatistics 
methods to interpolate response of soil quality 
indicators and their spatial variability to land 
degradation in central Iran. Pcerri et al (2004) 
assessed soil property spatial variation in an 
Amazon pasture. Stark et al (2004) estimated 
small scale spatial variability of selected soil 
biological properties by using geostatistics 
methods.  Barens et al (2006) estimated 
azotobacter abundance and soil properties by 
using Ph, soil water volume and geostatistics 
methods. Cheng et al (2006) investigated spatial 
relationships among species aboveground 
biomass, N, P in degraded grassland in ordos 
Plateau. Robinson et al (2006) tested the 
performance of spatial interpolation techniques 
(normal kriging and log normal kriging) for 
mapping soil properties and obtained acceptable 
results. 
     For correct watershed management planning, 
the maps of important characteristics of soil 
resources such as: pH, EC, N, K, P, Na, Ca, Mg 
and SAR should be used. The use of current and 
traditional methods for investigation of changes of 
spatial structure of soil variables are expensive 
and time-consuming methods. On the other hand 
classic statistics can not consider spatial changes 
of variables. Physical and chemical characteristics 
of soil resources change in time and place, even 
spatial structure of soil variables change in various 
geographic directions. Therefore, in this research 
geostatistical methods are used that consider 
spatial structure and changes of soil properties.   
     Our main objective in the present study was 
to assess the ability of kriging and cokriging 
techniques to predict spatial variation of 
chemical and physical some of the soil properties 
such as texture, gravel, hardness and organic 
mater in selected soil samples from Zereshkin 
area in north of Iran, Mazanderan province. 
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2. Material and Methods  
 
2.1. Study area 
 
     The study area is Zereshkin basin with 2345 
ha area located on 65 km southwest of 
Savadkooh town. The geographic location of the 
study area is 35 55 51” to 35 58 40” northern 
latitude and 52 52 58” to 52 56 52” eastern 

longitude. The minimum temperature in the area 
is -2C in winter while it reaches to higher than 
41 C in summers since 1980-2006. The climate 
of study area is mostly humid and the mean 
annual precipitation is 415 mm. The mean average 
of the study area from sea level is 2445 m (The 
mentioned data have been obtained from 
Savadkooh climatologic station).   

 

 
Fig.1. Location of study area in Mazanderan province and sampling design 

 
 
2.2. Sampling Method 
 
     Different sampling methods are used for 
developing soil maps. Soil was sampled from the 
inner Zereshkin with a stratified random sampling 

design to select site locations within an area 
covering 2.3 km2. The area was divided into 100- 
by 100-m cells with one site in each cell selected 
at random. There were a total of 227 sites, eight of 
which were not sampled because of an absence of 
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soil. These have been recorded as “no data” 
points. To determine the extent of spatial 
variation, two samples 1 m apart were taken at 
each site and analyzed separately. A total of 438 
topsoil samples (surface 10 cm) were collected for 
analysis.  

     Descriptive statistics were applied to all nine-
soil properties (pH, EC, N, K, P, Na, Ca, Mg and 
SAR) at each depth. We evaluated all data 
together (Table 1), and afterwards, the modeling 
set data and the validation set data were separately 
considered. Analyzing the data using a classical 
approach, no discrepant values were observed.    

 
                             Table 1. Basic statistics of the variables under the study area for 0-30, 30-60 cm layers 

Variable n Mean S.D. CV Min Max Skewn 
0-30 cm layer        

pH 75 5.71 0.44 7.70 4.18 7.95 0.42 
EC (%) 75 5.04 0.45 8.89 3.87 7.69 0.87 
N (%) 75 8.47 1.34 15.79 3.78 15.42 0.12 
K (%) 75 21.47 1.55 7.13 10.55 32.21 0.35 
P (%) 75 10.2 0.44 29.53 4.25 21.55 1.25 

Na (%) 75 13.2 0.03 25.50 7.54 23.10 2.01 
Ca (%) 75 11.5 4.83 19.52 6.32 18.24 0.45 
Mg (%) 75 7.5 5.16 7.42 2.51 12.32 0.55 

SAR (%) 75 8.1 9.2 8.65 4.12 10.71 0.84 
        

30-60 cm layer        
pH 75 5.33 0.47 8.77 3.55 7.94 0.12 

EC (%) 75 4.86 0.43 8.48 2.17 6.25 0.26 
N (%) 75 10.95 1.00 9.15 4.53 17.24 1.32 
K (%) 75 22.5 1.31 5.68 12.25 29.44 1.20 
P (%) 75 0.88 0.24 27.53 0.08 1.02 0.87 

Na (%) 75 0.08 0.02 23.29 0.01 0.84 0.71 
Ca (%) 75 28.26 5.31 18.78 13.24 37.14 2.01 
Mg (%) 75 7.01 3.22 8.24 3.12 13.47 0.55 

SAR (%) 75 7.5 10.2 9.15 2.11 11.58 0.67 
                            S.D.: standard deviation, CV: coefficient of variation, Skewn: standardized Skewness,  
                            Min.: minimum, Max.: maximum. 

 
2.3. Methods 
 
     Geostatistical prediction includes two stages 
which is first identification and modeling of 
spatial structure. At this stage continuity, 
homogeneity and spatial structure of a given 
variable is studied using variogram. Second stage 
is geostatistical estimation using kriging technique 
which depends on the properties of the fitted 
variogram which affects all stages of the process. 
It should be mentioned that the results of the study 
were obtained using GS+ software. 

 
2.4. Criteria for Model Evaluation 
 
     A variety of verification criteria which could 
be used for evaluation and inter comparison of 
different models were proposed by World 
Meteorological Organization WMO and other 
investigators Nash and Sutcliffe 1970; WMO 
1975; ASCE Task Committee on Definition of 
Criteria for Evaluation of Watershed Models 
1993 . Of the several numerical indicators, the 
two important ones selected for the present study 

are the root-mean-square error RMSE and the 
MAE. 
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3. Results 
 
     The first step in the use of geostatistics 
methods is the investigation of spatial structure 
existence among data by using variogram 
analysis. Normal data should be used for this 
analysis. For this purpose normal test was 
performed for data and some data series that have 
high skewness were recognized and they were 
normalized by using the relevant normalizing 
methods. Then variogram analysis was done for 
each soil property at 0-30 cm and 30-60 cm layers 
and the mean depth of these two layers (Table 2).  

90 
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  Table 2. The properties of suitable variogram model of variables 
Variable Model Nugget Sill Ro Co/Co+C 
Mean pH Exponential 3.71E-0.004 1.407E-0.003 24549 0.736 

pH at 0-30 cm layer Exponential 1.000E-0.006 6.01E-0.004 1530 0.998 
pH at 30-60 cm layer Exponential 0.029 0.0901 24141 0.671 

Mean EC Spherical 0.00486 0.03122 1791 0.844 
EC at 0-30 cm layer (ds/m) Exponential 0.0001 0.042 3366 0.713 

EC at 30-60 cm layer (ds/m) Exponential 0.0235 0.082 22917 0.998 
Mean N (me/l) Exponential 0.1462 0.3384 24450 0.568 

N at 0-30 cm layer (me/l) Spherical 0.042 0.2178 2569 0.808 
N at 30-60 cm layer (me/l) Linear 0.214 0.214 3476 0 

Mean K Linear 0.23 0.23 3476 0 
K at 0-30 cm layer (me/l) Linear 0.24 0.24 3476 0 
K at 30-60 cm layer (me/l) Linear 0.33 0.33 3476 0 

Mean P (me/l) Exponential 0.2 0.4 20097 0.501 
P at 0-30 cm layer (me/l) Exponential 0.114 0.2288 4278 0.502 
P at 30-60 cm layer (me/l) Exponential 0.2883 0.5776 31036 0.501 

Mean Na(me/l) Spherical 0.0002 0.00084 9110 0.752 
Na at 0-30 cm layer (me/l) Exponential 0.0001 0.02922 1773 1 

Na at 30-60 cm layer (me/l) Spherical 0.0076 0.024 3277 0.689 
Mean Ca (me/l) Spherical 0.0001 0.0427 2122 0.998 

Ca at 0-30 cm layer (me/l) Spherical 0.0114 0.0694 2592 0.836 
Ca at 30-60 cm layer (me/l) Linear 0.0482 0.0482 3476 0 

Mean Mg (me/l) Linear 0.395 0.395 3476 0 
Mg at 0-30 cm layer (me/l) Exponential 0.225 1.206 25161 0.813 
Mg at 30-60 cm layer (me/l) Linear 2.11 2.11 3476 0 

Mean SAR (me/l) Spherical 0 0.0002 2477 1 
SAR at 0-30 cm layer (me/l) Spherical 0 0.00027 1805 1 

SAR at 30-60 cm layer (me/l) Spherical 0.00001 0.00032 26.9 0.984 
 
      Table 3. The properties of suitable variogram model of variables 

Variable Model Nugget Sill Ro Co/Co+C 
Mean Co3 (me/l) Exponential 0.0427 0.0855 27330 0.501 

Co3 at 0-30 cm layer (me/l) Linear 0.057 0.057 3476 0 
Co3 at 30-60 cm layer (me/l) Linear 0.195 0.195 3476 0 

Mean Hco3 (me/l) Exponential 0.131 0.466 26624 0.719 
Hco3 at 0-30 cm layer (me/l) Spherical 0.098 1.506 9110 0.935 

Hco3 at  30-60 cm layer (me/l) Linear 0.33114 0.35814 3476 0.075 
Mean Cl (me/l) Linear 0.11 0.11 3476 0 

Cl at 0-30 cm layer (me/l) Linear 0.11372 0.11372 3476 0 
Cl at 30-60 cm layer (me/l) Linear 0.13 0.13 3476 0 

 
     Results show that other than N, K, Mg and 
Co3

2- that did not have any spatial structure, in 
other cases, strong spatial structure has been 
recognized among data. Interpolation was 
performed by using kriging technique and then 
RMSE and correlation factor were used to assess 
results (Table 3,4).  
     Acceptable estimation has been obtained 
according to low value of RMSE and high value 
of R. Suitable estimation has not been obtained for 
sand according to low values of RMSE and R. 
Same results especially for surface layers have 
been obtained for silt and sand. On the subject of 

hardness there is not any spatial structure among 
data with due attention to variogram analysis.  
    Cokriging were used to assess mean amounts of 
soil properties by using surface amounts of soil 
properties. For this purpose cross semi-variogram 
was formed between mean and surface amounts of 
each soil property (Table 2).  
     Results show appropriate confrontation among 
data except for clay. Data interpolation by using 
cokriging technique shows error value has been 
decreased in the whole of soil properties whereas 
correlation value has been increased among 
observed and approximate quantities (Table 4). 
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  Table 4. The results of cross semi-variogram analysis 
Variable Model Co Sill EiR Co/Co+C 

Correlation of mean and surface pH Exponential 2.17 E-0.003 9.64 E-0.003 24123 0.775 
Correlation of pH and Ec Exponential 2.89 E-0.003 1.065 E-0.002 24639 0.729 

Correlation of mean and surface EC Spherical 0.0067 0.032 2983 0.791 
Correlation of mean and surface N Spherical 0.016 0.506 2530 0.676 
Correlation of mean and surface K Linear 0.3 0.2 3476 0 
Correlation of mean and surface P Exponential 0.1642 0.3294 16140 0.502 

Correlation of mean and surface Na Exponential 0.0013 0.00735 26925 0.823 
Correlation of Na and Ec Spherical 0.0022 0.0067 9110 0.668 

Correlation of mean and surface Ca Spherical 0.0001 0.047 2440 0.998 
Correlation of Ca and pH Spherical 0.000344 -0.00128 3295 0.731 

Correlation of mean and surface Mg Spherical 0.0001 0.1822 1388 0.999 
Correlation of Mg and EC Linear 0.0186 0.0186 3476 0 
Correlation of Mg and Ph Linear 0.247 0.247 3476 0 

Correlation of mean and surface SAR Spherical 0 0.00018 2326 0.999 
Correlation of SAR and EC Spherical 0 0.00044 3876 0.998 
Correlation of SAR and pH Spherical 0 -0.00021 8244 1 

Correlation of mean and surface Co3 Spherical 0.00001 0.027 0 1 
Correlation of Co3 and EC Spherical 0 0.0907 1903 0.999 
Correlation of Co3 and pH Spherical 0.0001 0.409 0 0.998 

Correlation of mean and surface Hco3 Spherical 0.117 0.644 8582 0.818 
Correlation of Hco3 and EC Spherical 0.0133 0.0935 9110 0.858 
Correlation of Hco3 and pH Spherical 0.0001 0.137 0 0.999 

Correlation of mean and surface Cl Linear 0.107 0.107 3476 0 
Correlation of Cl and EC Linear 0.021 0.021 3476 0 

 
 
     Descriptive statistics were applied to all 
twelve-soil properties (Ec, N, K, P, Mg, Na, pH, 
SAR, Ca, Co3, Hco3, and Cl) at each depth. We 
evaluated all data together (Table 1), and 
afterwards, the modeling set data and the 
validation set data were separately considered. 
Analyzing the data using a classical approach, no 
discrepant values were observed. Data followed 
the same behavior approximately (Table 1). At 
the study area, soil pH had the same behavior. At 
30-60 cm layer the pH was greater (about 0.1 
units) than in the 0-30 cm layer.  
     Results show that the use of Ec data for the 
estimation of Na amounts at soil layers has 
increased the accuracy of estimation. Also the use 
of surface data of each soil property has yielded 
better estimation of mean amount of the soil 
property with the exception of P, Cl.  
 
3.1. Variograms  
 
     In the references, spatial interrelationship of 
data is assessed by (C/C+C0), and if this parameter 
is close to 1, spatial interrelationship is suitable 
and if the mentioned parameter is close to 0 
spatial interrelationship is weak and the value of 
nugget effect is high. All of physical and chemical 

soil factors that have been investigated in this 
research (according to table 2, 3, 4), have high 
value of mentioned parameter (C/C+C0), and this 
issue justifies the use of geostatistical techniques. 
According to table 2, 3, 4 spatial interrelationships 
of Mg and Ca data are higher than the other 
variables.  
     As seen in the variogram results (Table 2, 3, 4) 
the most appropriate models fitted to groundwater 
quality variables are spherical and linear models. 
However the results of current study show high 
spatial structure of the variable data but the most 
appropriate results based on the statistical 
comparisons showed high capability of kriging 
technique. 
     Fig.2. shows the variograms of physical and 
chemical soil factors that have been investigated 
in this research. 
     Assessment of effective range of various 
parameters show that some variables like EC and 
SAR have short effective range and for their 
assessment, we should prepare grading with short 
distance, If we want to calculate sampling 
distances (grading) for these two variables (EC 
and SAR) is 2/3 effective range (about 7 km), for 
Mg, Ca and PH, sampling distance is about 37 km 
and for SAR, Na and cations, it is about 74 km. 
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         Table 5. The results of estimation of different geostatistical techniques (kriging and cokriging) 
Variable Mean Skewness RMSE R 

pH at 0-30 cm layer 7.23 0.17 0.18 0.14 
pH at 30-60 cm layer 7.28 -0.08 0.22 -0.173 

Mean pH 7.26 0.23 0.18 0.067 
Correlation of mean and surface pH - - 0.18 0.25 

Correlation of pH and Ec - - 0.18 0.25 
EC at 0-30 cm layer (me/l) 0.254 0.78 0.037 0.54 
EC at 30-60 cm layer (me/l) 0.25 1.69 0.05 0.18 

Mean EC (me/l) 0.25 0.57 0.034 0.56 
Correlation of mean and surface EC (me/l) - - 0.034 0.56 

N at 0-30 cm layer (me/l) 0.22 1.12 0.07 0.66 
N at 30-60 cm layer (me/l) 0.2 1.05 0.1 -0.74 

Mean N (me/l) 0.21 0.97 0.09 0.23 
Correlation of mean and surface N (me/l) - - 0.082 0.47 

K at 0-30 cm layer (me/l) 0.15 0.81 0.067 0.34 
K at 30-60 cm layer (me/l) 0.15 1.38 0.082 -0.37 

Mean K (me/l) 0.15 1.29 0.055 0.065 
Correlation of mean and surface K (me/l) - - - - 

P at 0-30 cm layer (me/l) 13.26 1.25 5.45 0.53 
P at 30-60 cm layer (me/l) 11.6 2.06 8.53 0.31 

Mean P (me/l) 12.4 1.76 6.9 0.41 
Correlation of mean and surface P (me/l) - - 6.65 0.45 

Na at 0-30 cm layer (me/l) 0.17 0.65 0.03 0.19 
Na at 30-60 cm layer (me/l) 0.16 0.39 0.02 0.44 

Mean Na (me/l) 0.165 0.07 0.019 0.28 
Correlation of mean and surface Na (me/l) - - 0.02 0.13 

Correlation of Na and Ec (me/l) - - 0.022 0.13 
Ca at 0-30 cm layer (me/l) 3.9 0.26 0.7 0.6 
Ca at 30-60 cm layer (me/l) 4.11 1.7 1.04 -0.75 

Mean Ca (me/l) 4.01 1.15 0.59 0.65 
Correlation of mean and surface Ca (me/l) - - 0.56 0.69 

Correlation of  Ca and pH (me/l) - - 1.41 0.69 
Mg at 0-30 cm layer (me/l) 2.12 1.03 1.2 -0.1 
Mg at 30-60 cm layer (me/l) 2.12 0.82 0.89 -0.32 

Mean Mg (me/l) 2.12 0.83 0.99 -0.52 
Correlation of mean and surface Mg (me/l) - - 0.89 0.2 

Correlation of Mg and EC (me/l) - - 0.013 0.2 
SAR at 0-30 cm layer (me/l) 0.099 -0.15 0.014 0.51 

SAR at 30-60 cm layer (me/l) 0.095 -0.39 0.012 0.46 
 
        Table 6. The results of estimation of different geostatistical techniques (kriging and cokriging) 

Variable Mean Skewness RMSE R 
Mean SAR 0.097 -0.22 0.011 0.45 

Correlation of mean and surface SAR (me/l) - - 0.011 0.48 
Correlation of SAR and EC (me/l) - - 0.011 0.48 
Correlation of SAR and pH (me/l) - - 0.013 0.48 

Co3 at 0-30 cm layer (me/l) 1.002 0.17 0.23 -0.5 
Co3 at 30-60 cm layer (me/l) 1.03 -0.19 0.42 -0.67 

Mean Co3 (me/l) 1.02 0.99 0.25 -0.4 
Correlation of mean and surface Co3 (me/l) - - 0.26 0.09 

Correlation of Co3 and EC (me/l) - - 0.25 0.09 
Correlation of Co3 and pH (me/l) - - - - 

Hco3 at 0-30 cm layer (me/l) 1.37 -0.23 0.57 0.63 
Hco3 at  30-60 cm layer (me/l) 1.56 1.35 1.78 -0.33 

Mean Hco3 (me/l) 1.46 0.9 1.05 0.39 
Correlation of mean and surface Hco3 (me/l) - - 0.99 0.48 

Correlation of Hco3 and EC (me/l) - - 0.99 0.48 
Correlation of Hco3 and pH (me/l) - - - - 

Cl at 0-30 cm layer (me/l) 0.942 -0.29 0.27 -0.3 
Cl at 30-60 cm layer 1.04 -0.28 0.33 -0.7 

Mean Cl (me/l) 0.99 -0.54 0.28 -0.7 
Correlation of mean and surface Cl (me/l) - - - - 

Correlation of Cl and EC (me/l) - - 0.35 -0.28 

93



 Jafari  et al. / DESERT 16 (2011) 87-101  

 
1 

All of physical and chemical soil factors that have 
been investigated in this research have high value 
of (C/C+C0) parameter, and this issue justifies the 
use of geostatistical techniques. 

In (Fig.3) average concentration distribution maps 
of: EC (a), Ca (b), SAR (c), Mg (d), Na (e) and 
pH (f) in Zereshkin basin, since (1999-2006) have 
been shown.  

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Variograms of the studied variables 
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Fig.2. Variograms of the variables 
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Fig.3. Average concentration distribution maps of: EC (a), Ca (b) , SAR (c), Mg (d), Na (e) and pH (f) in Dameghan plain (1999-2006) 
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Fig.3. Average concentration distribution maps of: EC (a), Ca (b), SAR (c), Mg (d), Na (e) and pH (f) in Dameghan plain (1999-2006) 
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Fig.3. Average concentration distribution maps of: EC (a), Ca (b) , SAR (c), Mg (d), Na (e) and pH (f) in Dameghan plain (1999-2006) 
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4. Discussion  
 
     Results show there is high value of skewness 
among some soil properties amounts due to 
intrinsic characteristics of variables, 
environmental conditions like human activities, 
sampling methods and number of samples. In this 
study transect method was selected for sampling 
and a minimum of samples was tried to take for 
economizing on time and expenses. 
     We found a large amount of spatial 
heterogeneity in this study area, despite the fact of 
the site appears to be as homogeneous as any 
pasture field in the region. The site had been 
cleared of original vegetation and used as a 
pasture for several decades prior to the start of this 
study, with neither chemical fertilizer added nor 
mechanized agricultural practices adopted. We 
thus did not expect to find very large differences 
in important soil properties across the site. The 
present study illustrates that substantial soil 
property spatial variation existed in the study area, 
and that the structure of the variation could be 
determined using semivariograms. Variation 
differed among the soil properties and these 
differences may reflect the impacts of plants, soil 
fauna, and/or precipitation and also highly 
influenced by topography and management 
adopted in the area. 
     Using grid sampling can decrease data 
skewness value, but this method cause to increase 
numbers of samples and therefore more spending 
money and time is needed. In the current study the 
use of appropriate methods for changing data to 
normal condition has solved some problems but 
some data have high skewness values as before. 
Other method like WMI, Spline, and Surface 
Trend can be used for such data. In our study the 
use of kriging method has given acceptable 
estimation, but application of cokriging method 
has increased the estimation accuracy. Amini et al 
(2002) reported cokriging does not have any 
preference to kriging if cross semi-variogram is 
well proportioned to single variogram. Despite the 
fact that calculated variograms follow similar 
pattern, but cokriging has given more accurate 
estimation than kriging.  
     Generally accurate and clear spatial data of soil 
properties will be useful for natural resources 
management and sustainable development.  
     Examined with other studies of soil property 
variability, our results provide further evidence 
that soils are highly structured spatially, and that 
this structuring should be considered when 

designing both agronomic experiments and 
management strategies. Although knowledge 
about the heterogeneity of some properties at a 
specific point in time may be insufficient to guide 
management decisions later, it is nevertheless 
apparent that spatially explicit information about 
some properties (e.g., soil P content or soil Cl) 
should be useful to support policy decision makers 
in natural resource improvement. 
     With greater recent emphasis placed on 
regionalized variable analyses, the choice of an 
adequate area for a field experiment must not be 
arbitrary, but rather must be based on measured 
variance and spatial correlation structures. This is 
in addition to the usual considerations such as 
equipment availability, number of treatments or 
sub treatments, irrigation systems, and land area 
available for the experiment. Plot arrangement 
should also be based on magnitudes of the spatial 
correlation lengths associated with observations of 
the soil attributes being investigated. 
     At the end of the article these issues are 
suggested for next studies: 
1) The other sampling methods should be used 
and obtained results should be compared with 
transect method. 
2) The other interpolation methods should be 
applied to estimate soil properties. 
3) The other supplementary variables like satellite 
data can be utilized in cokriging method.  
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